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Density-Based Cluster Analysis

Density-based algorithms strive to partition the graph G = (V, E, w), better: the set
of points V, into regions of similar density.

Approaches to density estimation:

0 parameterless: construction of histograms, superposition of kernel density
estimators



Density-Based Cluster Analysis

Density-based algorithms strive to partition the graph G = (V, E, w), better: the set
of points V, into regions of similar density.

Approaches to density estimation:
o parameter-based: the type of the underlying data distribution is known

0 parameterless: construction of histograms, superposition of kernel density
estimators

Example (Caribbean Islands):
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Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example
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Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example

Dominican
Republic
/

Puerto

DM:lI-142  Cluster Analysis ©STEIN 2021



Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example
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Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example
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Remarks:

Q The green three-dimensional landscape is the result of associating each point of the

superimposing them.

O Raising the “water level” in the three-dimensional landscape (~ clipping at a certain contour

line) coressponds to splitting the dendrogram and reveals possible clusters. Observe that no
single water level (contour line) can be chosen such that all clusters can be identified.


https://webis.de/downloads/lecturenotes/data-mining/unit-en-cluster-analysis-hierarchical.pdf#dendrogram9

Density-Based Cluster Analysis
DBSCAN: Density Estimation Principle [Ester et al. 1996]

Let N.(v) denote the e-neighborhood of some point v € V. Distinguish between
three kinds of points:
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Density-Based Cluster Analysis
DBSCAN: Density Estimation Principle

A point u is density-reachable from a point v, if either of the following conditions
hold:

(@) u € N.(v), where v is a core point.

(b) There exists a set of points {vy, ..., v}, where
vir1 € N-(v;) and v; is core point, i = 1,...,0 — 1, with v; = v, vy = u.
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Density-Based Cluster Analysis
DBSCAN: Cluster Interpretation

A cluster C' C V fulfills the following two conditions:

1. Vu,v: If v € C and u is density-reachable from v, then u € C.

Maximality
condition




Density-Based Cluster Analysis
DBSCAN: Cluster Interpretation

A cluster C' C V fulfills the following two conditions:

1. Vu,v: If v € C and u is density-reachable from v, then u € C.

Maximality
condition

2. Yu,v € C': uis density-connected with v, which is defined as follows:

There exists a point ¢t wherefrom « and v are density-reachable.

Cz

Connectivity
o % .09y, condition




Remarks:

a Condition 1 (maximality) states a constraint between any two points.
Condition 2 (connectivity) states an additional constraint with respect to a third point.

O The maximality condition is problematic if a border point lies in the e-neighborhoods of two
core points that belong to two different clusters. Such a border point would then belong to
both clusters; however, the algorithm breaks this tie by assigning this point to the first cluster
found.



Density-Based Cluster Analysis
DBSCAN: Algorithm

Input: G = (V, E,w). Weighted graph.
d. Distance measure for two nodes in V.
e. Neighborhood radius.
MinPts. Lower bound for point number in e-neighborhood.

Output: ~ : V — Z. Cluster assignment function.

v = choose_unclassified_point(V')

4., N.(v) = neighborhood(G, d,v,¢)
5. |IN-(v)| > MinPts
6.
7. C; = density_reachable_hull(G,d, N-(v))
8. FOREACH v € (; DO ~v(v) =1
9. v(v) = -1
10.

11.



Density-Based Cluster Analysis
DBSCAN: Algorithm

Input: G = (V, E,w). Weighted graph.
d. Distance measure for two nodes in V.
e. Neighborhood radius.
MinPts. Lower bound for point number in e-neighborhood.

Output: ~ : V — Z. Cluster assignment function.

1. =0
WHILE Jv:(veV AND ~(v)=1) DO
v = choose_unclassified_point(V')

4., N.(v) = neighborhood(G, d,v,¢)
5. |IN-(v)| > MinPts
6. 1=1+1
7. C; = density_reachable_hull(G,d, N-(v))
8. FOREACH v € (; DO ~v(v) =1
9. v(v) = -1
10. ENDDO

11. RETURN(7)



Density-Based Cluster Analysis
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Density-Based Cluster Analysis
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Density-Based Cluster Analysis
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Density-Based Cluster Analysis
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Density-Based Cluster Analysis
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Density-Based Cluster Analysis

DBSCAN

® Core point
o Border point
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Density-Based Cluster Analysis
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Density-Based Cluster Analysis

DBSCAN

® Core point
o Border point
@ Noise point



Density-Based Cluster Analysis
DBSCAN

@ Noise point




Remarks:

O Note that points that are labeled as noise can be re-labeled with a cluster number exactly
once. l.e., a point will retain its tentative noise label only if it is not density-reachable from any

other point.

Q The construction of C; as the density-reachable hull of N.(v) (Line 7) corresponds to a
recursive analysis of the points in N.(v) with regard to their density reachability.

a A slightly different and compact formulation of the algorithm is given in
[Tan/Steinbach/Kumar 2005, p. 528].
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph G = (V, E, w) are interpreted as attracting forces,
where members of the same cluster combine their forces.

Unique membership situation, leading to a merge of two clusters:

Pse - [pe



Density-Based Cluster Analysis
MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph G = (V, E, w) are interpreted as attracting forces,
where members of the same cluster combine their forces.

Unique membership situation, leading to a merge of two clusters:

Unique membership situation, leading to
a change of cluster membership:
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph G = (V, E, w) are interpreted as attracting forces,
where members of the same cluster combine their forces.

Unique membership situation, leading to a merge of two clusters:

Unique membership situation, leading to Ambiguous membership situation:

a change of cluster membership:
-
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Density-Based Cluster Analysis
MajorClust: Algorithm

Input: G = (V, E,w). Weighted graph.
d. Distance measure for two nodes in V.

Output: ~ : V' — N. Cluster assignment function.

1.

2.

3.

4,

5. FOREACH v €V DO

6. v* = argmax Z w(u,v)

L VI ) e B Ay (u)=i

7. IF v(v) #~* THEN ~(v) =~*, t= False ENDIF
8. ENDDO
9.



Density-Based Cluster Analysis
MajorClust: Algorithm

Input:

Output:

= w N

o1

G = (V, E,w). Weighted graph.
d. Distance measure for two nodes in V.
v : V — N. Cluster assignment function.

1 =0, t= False
FOREACH ve€V DO i=i+1, 7(v)=1: ENDDO
UNLESS ¢ DO

t = True

FOREACH v €V DO
v* = argmax Z w(u, v)

rie{l,...,|V[} {u,w}:{uveEAy(u)=i
IF v(v) #~* THEN ~(v) =~*, t= False ENDIF
ENDDO

ENDDO
RETURN()



Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
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Density-Based Cluster Analysis
MajorClust




Density-Based Cluster Analysis

MajorClust
© ©
©@© ©©@© o c°
© © ©
o o © ©
© @)
e ° oo%
© ©
© & o©@©©
© 0G99
0\O=~ ©
@ Q oo @@
o o/OQ ©
© ©




Density-Based Cluster Analysis

MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Remarks:

Q MajorClust combines properties from other paradigms:
— distance-depending analysis (hierarchical paradigm, iterative paradigm)
— reversible merging decisions (iterative paradigm)
— distribution-dependent analysis (density paradigm)



Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C4, ..., C}} induces k subgraphs within G = (V. E, w).
MajorClust is a heuristic to maximize the weighted partial edge connectivity, A(C).

k
AC) = Y1 A
1=1



Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C4, ..., C}} induces k subgraphs within G = (V. E, w).
MajorClust is a heuristic to maximize the weighted partial edge connectivity, A(C).

k
AC) = Y1 A
1=1

<4




Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C4, ..., C}} induces k subgraphs within G = (V. E, w).
MajorClust is a heuristic to maximize the weighted partial edge connectivity, A(C).

k
AC) =D 1G] A Ay=1
1=1

<3 K-




Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C4, ..., C}} induces k subgraphs within G = (V. E, w).
MajorClust is a heuristic to maximize the weighted partial edge connectivity, A(C).

k

AC) = Y1 A

1=1

7L1=2 — 2. . D —
g - A=32+21+32=14

A=N=42+43=20




Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

minimization of cut weight A maximization



Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

minimization of cut weight A maximization

Theorem 5 (Strong Splitting Condition [Stein/Niggemann 1999])

Let C = {C4,...,C}} be a partitioning of a graph G = (V, E, w). Moreover, let A\(G)
denote the edge connectivity of GG, and let A\, ..., \;. denote the edge connectivity
values of the k subgraphs that are induced by 1, ..., C;.

If the inequality \(G)) < min{\, ..., Az} holds, then the partitioning defined by
A-maximization corresponds to the minimum cut splitting of G. The inequality is
denoted as “Strong Splitting Condition”.



Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data

Caribbean Islands, about 20.000 points:

ATLANTIK
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Density-Based Cluster Analysis

DBSCAN versus MajorClust: Low-Dimensional Data (continued)

Caribbean Islands, about 20.000 points:

ATLANTIK

€=5.0, MinPts =4

¢=10.0, MinPts =5
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data (continued)

The problem of finding useful e-values for DBSCAN:

e = 3.0, MinPts = 3

DM:II-191  Cluster Analysis
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The clusters
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data (continued)

Caribbean Islands, about 20.000 points:

ATLANTIK
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data (continued)

The problem of the global analysis approach (no restriction by means of an
e-neighborhood) in MajorClust:
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Remarks:

O MajorClust is superior to DBSCAN with regard to the identification of differently dense
clusters within the same clustering. DBSCAN is more flexible (= can be better adapted) than
MajorClust with regard to point densities in different clusterings.

Q MajorClust considers always all points of 1/, while DBSCAN works locally, i.e., on small
subsets of V.



Density-Based Cluster Analysis
DBSCAN versus MajorClust: High-Dimensional Data

Typical document categorization setting:

a 10% - 10° documents
o 10 - 100 categories: politics, culture, economics, etc.
o documents belong to one category

o dimension of the feature space > 10000

DBSCAN:

o degenerates with increasing number of dimensions
o the degeneration is rooted in the computation of the -neighborhood

o dimension reduction provides a way out, e.g. by embedding the data with
multi-dimensional scaling, MDS



Density-Based Cluster Analysis
DBSCAN versus MajorClust: High-Dimensional Data (continued)

Classification effectiveness (' measure) over dimension number:

F-Measure

1.0

0.9 1

0.8 1

0.7 |

0.6 -

0.5

0.4 -

0.3 1

0.2 7

0.1 1

0

—— MajorClust (original data)
=# MajorClust (embedded data)
=A= DBSCAN (embedded data)

2 (52.1)

3(49.1)

4 (44.3)

5 (43.5)

6(40.7) 7(37.6) 8(35.1) 9(34.2)

Number of dimensions, (Stress)

10(11.6) 11(10.8) 12(10.2) 13(9.6)

[Stein/Busch 2005]



Remarks:

Q Usually, the neighborhood search in high-dimensional spaces cannot be solved efficiently.
Given p dimensions with p about 10 or larger, an exhaustive search, i.e., a linear scan of all
feature vectors will be more efficient than the application of a space partitioning data structure
(quad-tree, k-d tree, etc,) or a data partitioning data structure (R-tree, Rf-tree, X-tree, etc.).

0 DBSCAN employs the R-tree data structure to compute e-neighborhoods. This data structure
accomplishes the major part of the DBSCAN cluster analysis approach and is ideally suited
for treating low-dimensional data efficiently. The application of DBSCAN to high-dimensional
data either requires an embedding into a low-dimensional space or to accept the runtime for
a naive construction of e-neighborhoods.

0 Neighborhood search in high-dimensional spaces can be addressed with approximate
methods such as locality sensitive hashing (LSH), or Fuzzy fingerprinting. [Weber 1999]
[Gionis/Indyk/Motwani 1999-2004] [Stein 2005-2007] [Andoni 2009]



