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II. Cluster Analysis
q Cluster Analysis Basics
q Hierarchical Cluster Analysis
q Iterative Cluster Analysis
q Density-Based Cluster Analysis
q Cluster Evaluation
q Constrained Cluster Analysis
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Cluster Analysis Basics

Cluster analysis is the unsupervised classification of a set of objects in groups,
pursuing the following objectives:

1. maximize the similarities within the groups (intra groups)

2. minimize the similarities between the groups (inter groups)

DM:II-2 Cluster Analysis © STEIN 2021



Cluster Analysis Basics

Cluster analysis is the unsupervised classification of a set of objects in groups,
pursuing the following objectives:

1. maximize the similarities within the groups (intra groups)

2. minimize the similarities between the groups (inter groups)

Applications:

q identification of similar groups of buyers

q “higher-level” image processing: object recognition

q search of similar gene profiles

q specification of syndromes

q analysis of traffic data in computer networks

q visualization of complex graphs

q text categorization in information retrieval
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Remarks:

q The setting of a cluster analysis is reverse to the setting of a variance analysis:

– A variance analysis verifies whether a nominal feature defines groups such that the
members of the different groups differ significantly with regard to a numerical feature.
I.e., the nominal feature is in the role of the independent variable, while the numerical
feature(s) is (are) in role of dependent variable(s).
Example: The type of a product packaging (the independent variable) may define the
number of customers (the dependent variable) in a supermarket who look at the product.

– A cluster analysis, in turn, can be used to identify such a nominal feature, namely by
constructing a suited feature domain for the nominal variable: each cluster corresponds
implicitly to a value of the domain.
Example: Equivalent but differently presented products in a supermarket are clustered
(= the impact of product packaging is identified) with regard to the number of customers
who buy the products.

q Cluster analysis is a tool for structure generation. Nearly nothing is known about the nominal
variable that is to be identified. In particular, there is no knowledge about the number of
domain values (the number of clusters).

q Variance analysis is a tool for structure verification.
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Cluster Analysis Basics

Let x1, . . .xn denote the p-dimensional feature vectors of n objects:

Feature 1 Feature 2 . . . Feature p

x1 x11 x12 . . . x1p
x2 x21 x22 . . . x2p
...
xn xn1 xn2 . . . xnp
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Cluster Analysis Basics

Let x1, . . .xn denote the p-dimensional feature vectors of n objects:

Feature 1 Feature 2 . . . Feature p

x1 x11 x12 . . . x1p
x2 x21 x22 . . . x2p
...
xn xn1 xn2 . . . xnp

Target concept

c1

c2
...
cn︸ ︷︷ ︸

not given
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Cluster Analysis Basics

Let x1, . . .xn denote the p-dimensional feature vectors of n objects:

Feature 1 Feature 2 . . . Feature p

x1 x11 x12 . . . x1p
x2 x21 x22 . . . x2p
...
xn xn1 xn2 . . . xnp

Target concept

c1

c2
...
cn︸ ︷︷ ︸

not given

30 two-dimensional feature vectors (n = 30, p = 2) :

�

Feature 1

Feature 2
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Cluster Analysis Basics

Definition 3 (Exclusive Clustering [
::::::::
splitting])

Let X be a set of feature vectors. An exclusive clustering C of X,
C = {C1, C2, . . . , Ck}, Ci ⊆ X, is a partitioning of X into non-empty, mutually
exclusive subsets Ci with

⋃
Ci∈C

Ci = X.
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Cluster Analysis Basics

Definition 3 (Exclusive Clustering [
::::::::
splitting])

Let X be a set of feature vectors. An exclusive clustering C of X,
C = {C1, C2, . . . , Ck}, Ci ⊆ X, is a partitioning of X into non-empty, mutually
exclusive subsets Ci with

⋃
Ci∈C

Ci = X.

Algorithms for cluster analysis are unsupervised learning methods:

q the learning process is self-organized

q there is no (external) teacher

q the optimization criterion is task- and domain-independent
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Cluster Analysis Basics

Definition 3 (Exclusive Clustering [
::::::::
splitting])

Let X be a set of feature vectors. An exclusive clustering C of X,
C = {C1, C2, . . . , Ck}, Ci ⊆ X, is a partitioning of X into non-empty, mutually
exclusive subsets Ci with

⋃
Ci∈C

Ci = X.

Algorithms for cluster analysis are unsupervised learning methods:

q the learning process is self-organized

q there is no (external) teacher

q the optimization criterion is task- and domain-independent

Supervised learning:

q a learning objective such as the target concept is provided

q the optimization criterion is defined by the task or the domain

q information is provided about how the optimization criterion can be
maximized. Keyword: instructive feedback

DM:II-10 Cluster Analysis © STEIN 2021



Cluster Analysis Basics
Main Stages of a Cluster Analysis

ClustersObjects
Feature

extraction &
-preprocessing

Similarity
computation

Merging� �� �
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Cluster Analysis Basics
Feature Extraction and Preprocessing [cluster analysis stages]

Required are (possibly new) features of high variance. Approaches:

q analysis of dispersion parameters

q dimension reduction: PCA, factor analysis, MDS

q visual inspection: scatter plots, box plots

[Webis 2012, VDM tool]
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Cluster Analysis Basics
Feature Extraction and Preprocessing [cluster analysis stages]

Required are (possibly new) features of high variance. Approaches:

q analysis of dispersion parameters

q dimension reduction: PCA, factor analysis, MDS

q visual inspection: scatter plots, box plots

Feature standardization can dampen the structure and make things worse:

�
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Cluster Analysis Basics
Computation of Distances or Similarities [cluster analysis stages]

Let x1, . . .xn denote the p-dimensional feature vectors of n objects:

Feature 1 Feature 2 . . . Feature p

x1 x11 x12 . . . x1p
x2 x21 x22 . . . x2p
...
xn xn1 xn2 . . . xnp

Ü

x1 x2 . . . xn

x1 0 d(x1,x2) . . . d(x1,xn)

x2 - 0 . . . d(x2,xn)
...
xn - - . . . 0

Distance matrix
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Remarks:

q Usually, the distance matrix is defined implicitly by a metric on the feature space.

q The distance matrix can be understood as the adjacency matrix of a weighted, undirected
graph G, G = 〈V,E,w〉. The set X of feature vectors is mapped one-to-one (bijection) onto a
set of nodes V . The distance d(xi,xj) corresponds to the weight w({u, v}) of edge {u, v} ∈ E

between those nodes u and v that are associated with xi and xj respectively.
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Cluster Analysis Basics
Computation of Distances or Similarities (continued)

Properties of a distance function:

1. d(x1,x2) ≥ 0

2. d(x1,x1) = 0

3. d(x1,x2) = d(x2,x1)

4. d(x1,x3) ≤ d(x1,x2) + d(x2,x3)
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Cluster Analysis Basics
Computation of Distances or Similarities (continued)

Properties of a distance function:

1. d(x1,x2) ≥ 0

2. d(x1,x1) = 0

3. d(x1,x2) = d(x2,x1)

4. d(x1,x3) ≤ d(x1,x2) + d(x2,x3)

Minkowsky metric for features with interval-based measurement scales:

d(x1,x2) =
( p∑

i=1

|x1i − x2i|
r
)1/r

where

q r = 1. Manhattan or Hamming distance, L1 norm

q r = 2. Euclidean distance, L2 norm

q r =∞. Maximum distance, L∞ norm or Lmax norm
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Cluster Analysis Basics
Computation of Distances or Similarities (continued)

Cluster analysis does not presume a particular
:::::::::::::::::::::
measurement

:::::::::
scale.

Ü Generalization of the distance function towards a (dis)similarity function by
omitting the triangle inequality. (Dis)similarities can be quantified between all
kinds of features—irrespective of the given levels of measurement.
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Cluster Analysis Basics
Computation of Distances or Similarities (continued)

Cluster analysis does not presume a particular
:::::::::::::::::::::
measurement

:::::::::
scale.

Ü Generalization of the distance function towards a (dis)similarity function by
omitting the triangle inequality. (Dis)similarities can be quantified between all
kinds of features—irrespective of the given levels of measurement.

Similarity coefficients for two feature vectors, x1, x2, with binary features:

Simple Matching Coefficient (SMC) =
f11 + f00

f11 + f00 + f01 + f10

Jaccard Coefficient (J) =
f11

f11 + f01 + f10

where
f11 = number of features with a value of 1 in both x1 and x2

f00 = number of features with a value of 0 in both x1 and x2

f01 = number of features with value 0 in x1 and value 1 in x2

f10 = number of features with value 1 in x1 and value 0 in x2
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Remarks:

q The definitions for the above similarity coefficients can be extended towards features with a
nominal measurement scale.

q Particular heterogeneous metrics have been developed, such as HEOM and HVDM, which
allow the combined computation of feature values from different measurement scales.

q The computation of the correlation between all features of two feature vectors (not: between
two features over all feature vectors) allows to compare feature profiles.
Example: Q correlation coefficient

q The development of a suited, realistic, and expressive similarity measure is the biggest
challenge within a cluster analysis tasks. Typical problems:

– (unwanted) structure damping due to normalization
– (unwanted) sensitivity concerning outliers
– (unrecognized) feature correlations
– (neglected) varying feature importance

q Similarity measures can be transformed straightforwardly into dissimilarity measures—and
vice versa.
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Cluster Analysis Basics
Merging Principles [cluster analysis stages]

meta-search-
controlled

Cluster
analysis

gradient-based

density-based
point-density-based

attraction-based

competitive

hierarchical
agglomerative

divisive

iterative
exemplar-based

exchange-based

stochastic
Gaussian mixtures

...

single link, group average

MinCut

k-means, k-medoid

Kerninghan-Lin

DBSCAN

MajorClust

simulated annealing

evolutionary strategies
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