
Chapter DM:II (continued)

II. Cluster Analysis
q Cluster Analysis Basics
q Hierarchical Cluster Analysis
q Iterative Cluster Analysis
q Density-Based Cluster Analysis
q Cluster Evaluation
q Constrained Cluster Analysis
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Density-Based Cluster Analysis
Density-based algorithms strive to partition the graph G = 〈V,E,w〉, better: the set
of points V , into regions of similar density.

Approaches to density estimation:

q parameter-based: the type of the underlying data distribution is known

q parameterless: construction of histograms, superposition of kernel density
estimators
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Density-Based Cluster Analysis
Density-based algorithms strive to partition the graph G = 〈V,E,w〉, better: the set
of points V , into regions of similar density.

Approaches to density estimation:

q parameter-based: the type of the underlying data distribution is known

q parameterless: construction of histograms, superposition of kernel density
estimators

Example (Caribbean Islands) :
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Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example
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Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example
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Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example
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Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example
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Remarks:

q The green three-dimensional landscape is the result of associating each point of the
rasterized map (right-hand side) with a three-dimensional Gaussian kernel and
superimposing them.

q Raising the “water level” in the three-dimensional landscape (∼ clipping at a certain contour
line) coressponds to splitting the

:::::::::::::::
dendrogram and reveals possible clusters. Observe that no

single water level (contour line) can be chosen such that all clusters can be identified.
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Density-Based Cluster Analysis
DBSCAN: Density Estimation Principle [Ester et al. 1996]

Let Nε(v) denote the ε-neighborhood of some point v ∈ V . Distinguish between
three kinds of points:

ε

Core point Noise point Border point

v
v

v

1. v is a core point ⇔ |Nε(v)| ≥ MinPts

2. v is a noise point ⇔
v is not density-reachable from any core point

3. v is a border point otherwise
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Density-Based Cluster Analysis
DBSCAN: Density Estimation Principle

A point u is density-reachable from a point v, if either of the following conditions
hold:

(a) u ∈ Nε(v), where v is a core point.

(b) There exists a set of points {v1, . . . , vl}, where

vi+1 ∈ Nε(vi) and vi is core point, i = 1, . . . , l − 1, with v1 = v, vl = u.

ε

uv

Condition (b) can be considered as the transitive application of Condition (a).
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Density-Based Cluster Analysis
DBSCAN: Cluster Interpretation

A cluster C ⊆ V fulfills the following two conditions:

1. ∀u, v : If v ∈ C and u is density-reachable from v, then u ∈ C.

u
v uv

C
Maximality
condition
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Density-Based Cluster Analysis
DBSCAN: Cluster Interpretation

A cluster C ⊆ V fulfills the following two conditions:

1. ∀u, v : If v ∈ C and u is density-reachable from v, then u ∈ C.

u
v uv

C
Maximality
condition

2. ∀u, v ∈ C : u is density-connected with v, which is defined as follows:

There exists a point t wherefrom u and v are density-reachable.

u
v uv

C1

Connectivity
condition

C2
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Remarks:

q Condition 1 (maximality) states a constraint between any two points.
Condition 2 (connectivity) states an additional constraint with respect to a third point.

q The maximality condition is problematic if a border point lies in the ε-neighborhoods of two
core points that belong to two different clusters. Such a border point would then belong to
both clusters; however, the algorithm breaks this tie by assigning this point to the first cluster
found.
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Density-Based Cluster Analysis
DBSCAN: Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
d. Distance measure for two nodes in V .
ε. Neighborhood radius.
MinPts. Lower bound for point number in ε-neighborhood.

Output: γ : V → Z. Cluster assignment function.

1. i = 0

2. WHILE ∃v : (v ∈ V AND γ(v) =⊥) DO // check for unclassified (⊥) points

3. v = choose_unclassified_point(V )

4. Nε(v) = neighborhood(G, d, v, ε)
5. IF |Nε(v)| ≥ MinPts THEN // v is core point

6. i = i+ 1

7. Ci = density_reachable_hull(G, d,Nε(v)) // identify dense region

8. FOREACH v ∈ Ci DO γ(v) = i // assign points in region to cluster i

9. ELSE γ(v) = −1 // classify v _tentatively_ as noise (-1)

10. ENDDO

11. RETURN(γ)
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Density-Based Cluster Analysis
DBSCAN: Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
d. Distance measure for two nodes in V .
ε. Neighborhood radius.
MinPts. Lower bound for point number in ε-neighborhood.

Output: γ : V → Z. Cluster assignment function.

1. i = 0

2. WHILE ∃v : (v ∈ V AND γ(v) =⊥) DO // check for unclassified (⊥) points

3. v = choose_unclassified_point(V )

4. Nε(v) = neighborhood(G, d, v, ε)
5. IF |Nε(v)| ≥ MinPts THEN // v is core point

6. i = i+ 1

7. Ci = density_reachable_hull(G, d,Nε(v)) // identify dense region

8. FOREACH v ∈ Ci DO γ(v) = i // assign points in region to cluster i

9. ELSE γ(v) = −1 // classify v _tentatively_ as noise (-1)

10. ENDDO

11. RETURN(γ)
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Density-Based Cluster Analysis
DBSCAN
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Density-Based Cluster Analysis
DBSCAN
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Density-Based Cluster Analysis
DBSCAN
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Density-Based Cluster Analysis
DBSCAN
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Density-Based Cluster Analysis
DBSCAN
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Density-Based Cluster Analysis
DBSCAN

Core point
Border point

DM:II-158 Cluster Analysis © STEIN 2021



Density-Based Cluster Analysis
DBSCAN

Core point
Border point
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Density-Based Cluster Analysis
DBSCAN

Core point
Border point
Noise point
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Density-Based Cluster Analysis
DBSCAN

Core point
Border point
Noise point

DM:II-161 Cluster Analysis © STEIN 2021



Density-Based Cluster Analysis
DBSCAN

Noise point
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Remarks:

q Note that points that are labeled as noise can be re-labeled with a cluster number exactly
once. I.e., a point will retain its tentative noise label only if it is not density-reachable from any
other point.

q The construction of Ci as the density-reachable hull of Nε(v) (Line 7) corresponds to a
recursive analysis of the points in Nε(v) with regard to their density reachability.

q A slightly different and compact formulation of the algorithm is given in
[Tan/Steinbach/Kumar 2005, p. 528].
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph G = 〈V,E,w〉 are interpreted as attracting forces,
where members of the same cluster combine their forces.

Unique membership situation, leading to a merge of two clusters:

�
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph G = 〈V,E,w〉 are interpreted as attracting forces,
where members of the same cluster combine their forces.

Unique membership situation, leading to a merge of two clusters:

�

Unique membership situation, leading to
a change of cluster membership:

�
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph G = 〈V,E,w〉 are interpreted as attracting forces,
where members of the same cluster combine their forces.

Unique membership situation, leading to a merge of two clusters:

�

Unique membership situation, leading to
a change of cluster membership:

�

Ambiguous membership situation:

�

�
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Density-Based Cluster Analysis
MajorClust: Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
d. Distance measure for two nodes in V .

Output: γ : V → N. Cluster assignment function.

1. i = 0, t = False
2. FOREACH v ∈ V DO i = i + 1, γ(v) = i ENDDO // initial clustering

3. UNLESS t DO

4. t = True

5. FOREACH v ∈ V DO

6. γ∗ = argmax
i: i∈{1,...,|V |}

∑
{u,v}: {u,v}∈E ∧ γ(u)=i

w(u, v) // find strongest cluster for v

7. IF γ(v) 6= γ∗ THEN γ(v) = γ∗, t = False ENDIF // reassign v

8. ENDDO

9. ENDDO

10. RETURN(γ)
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Density-Based Cluster Analysis
MajorClust: Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
d. Distance measure for two nodes in V .

Output: γ : V → N. Cluster assignment function.

1. i = 0, t = False
2. FOREACH v ∈ V DO i = i + 1, γ(v) = i ENDDO // initial clustering

3. UNLESS t DO

4. t = True

5. FOREACH v ∈ V DO

6. γ∗ = argmax
i: i∈{1,...,|V |}

∑
{u,v}: {u,v}∈E ∧ γ(u)=i

w(u, v) // find strongest cluster for v

7. IF γ(v) 6= γ∗ THEN γ(v) = γ∗, t = False ENDIF // reassign v

8. ENDDO

9. ENDDO

10. RETURN(γ)
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Remarks:

q MajorClust combines properties from other paradigms:

– distance-depending analysis (hierarchical paradigm, iterative paradigm)

– reversible merging decisions (iterative paradigm)

– distribution-dependent analysis (density paradigm)
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C1, . . . , Ck} induces k subgraphs within G = 〈V,E,w〉.
MajorClust is a heuristic to maximize the weighted partial edge connectivity, Λ(C).

Λ(C) =

k∑
i=1

|Ci| · λi
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C1, . . . , Ck} induces k subgraphs within G = 〈V,E,w〉.
MajorClust is a heuristic to maximize the weighted partial edge connectivity, Λ(C).

Λ(C) =

k∑
i=1

|Ci| · λi

�

�

�
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C1, . . . , Ck} induces k subgraphs within G = 〈V,E,w〉.
MajorClust is a heuristic to maximize the weighted partial edge connectivity, Λ(C).

Λ(C) =

k∑
i=1

|Ci| · λi

�

�

�

λ1 = 1
λ2 = 2

λ1 = 2

λ2 = 1

λ3 = 2

λ1 = 2
λ2 = 3
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C1, . . . , Ck} induces k subgraphs within G = 〈V,E,w〉.
MajorClust is a heuristic to maximize the weighted partial edge connectivity, Λ(C).

Λ(C) =

k∑
i=1

|Ci| · λi

�

�

�

λ1 = 1
λ2 = 2

λ1 = 2

λ2 = 1

λ3 = 2

λ1 = 2
λ2 = 3

Λ = 5·1 + 3·2 = 11

Λ = 3·2 + 2·1 + 3·2 = 14

Λ = Λ*  = 4·2 + 4·3 = 20
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

�

Λ maximizationminimization of cut weight

CCC

�
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

�

Λ maximizationminimization of cut weight

CCC

�

Theorem 5 (Strong Splitting Condition [Stein/Niggemann 1999])

Let C = {C1, . . . , Ck} be a partitioning of a graph G = 〈V,E,w〉. Moreover, let λ(G)

denote the edge connectivity of G, and let λ1, . . . , λk denote the edge connectivity
values of the k subgraphs that are induced by C1, . . . , Ck.

If the inequality λ(G) < min{λ1, . . . , λk} holds, then the partitioning defined by
Λ-maximization corresponds to the minimum cut splitting of G. The inequality is
denoted as “Strong Splitting Condition”.
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data

Caribbean Islands, about 20.000 points:
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data (continued)

Caribbean Islands, about 20.000 points:

Cluster analysis by DBSCAN:

ε = 5.0, MinPts = 4 ε = 10.0, MinPts = 5ε = 3.0, MinPts = 3
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data (continued)

The problem of finding useful ε-values for DBSCAN:

Two separate
clusters will
be detected.

The clusters
will be merged.

ε = 3.0, MinPts = 3
ε = 3

ε = 8 v

v

u
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data (continued)

Caribbean Islands, about 20.000 points:

Cluster analysis by MajorClust:

Initialization
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data (continued)

The problem of the global analysis approach (no restriction by means of an
ε-neighborhood) in MajorClust:

v

t = 16

t = 16
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Remarks:

q MajorClust is superior to DBSCAN with regard to the identification of differently dense
clusters within the same clustering. DBSCAN is more flexible (= can be better adapted) than
MajorClust with regard to point densities in different clusterings.

q MajorClust considers always all points of V , while DBSCAN works locally, i.e., on small
subsets of V .
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: High-Dimensional Data

Typical document categorization setting:

q 104 - 105 documents

q 10 - 100 categories: politics, culture, economics, etc.

q documents belong to one category

q dimension of the feature space > 10 000

DBSCAN:

q degenerates with increasing number of dimensions

q the degeneration is rooted in the computation of the ε-neighborhood

q dimension reduction provides a way out, e.g. by embedding the data with
multi-dimensional scaling, MDS
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: High-Dimensional Data (continued)

Classification effectiveness (F measure) over dimension number:

Number of dimensions, (Stress)

F
-M

ea
su

re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 (52.1) 3 (49.1) 4 (44.3) 5 (43.5) 6 (40.7) 7 (37.6) 8 (35.1) 9 (34.2) 10 (11.6) 11 (10.8) 12 (10.2) 13 (9.6)

MajorClust (original data)
MajorClust (embedded data)
DBSCAN (embedded data)

[Stein/Busch 2005]
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Remarks:

q Usually, the neighborhood search in high-dimensional spaces cannot be solved efficiently.
Given p dimensions with p about 10 or larger, an exhaustive search, i.e., a linear scan of all
feature vectors will be more efficient than the application of a space partitioning data structure
(quad-tree, k-d tree, etc,) or a data partitioning data structure (R-tree, Rf -tree, X-tree, etc.).

q DBSCAN employs the R-tree data structure to compute ε-neighborhoods. This data structure
accomplishes the major part of the DBSCAN cluster analysis approach and is ideally suited
for treating low-dimensional data efficiently. The application of DBSCAN to high-dimensional
data either requires an embedding into a low-dimensional space or to accept the runtime for
a naive construction of ε-neighborhoods.

q Neighborhood search in high-dimensional spaces can be addressed with approximate
methods such as locality sensitive hashing (LSH), or Fuzzy fingerprinting. [Weber 1999]
[Gionis/Indyk/Motwani 1999-2004] [Stein 2005-2007] [Andoni 2009]
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