Chapter DM:II (continued)

II. Cluster Analysis

- □ Cluster Analysis Basics
- □ Hierarchical Cluster Analysis
- □ Iterative Cluster Analysis
- Density-Based Cluster Analysis
- Cluster Evaluation
- Constrained Cluster Analysis

Merging Principles

Density-based algorithms strive to partition the graph $G = \langle V, E, w \rangle$, better: the set of points *V*, into regions of similar density.

Approaches to density estimation:

- parameter-based: the type of the underlying data distribution is known
- parameterless: construction of histograms, superposition of kernel density estimators

Density-based algorithms strive to partition the graph $G = \langle V, E, w \rangle$, better: the set of points V, into regions of similar density.

Approaches to density estimation:

- parameter-based: the type of the underlying data distribution is known
- parameterless: construction of histograms, superposition of kernel density estimators

Example (Caribbean Islands):

Remarks:

- The green three-dimensional landscape is the result of associating each point of the rasterized map (right-hand side) with a three-dimensional Gaussian kernel and superimposing them.
- □ Raising the "water level" in the three-dimensional landscape (~ clipping at a certain contour line) coressponds to splitting the <u>dendrogram</u> and reveals possible clusters. Observe that no single water level (contour line) can be chosen such that all clusters can be identified.

DBSCAN: Density Estimation Principle [Ester et al. 1996]

Let $N_{\varepsilon}(v)$ denote the ε -neighborhood of some point $v \in V$. Distinguish between three kinds of points:

- 1. v is a core point $\Leftrightarrow |N_{\varepsilon}(v)| \ge MinPts$
- 2. v is a noise point \Leftrightarrow

v is not density-reachable from any core point

3. v is a border point otherwise

DBSCAN: Density Estimation Principle

A point u is density-reachable from a point v, if either of the following conditions hold:

- (a) $u \in N_{\varepsilon}(v)$, where v is a core point.
- (b) There exists a set of points $\{v_1, \ldots, v_l\}$, where

 $v_{i+1} \in N_{\varepsilon}(v_i)$ and v_i is core point, $i = 1, \ldots, l-1$, with $v_1 = v$, $v_l = u$.

Condition (b) can be considered as the transitive application of Condition (a).

DBSCAN: Cluster Interpretation

A cluster $C \subseteq V$ fulfills the following two conditions:

1. $\forall u, v : \text{ If } v \in C \text{ and } u \text{ is density-reachable from } v \text{, then } u \in C.$

DBSCAN: Cluster Interpretation

A cluster $C \subseteq V$ fulfills the following two conditions:

1. $\forall u, v : \text{ If } v \in C \text{ and } u \text{ is density-reachable from } v \text{, then } u \in C.$

2. $\forall u, v \in C : u$ is density-connected with v, which is defined as follows: There exists a point t wherefrom u and v are density-reachable.

Remarks:

- Condition 1 (maximality) states a constraint between any two points.
 Condition 2 (connectivity) states an additional constraint with respect to a third point.
- □ The maximality condition is problematic if a border point lies in the ε -neighborhoods of two core points that belong to two different clusters. Such a border point would then belong to both clusters; however, the algorithm breaks this tie by assigning this point to the first cluster found.

DBSCAN: Algorithm

Input:	$G = \langle V, E, w \rangle$. Weighted graph. d. Distance measure for two nodes in V. ε . Neighborhood radius. <i>MinPts</i> . Lower bound for point number in ε -neighborhood.
Output:	$\gamma: V \to \mathbf{Z}$. Cluster assignment function.
1.	
2.	
3.	$v = choose_unclassified_point(V)$
4.	$N_{\varepsilon}(v) = neighborhood(G, d, v, \varepsilon)$
5.	IF $ N_{arepsilon}(v) \geq \textit{MinPts}$ THEN // v is core point
6.	
7.	$C_i = density_reachable_hull(G,d,N_arepsilon(v))$ // identify dense region
8.	FOREACH $v \in C_i$ DO $\gamma(v) = i$ // assign points in region to cluster i
9.	ELSE $\gamma(v) = -1$ // classify v _tentatively_ as noise (-1)

- 10.
- 11.

DBSCAN: Algorithm

Input: $G = \langle V, E, w \rangle$. Weighted graph.

d. Distance measure for two nodes in V.

 ε . Neighborhood radius.

MinPts. Lower bound for point number in ε -neighborhood.

Output: $\gamma: V \rightarrow \mathbf{Z}$. Cluster assignment function.

1. i = 0

```
2. WHILE \exists v : (v \in V \text{ AND } \gamma(v) = \bot) \text{ DO } // \text{ check for unclassified } (\bot) \text{ points}
```

3. $v = choose_unclassified_point(V)$

4.
$$N_{\varepsilon}(v) = neighborhood(G, d, v, \varepsilon)$$

5. IF
$$|N_{\varepsilon}(v)| \geq MinPts$$
 THEN // v is core point

6. i = i + 1

7. $C_i = density_reachable_hull(G, d, N_{\varepsilon}(v))$ // identify dense region

- 8. FOREACH $v \in C_i$ DO $\gamma(v) = i$ // assign points in region to cluster i
- 9. ELSE $\gamma(v) = -1$ // classify v _tentatively_ as noise (-1)
- 10. **ENDDO**
- 11. $\operatorname{return}(\gamma)$

Core pointBorder point

Core pointBorder point

Core pointBorder pointNoise point

Core pointBorder pointNoise point

• Noise point

Remarks:

- Note that points that are labeled as noise can be re-labeled with a cluster number exactly once. I.e., a point will retain its tentative noise label only if it is not density-reachable from any other point.
- □ The construction of C_i as the density-reachable hull of $N_{\varepsilon}(v)$ (Line 7) corresponds to a recursive analysis of the points in $N_{\varepsilon}(v)$ with regard to their density reachability.
- □ A slightly different and compact formulation of the algorithm is given in [Tan/Steinbach/Kumar 2005, p. 528].

Merging Principles

MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph $G = \langle V, E, w \rangle$ are interpreted as attracting forces, where members of the same cluster combine their forces.

Unique membership situation, leading to a merge of two clusters:

MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph $G = \langle V, E, w \rangle$ are interpreted as attracting forces, where members of the same cluster combine their forces.

Unique membership situation, leading to a merge of two clusters:

Unique membership situation, leading to a change of cluster membership:

MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph $G = \langle V, E, w \rangle$ are interpreted as attracting forces, where members of the same cluster combine their forces.

Unique membership situation, leading to a merge of two clusters:

Unique membership situation, leading to a change of cluster membership:

Ambiguous membership situation:

MajorClust: Algorithm

Input: $G = \langle V, E, w \rangle$. Weighted graph. d. Distance measure for two nodes in V.

Output: $\gamma: V \to \mathbf{N}$. Cluster assignment function.

- 0
- 2.
- 3.

4.

- 5. Foreach $v \in V$ do
- $6. \qquad \gamma^* = \operatorname*{argmax}_{i: i \in \{1, \dots, |V|\}} \sum_{\{u, v\} : \{u, v\} \in E \, \land \, \gamma(u) = i} w(u, v) \ // \text{ find strongest cluster for } v$
- 7. IF $\gamma(v) \neq \gamma^*$ THEN $\gamma(v) = \gamma^*$, t = False ENDIF // reassign v
- 8. **ENDDO**

9.

10.

MajorClust: Algorithm

Input: $G = \langle V, E, w \rangle$. Weighted graph. d. Distance measure for two nodes in V.

Output: $\gamma: V \to \mathbf{N}$. Cluster assignment function.

1. i = 0, t = False

- 2. FOREACH $v \in V$ DO i=i+1, $\gamma(v)=i$ ENDDO // initial clustering
- 3. UNLESS t do
- 4. t = True
- 5. Foreach $v \in V$ do
- 6. $\gamma^* = \underset{i: i \in \{1, \dots, |V|\}}{\operatorname{argmax}} \sum_{\{u, v\} \in E \land \gamma(u) = i} w(u, v) // \text{ find strongest cluster for } v$
- 7. IF $\gamma(v) \neq \gamma^*$ THEN $\gamma(v) = \gamma^*$, t = False ENDIF // reassign v
- 8. **ENDDO**
- 9. **ENDDO**
- 10. $\operatorname{return}(\gamma)$

Remarks:

- □ MajorClust combines properties from other paradigms:
 - distance-depending analysis (hierarchical paradigm, iterative paradigm)
 - reversible merging decisions (iterative paradigm)
 - distribution-dependent analysis (density paradigm)

MajorClust: Density Estimation Principle (continued)

$$\Lambda(\mathcal{C}) = \sum_{i=1}^{k} |C_i| \cdot \lambda_i$$

MajorClust: Density Estimation Principle (continued)

$$\Lambda(\mathcal{C}) = \sum_{i=1}^{k} |C_i| \cdot \lambda_i$$

MajorClust: Density Estimation Principle (continued)

MajorClust: Density Estimation Principle (continued)

$$\Lambda(\mathcal{C}) = \sum_{i=1}^{k} |C_i| \cdot \lambda_i$$

MajorClust: Density Estimation Principle (continued)

minimization of cut weight

 Λ maximization

MajorClust: Density Estimation Principle (continued)

minimization of cut weight

 Λ maximization

Theorem 5 (Strong Splitting Condition [Stein/Niggemann 1999])

Let $C = \{C_1, \ldots, C_k\}$ be a partitioning of a graph $G = \langle V, E, w \rangle$. Moreover, let $\lambda(G)$ denote the edge connectivity of G, and let $\lambda_1, \ldots, \lambda_k$ denote the edge connectivity values of the k subgraphs that are induced by C_1, \ldots, C_k .

If the inequality $\lambda(G) < \min\{\lambda_1, \ldots, \lambda_k\}$ holds, then the partitioning defined by Λ -maximization corresponds to the minimum cut splitting of *G*. The inequality is denoted as "Strong Splitting Condition".

DBSCAN versus MajorClust: Low-Dimensional Data

Caribbean Islands, about 20.000 points:

DBSCAN versus MajorClust: Low-Dimensional Data (continued)

Caribbean Islands, about 20.000 points:

Cluster analysis by DBSCAN:

DBSCAN versus MajorClust: Low-Dimensional Data (continued)

The problem of finding useful ε -values for DBSCAN:

DBSCAN versus MajorClust: Low-Dimensional Data (continued)

Caribbean Islands, about 20.000 points:

Cluster analysis by MajorClust:

DBSCAN versus MajorClust: Low-Dimensional Data (continued)

The problem of the global analysis approach (no restriction by means of an ε -neighborhood) in MajorClust:

Remarks:

- MajorClust is superior to DBSCAN with regard to the identification of differently dense clusters within the same clustering. DBSCAN is more flexible (= can be better adapted) than MajorClust with regard to point densities in different clusterings.
- □ MajorClust considers always all points of V, while DBSCAN works locally, i.e., on small subsets of V.

DBSCAN versus MajorClust: High-Dimensional Data

Typical document categorization setting:

- \Box 10⁴ 10⁵ documents
- □ 10 100 categories: politics, culture, economics, etc.
- documents belong to one category
- \Box dimension of the feature space > 10000

DBSCAN:

- degenerates with increasing number of dimensions
- $\hfill\square$ the degeneration is rooted in the computation of the ε -neighborhood
- dimension reduction provides a way out, e.g. by embedding the data with multi-dimensional scaling, MDS

DBSCAN versus MajorClust: High-Dimensional Data (continued)

Classification effectiveness (*F* measure) over dimension number:

[Stein/Busch 2005]

Remarks:

- □ Usually, the neighborhood search in high-dimensional spaces cannot be solved efficiently. Given p dimensions with p about 10 or larger, an exhaustive search, i.e., a linear scan of all feature vectors will be more efficient than the application of a space partitioning data structure (quad-tree, k-d tree, etc.) or a data partitioning data structure (R-tree, Rf-tree, X-tree, etc.).
- □ DBSCAN employs the *R*-tree data structure to compute ε -neighborhoods. This data structure accomplishes the major part of the DBSCAN cluster analysis approach and is ideally suited for treating low-dimensional data efficiently. The application of DBSCAN to high-dimensional data either requires an embedding into a low-dimensional space or to accept the runtime for a naive construction of ε -neighborhoods.
- Neighborhood search in high-dimensional spaces can be addressed with approximate methods such as locality sensitive hashing (LSH), or Fuzzy fingerprinting. [Weber 1999]
 [Gionis/Indyk/Motwani 1999-2004] [Stein 2005-2007] [Andoni 2009]