Chapter DM:II (continued)

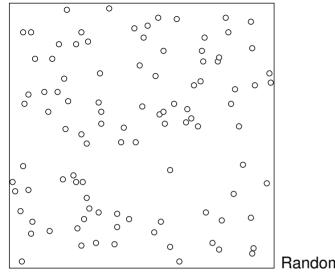
II. Cluster Analysis

- Cluster Analysis Basics
- □ Hierarchical Cluster Analysis
- □ Iterative Cluster Analysis
- Density-Based Cluster Analysis
- Cluster Evaluation
- Constrained Cluster Analysis

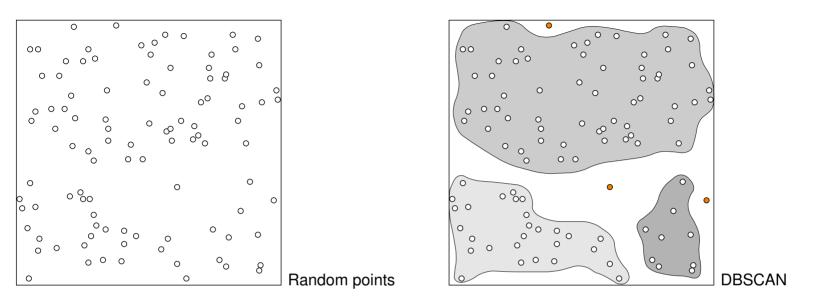
Overview

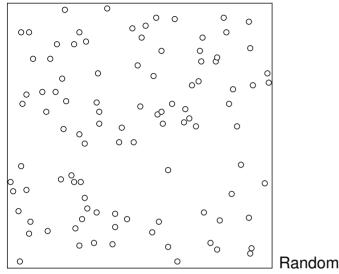
"The validation of clustering structures is the most difficult and frustrating part of cluster analysis. Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

[Jain/Dubes 1990]

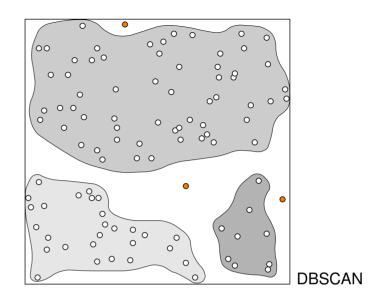


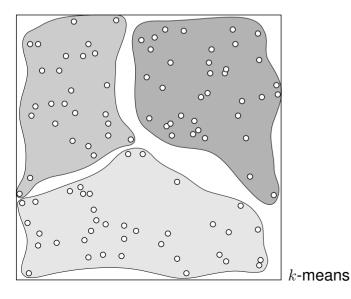
Random points

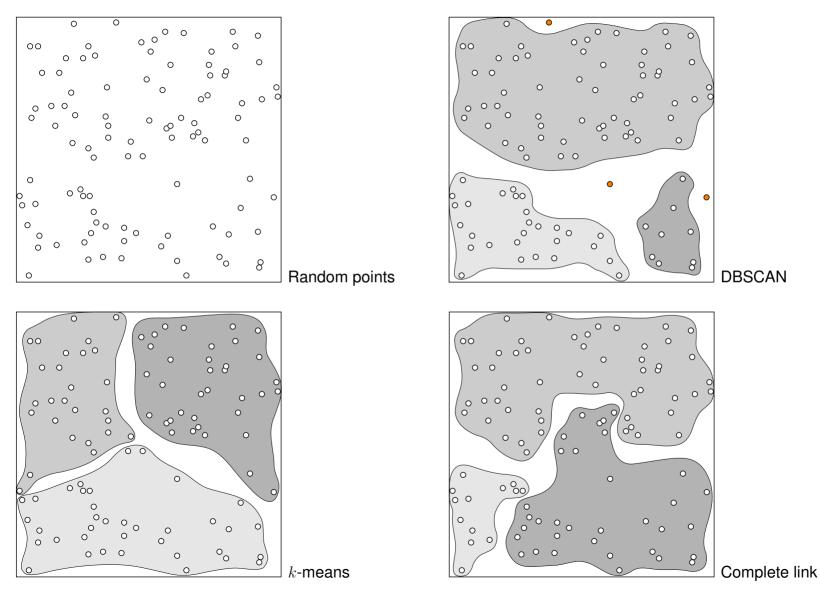




Random points







Overview

Cluster evaluation can address different issues:

- □ Provide evidence whether data contains non-random structures.
- □ Relate found structures in the data to externally provided class information.
- □ Rank alternative clusterings with regard to their quality.
- Determine the ideal number of clusters.
- □ Provide information to choose a suited clustering approach.

Overview

Cluster evaluation can address different issues:

- □ Provide evidence whether data contains non-random structures.
- □ Relate found structures in the data to externally provided class information.
- □ Rank alternative clusterings with regard to their quality.
- Determine the ideal number of clusters.
- □ Provide information to choose a suited clustering approach.
- (1) External validity measures:

Analyze how close is a clustering to an (external) reference.

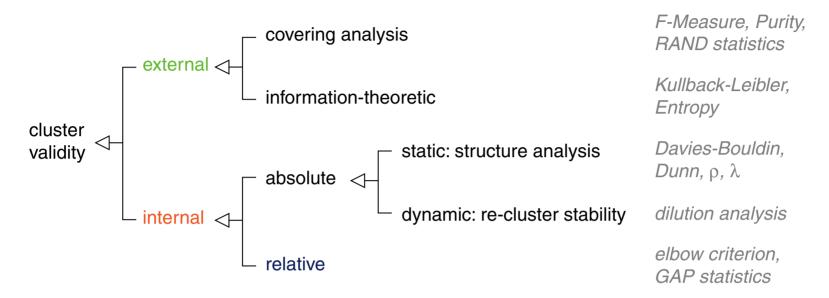
(2) Internal validity measures:

Analyze intrinsic characteristics of a clustering.

(3) Relative validity measures:

Analyze the sensitivity (of internal measures) during clustering generation.

Overview



(1) External validity measures:

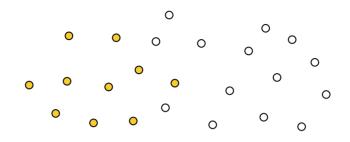
Analyze how close is a clustering to an (external) reference.

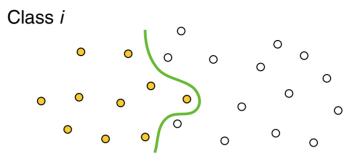
(2) Internal validity measures:

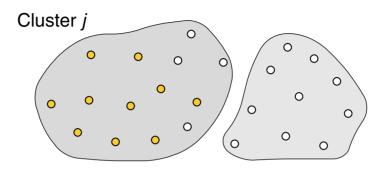
Analyze intrinsic characteristics of a clustering.

(3) Relative validity measures:

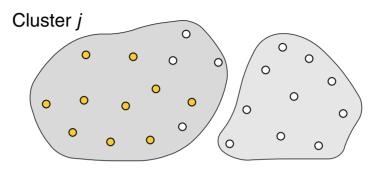
Analyze the sensitivity (of internal measures) during clustering generation.





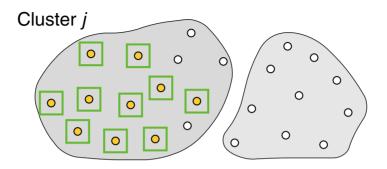


(1) External Validity Measures: *F*-Measure (for a Target Class)



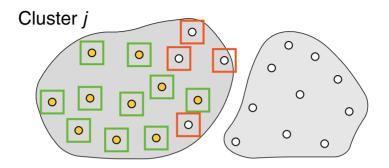
		Tru	Truth	
		Р	Ν	
Hypothesis	Ρ			
	Ν			

(1) External Validity Measures: *F*-Measure (for a Target Class)



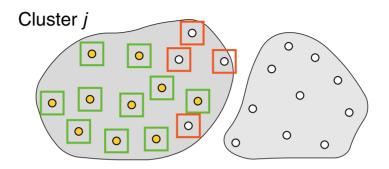
		Truth	
		Р	Ν
Hypothesis	Ρ	TP (a)	
	Ν		

(1) External Validity Measures: *F*-Measure (for a Target Class)



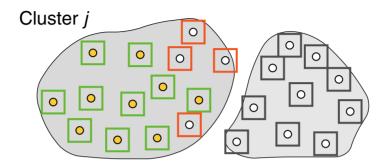
		Truth	
		Р	Ν
Hypothesis	Ρ	TP (a)	FP (b)
	Ν		

(1) External Validity Measures: *F*-Measure (for a Target Class)



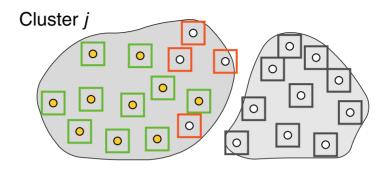
		Truth	
		Р	Ν
Hypothesis	Ρ	TP (a)	FP (b)
	Ν	FN (c)	

(1) External Validity Measures: *F*-Measure (for a Target Class)

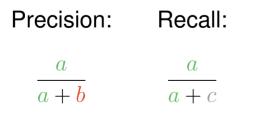


		Truth	
		Р	Ν
Hypothesis	Ρ	TP (a)	FP (b)
	Ν	FN (c)	TN (d)

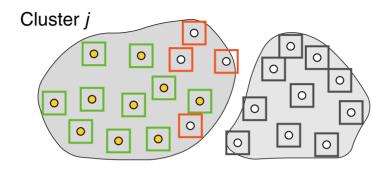
(1) External Validity Measures: *F*-Measure (for a Target Class)



		Truth	
		Р	Ν
Hypothesis	Ρ	TP (a)	FP (b)
	Ν	FN (c)	TN (d)

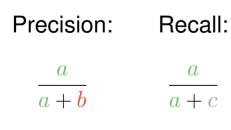


(1) External Validity Measures: *F*-Measure (for a Target Class)



(node-based analysis)

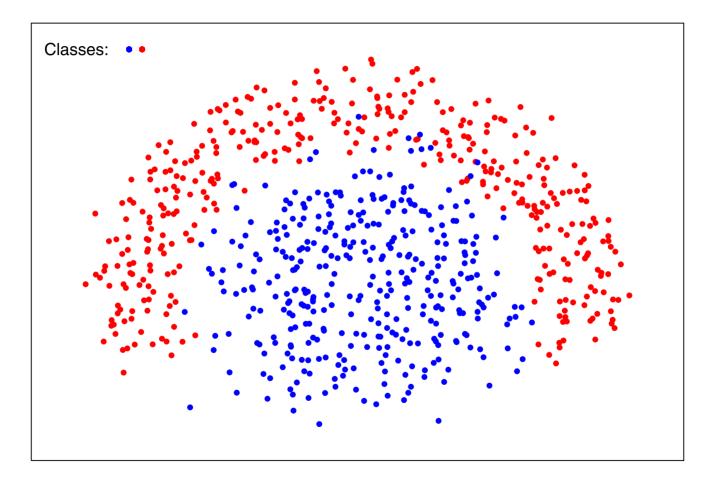
		Truth	
		Р	Ν
Hypothesis	Ρ	TP (a)	FP (b)
	Ν	FN (c)	TN (d)



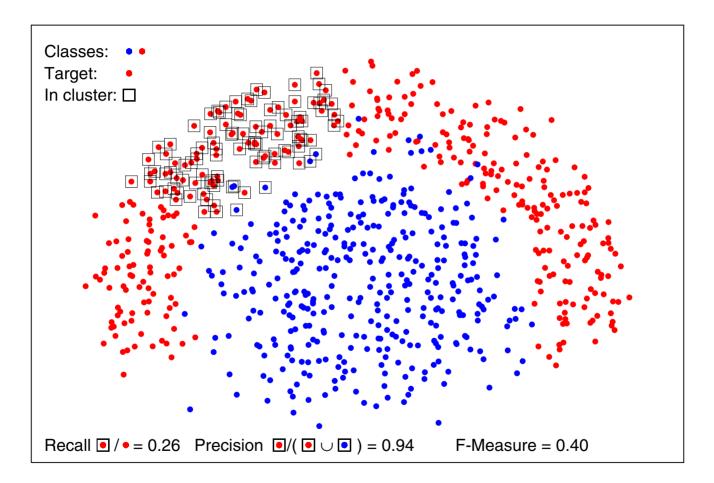
F-measure:

$$F_{\alpha} = \frac{1 + \alpha}{\frac{1}{\text{precision}} + \frac{\alpha}{\text{recall}}}$$

 $\begin{array}{ll} \alpha = 1 & \mbox{harmonic mean} \\ \alpha \in (0;1) & \mbox{favor precision over recall} \\ \alpha > 1 & \mbox{favor recall over precision} \end{array}$

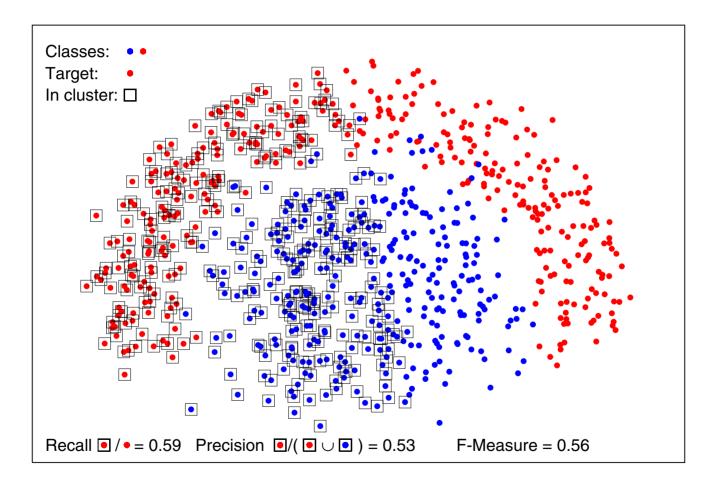


(1) External Validity Measures: *F*-Measure (for a Target Class)



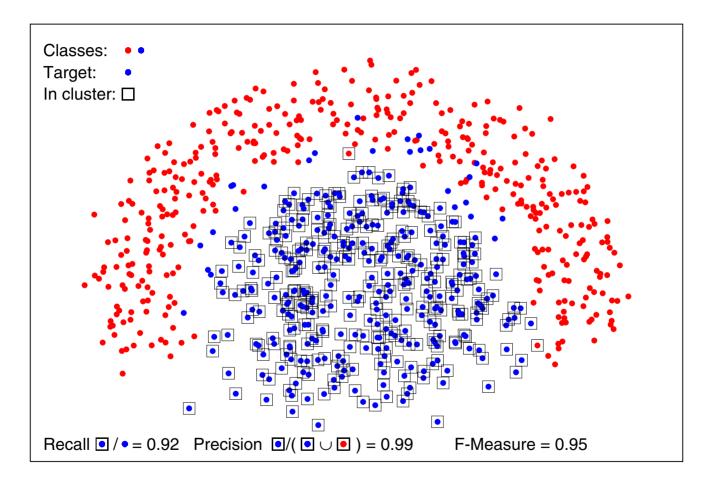
High precision, low recall \Rightarrow low *F*-measure.

(1) External Validity Measures: *F*-Measure (for a Target Class)



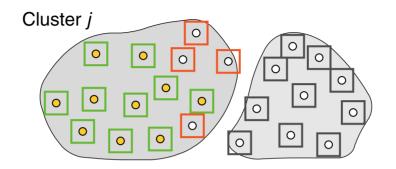
Low precision, low recall \Rightarrow low *F*-measure.

(1) External Validity Measures: *F*-Measure (for a Target Class)



High precision, high recall \Rightarrow high *F*-measure.

(1) External Validity Measures: F-Measure (for a Clustering)

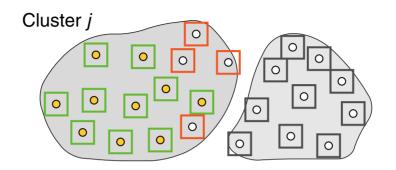


(node-based analysis)

- $\Box \quad \underline{\text{Clustering}} \ \mathcal{C} = \{C_1, \dots, C_k\} \text{ and } \underline{\text{classification}} \ \mathcal{C}^* = \{C_1^*, \dots, C_l^*\} \text{ of } D.$
- □ $F_{i,j}$ is the *F*-measure of a cluster *j* computed *with respect to a class i*. Precision of cluster *j* with respect to class *i* is $|C_j \cap C_i^*|/|C_j|$ (here: $Prec_{i,j} = 0.71$)

Recall of cluster *j* with respect to class *i* is $|C_j \cap C_i^*| / |C_i^*|$ (here: $Rec_{i,j} = 1.0$)

(1) External Validity Measures: F-Measure (for a Clustering)



(node-based analysis)

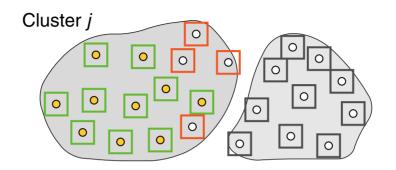
- $\Box \quad \underline{\text{Clustering}} \ \mathcal{C} = \{C_1, \dots, C_k\} \text{ and } \underline{\text{classification}} \ \mathcal{C}^* = \{C_1^*, \dots, C_l^*\} \text{ of } D.$
- \Box $F_{i,j}$ is the *F*-measure of a cluster *j* computed with respect to a class *i*.

Precision of cluster *j* with respect to class *i* is $|C_j \cap C_i^*|/|C_j|$ (here: *Prec*_{*i*,*j*} = 0.71) Recall of cluster *j* with respect to class *i* is $|C_j \cap C_i^*|/|C_i^*|$ (here: *Rec*_{*i*,*j*} = 1.0)

→ Maximize micro-averaged *F*-measure for $\langle D, C, C^* \rangle$:

$$F = \sum_{i=1}^{l} \frac{|C_i^*|}{|D|} \cdot \max_{j=1,\dots,k} \{F_{i,j}\}$$

(1) External Validity Measures: F-Measure (for a Clustering)



(node-based analysis)

- $\Box \quad \underline{\text{Clustering}} \ \mathcal{C} = \{C_1, \dots, C_k\} \text{ and } \underline{\text{classification}} \ \mathcal{C}^* = \{C_1^*, \dots, C_l^*\} \text{ of } D.$
- \Box $F_{i,j}$ is the *F*-measure of a cluster *j* computed with respect to a class *i*.

Precision of cluster *j* with respect to class *i* is $|C_j \cap C_i^*|/|C_j|$ (here: $Prec_{i,j} = 0.71$) Recall of cluster *j* with respect to class *i* is $|C_j \cap C_i^*|/|C_i^*|$ (here: $Rec_{i,j} = 1.0$)

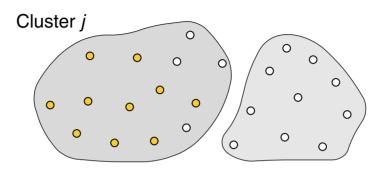
→ Maximize macro-averaged *F*-measure for $\langle D, C, C^* \rangle$:

$$F = \frac{1}{l} \sum_{i=1}^{l} \max_{j=1,\dots,k} \{F_{i,j}\}$$

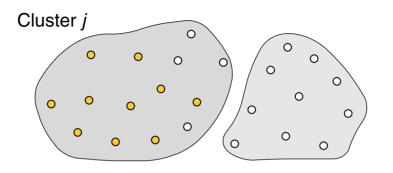
Remarks:

□ Micro averaging treats objects equally, whereas macro averaging treats classes equally.

(1) External Validity Measures: Entropy



(1) External Validity Measures: Entropy

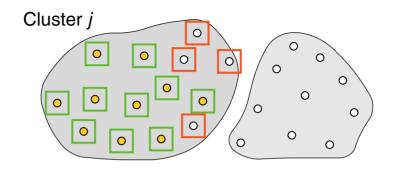


(node-based analysis)

 \Box A cluster *C* acts as information source \mathcal{L} .

 \mathcal{L} emits cluster labels L_1, \ldots, L_l with probabilities $P(L_1), \ldots, P(L_l)$.

(1) External Validity Measures: Entropy

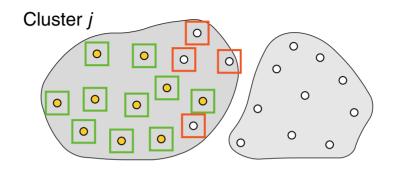


(node-based analysis)

□ A cluster *C* acts as information source \mathcal{L} . \mathcal{L} emits cluster labels L_1, \ldots, L_l with probabilities $P(L_1), \ldots, P(L_l)$.

$$L_1 = \Box$$
, $L_2 = \Box$, $\hat{P}(\Box) = 10/14$, $\hat{P}(\Box) = 4/14$

(1) External Validity Measures: Entropy

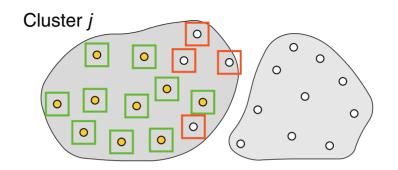


□ A cluster *C* acts as information source \mathcal{L} . \mathcal{L} emits cluster labels L_1, \ldots, L_l with probabilities $P(L_1), \ldots, P(L_l)$.

$$L_1 = \Box, \quad L_2 = \Box, \qquad \hat{P}(\Box) = 10/14, \quad \hat{P}(\Box) = 4/14$$

 $\Box \quad \text{Entropy of } \mathcal{L}: \qquad H(\mathcal{L}) = -\sum_{i=1}^{l} P(L_i) \cdot \log_2(P(L_i))$ Entropy of C_j wrt. $\mathcal{C}^*: H(C_j) = -\sum_{C_j \cap C_i^* \neq \emptyset} |C_j \cap C_i^*| / |C_j| \cdot \log_2(|C_j \cap C_i^*| / |C_j|)$

(1) External Validity Measures: Entropy



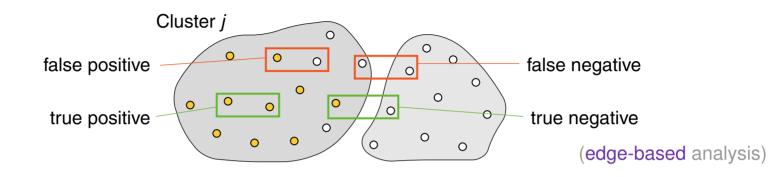
□ A cluster *C* acts as information source \mathcal{L} . \mathcal{L} emits cluster labels L_1, \ldots, L_l with probabilities $P(L_1), \ldots, P(L_l)$.

$$L_1 = \Box, \quad L_2 = \Box, \qquad \hat{P}(\Box) = 10/14, \quad \hat{P}(\Box) = 4/14$$

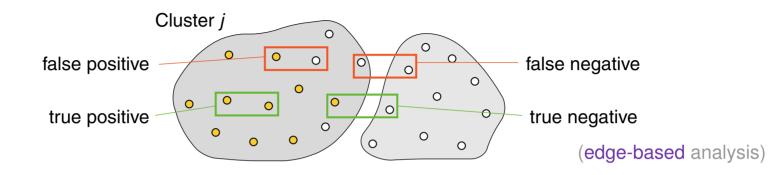
- $\Box \quad \text{Entropy of } \mathcal{L}: \qquad H(\mathcal{L}) = -\sum_{i=1}^{l} P(L_i) \cdot \log_2(P(L_i))$ Entropy of C_j wrt. $\mathcal{C}^*: H(C_j) = -\sum_{C_j \cap C_i^* \neq \emptyset} |C_j \cap C_i^*| / |C_j| \cdot \log_2(|C_j \cap C_i^*| / |C_j|)$
- → Minimize entropy of C wrt. C^* : $H(C) = \sum_{C_j \in C} |C_j| / |D| \cdot H(C_j)$

DM:II-229 Cluster Analysis

(1) External Validity Measures: Rand, Jaccard



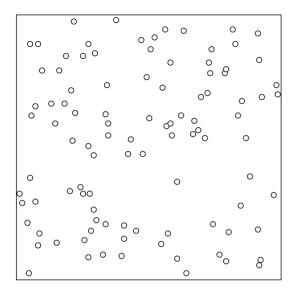
(1) External Validity Measures: Rand, Jaccard



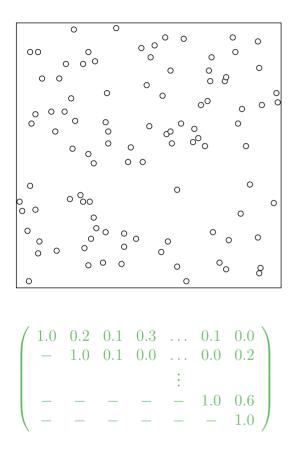
$$\square R(\mathcal{C}) = \frac{|TP| + |TN|}{|TP| + |TN| + |FP| + |FN|} = \frac{|TP| + |TN|}{n(n-1)/2}, \text{ with } n = |D|$$

 $\Box \ J(\mathcal{C}) = \frac{|TP|}{|TP| + |FP| + |FN|}$

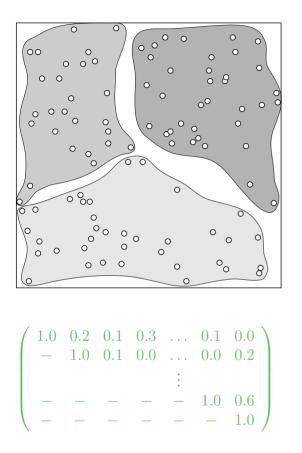
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]



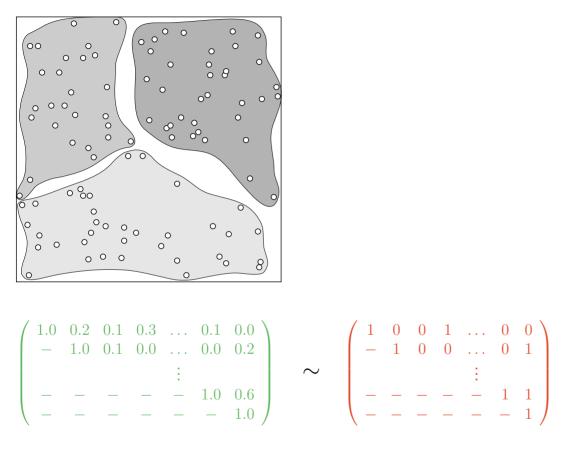
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]



(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]



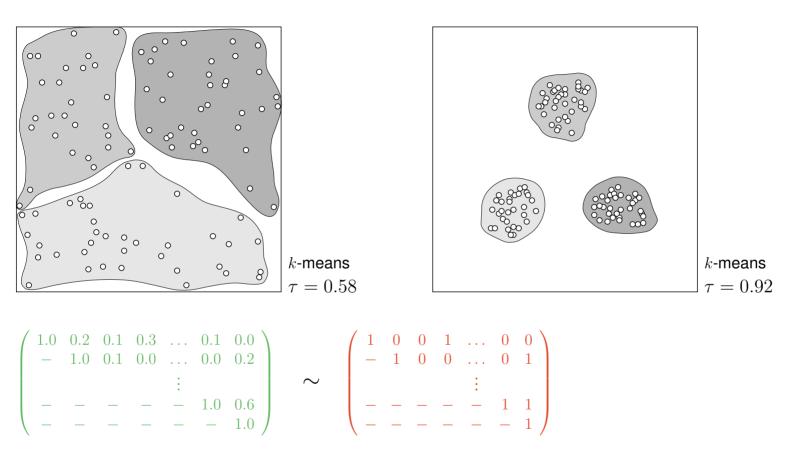
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]



Construct occurrence matrix based on cluster analysis.

• Compare similarity matrix to occurrence matrix: correlation τ

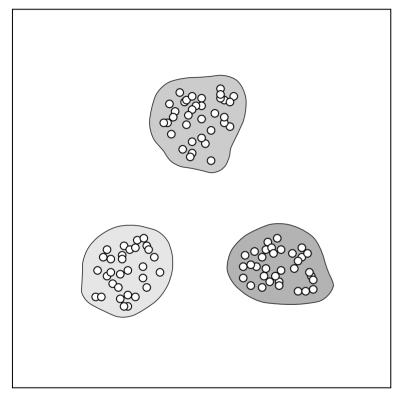
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]



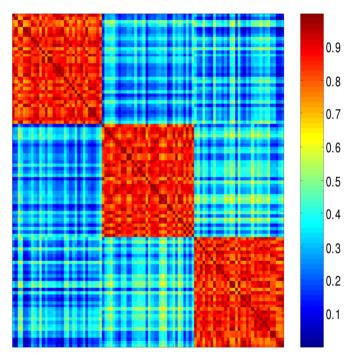
Construct occurrence matrix based on cluster analysis.

• Compare similarity matrix to occurrence matrix: correlation τ

(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]

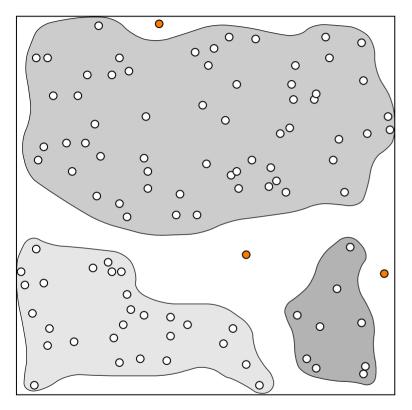


 $k\mbox{-means}$ at structured data.

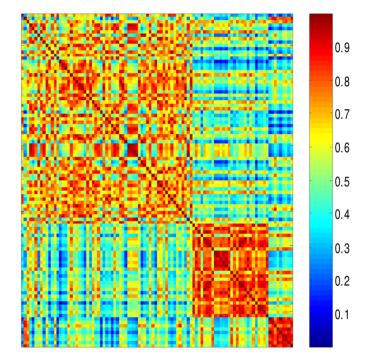


Similarity matrix sorted by cluster label.

(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]

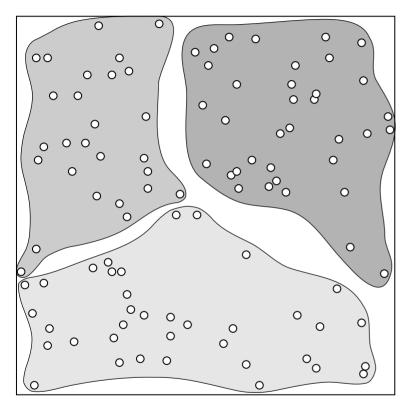


DBSCAN at random data.

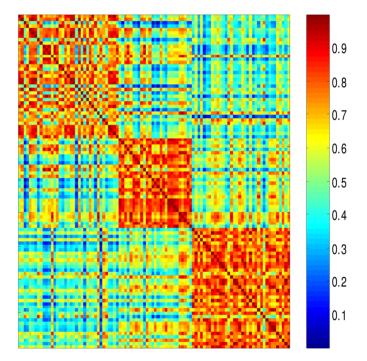


Similarity matrix sorted by cluster label.

(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]

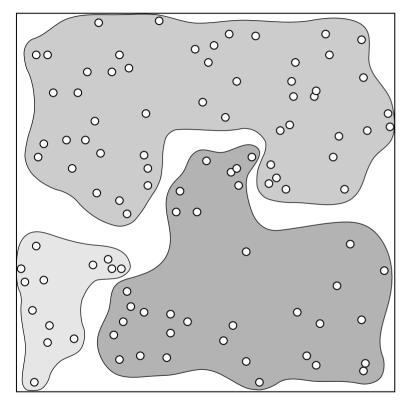


k-means at random data.

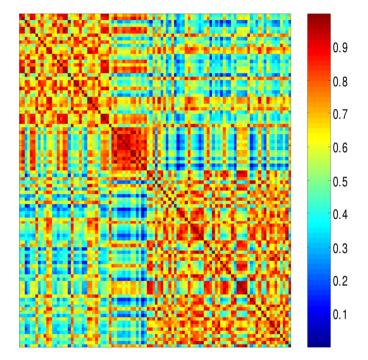


Similarity matrix sorted by cluster label.

(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]

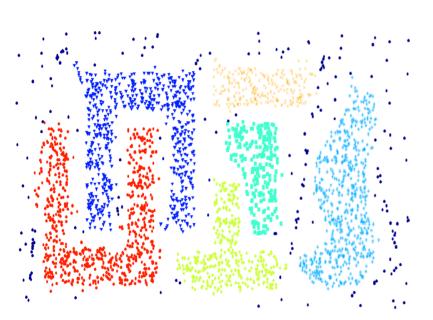


Complete link at random data.

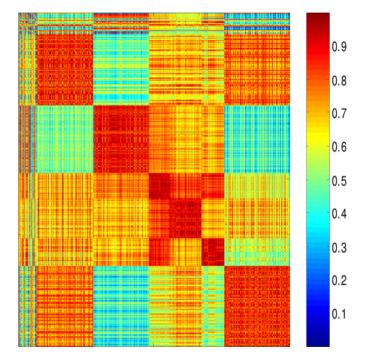


Similarity matrix sorted by cluster label.

(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]

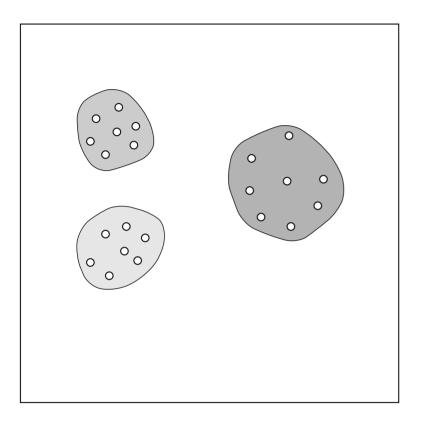


DBSCAN at structured data.



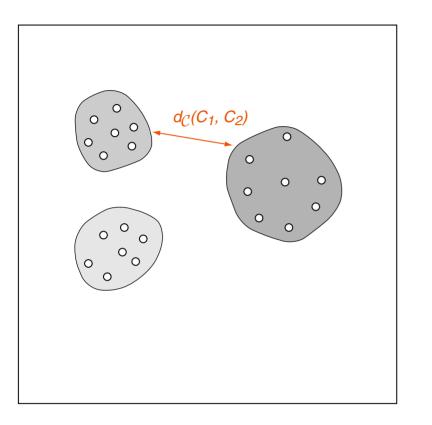
Similarity matrix sorted by cluster label.

(2) Internal Validity Measures: Structural Analysis



- **Distance between two clusters**, $d_{\mathcal{C}}(C_1, C_2)$.
- **Diameter of a cluster,** $\Delta(C)$.
- Scatter within a cluster, $\sigma^2(C)$, RSS.

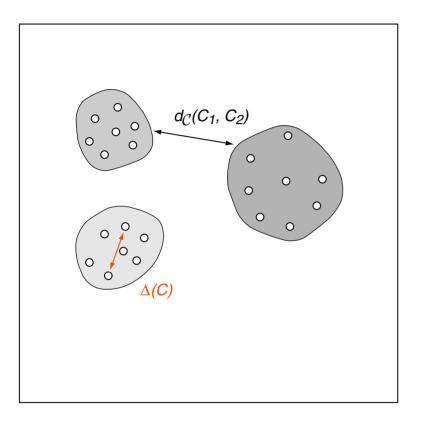
(2) Internal Validity Measures: Structural Analysis



Distance between two clusters, $d_{\mathcal{C}}(C_1, C_2)$.

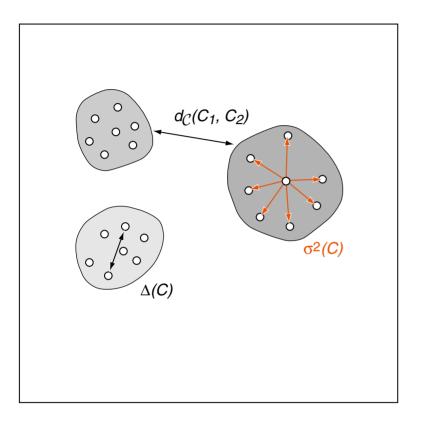
- **Diameter of a cluster,** $\Delta(C)$.
- Scatter within a cluster, $\sigma^2(C)$, RSS.

(2) Internal Validity Measures: Structural Analysis



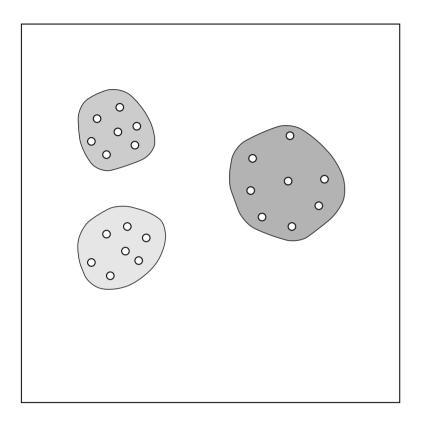
- **Distance between two clusters,** $d_{\mathcal{C}}(C_1, C_2)$.
- **Diameter of a cluster,** $\Delta(C)$.
- Scatter within a cluster, $\sigma^2(C)$, RSS.

(2) Internal Validity Measures: Structural Analysis



- **Distance between two clusters,** $d_{\mathcal{C}}(C_1, C_2)$.
- **Diameter of a cluster,** $\Delta(C)$.
- $\hfill\square$ Scatter within a cluster, $\sigma^2(C)$, RSS.

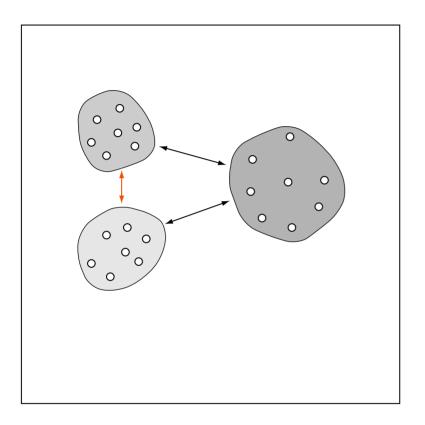
(2) Internal Validity Measures: Dunn Index



$$I(\mathcal{C}) = \frac{\min_{i \neq j} \{ d_{\mathcal{C}}(C_i, C_j) \}}{\max_{1 \le l \le k} \{ \Delta(C_l) \}},$$

$$I(\mathcal{C}) \to \max$$

(2) Internal Validity Measures: Dunn Index

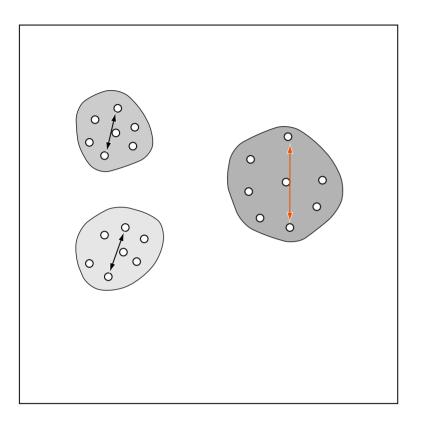


Cluster distance

$$I(\mathcal{C}) = \frac{\min_{i \neq j} \{ d_{\mathcal{C}}(C_i, C_j) \}}{\max_{1 \le l \le k} \{ \Delta(C_l) \}},$$

$$I(\mathcal{C}) \to \max$$

(2) Internal Validity Measures: Dunn Index

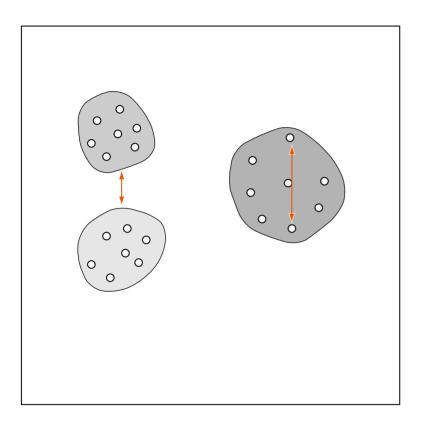


Cluster diameter

$$I(\mathcal{C}) = \frac{\min_{i \neq j} \{ d_{\mathcal{C}}(C_i, C_j) \}}{\max_{1 \le l \le k} \{ \Delta(C_l) \}},$$

$$I(\mathcal{C}) \to \max$$

(2) Internal Validity Measures: Dunn Index

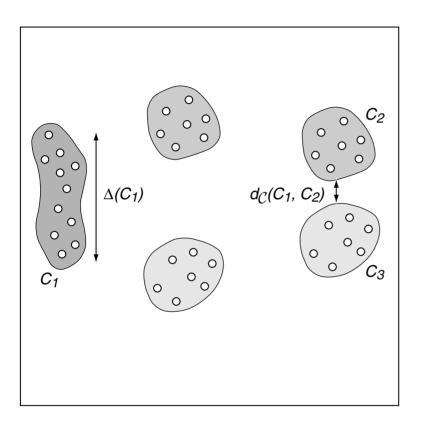


$$I(\mathcal{C}) = \frac{\min_{i \neq j} \{ d_{\mathcal{C}}(C_i, C_j) \}}{\max_{1 \leq l \leq k} \{ \Delta(C_l) \}},$$
$$I(\mathcal{C}) \to \max$$

Dunn is susceptible to noise.

Dunn is biased towards the worst substructure in a clustering (cf. the min).

(2) Internal Validity Measures: Dunn Index



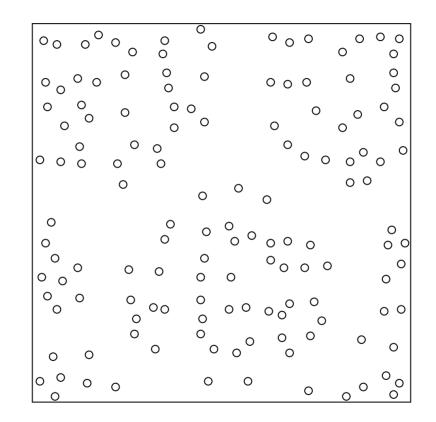
$$I(\mathcal{C}) = \frac{\min_{i \neq j} \{ d_{\mathcal{C}}(C_i, C_j) \}}{\max_{1 \leq l \leq k} \{ \Delta(C_l) \}},$$
$$I(\mathcal{C}) \to \max$$

Dunn is susceptible to noise.

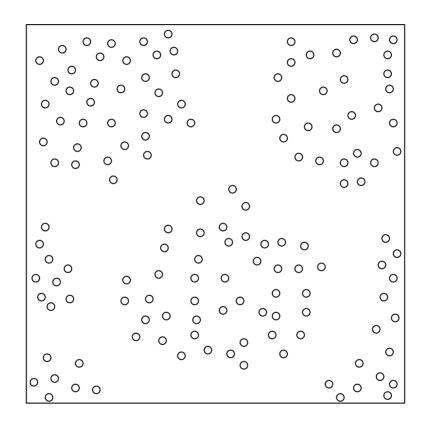
Dunn is biased towards the worst substructure in a clustering (cf. the min).

Dunn value too low since distances and diameters are not put into relation.

(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]



(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]



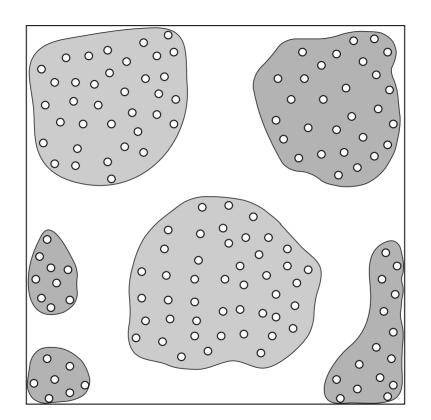
Different models (feature sets) yield different similarity graphs.

(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]



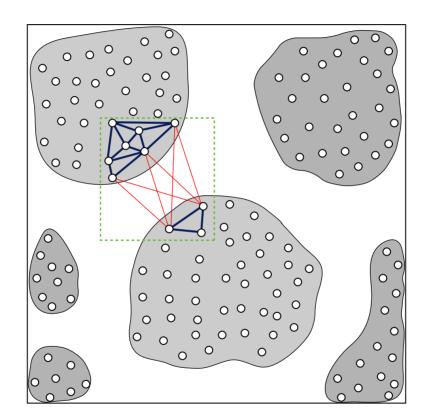
Different models (feature sets) yield different similarity graphs.

(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]



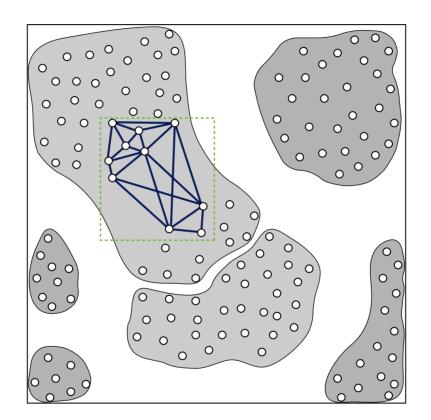
Compare (for alternative clusterings) the similarity density within the clusters to the average similarity of the entire graph.

(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]



Compare (for alternative clusterings) the similarity density within the clusters to the average similarity of the entire graph.

(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]



Compare (for alternative clusterings) the similarity density within the clusters to the average similarity of the entire graph.

(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]

Graph $G = \langle V, E \rangle$:

- \Box G is called sparse if |E| = O(|V|), G is called dense if $|E| = O(|V|^2)$
- \rightarrow the density θ computes from the equation $|E| = |V|^{\theta}$

(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]

Graph $G = \langle V, E \rangle$:

- \Box G is called sparse if |E| = O(|V|), G is called dense if $|E| = O(|V|^2)$
- → the density θ computes from the equation $|E| = |V|^{\theta}$

Similarity graph $G = \langle V, E, w \rangle$:

$$\neg \quad |E| \ \sim \ w(G) = \sum_{e \in E} w(e)$$

→ the density θ computes from the equation $w(G) = |V|^{\theta}$

(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]

Graph $G = \langle V, E \rangle$:

- \Box G is called sparse if |E| = O(|V|), G is called dense if $|E| = O(|V|^2)$
- → the density θ computes from the equation $|E| = |V|^{\theta}$

Similarity graph $G = \langle V, E, w \rangle$:

$$\square \quad |E| \ \sim \ w(G) = \sum_{e \in E} w(e)$$

→ the density θ computes from the equation $w(G) = |V|^{\theta}$

Cluster C_i induces subgraph G_i :

 \rightarrow the expected density ρ relates the density of G_i to the density average in G

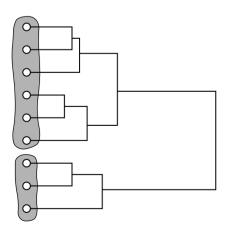
$$\rho(G_i) = \frac{w(G_i)}{|V_i|^{\theta}}$$

(3) Relative Validity Measures: Elbow Criterion

- 1. Hyperparameter alternatives of a clustering algorithm: π_1, \ldots, π_m
 - \Box number of centroids for *k*-means
 - □ stopping level for hierarchical algorithms
 - □ neighborhood size for DBSCAN
- 2. Set of clusterings $C = \{C_{\pi_1}, \ldots, C_{\pi_m}\}$ associated with π_1, \ldots, π_m .
- 3. Points of an error curve $\{(\pi_i, e(\mathcal{C}_{\pi_i})) \mid i = 1, ..., m\}$.

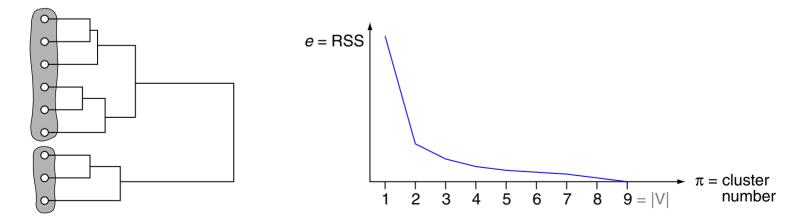
(3) Relative Validity Measures: Elbow Criterion

- 1. Hyperparameter alternatives of a clustering algorithm: π_1, \ldots, π_m
 - □ number of centroids for *k*-means
 - □ stopping level for hierarchical algorithms
 - □ neighborhood size for DBSCAN
- 2. Set of clusterings $C = \{C_{\pi_1}, \ldots, C_{\pi_m}\}$ associated with π_1, \ldots, π_m .
- 3. Points of an error curve $\{(\pi_i, e(\mathcal{C}_{\pi_i})) \mid i = 1, ..., m\}$.



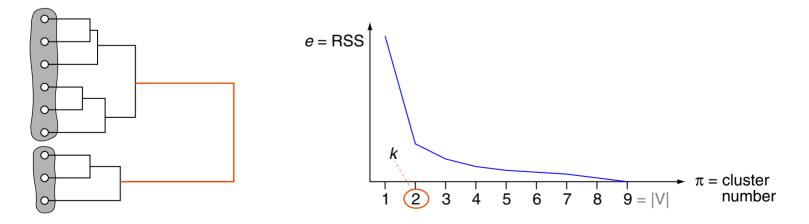
(3) Relative Validity Measures: Elbow Criterion

- 1. Hyperparameter alternatives of a clustering algorithm: π_1, \ldots, π_m
 - \Box number of centroids for *k*-means
 - □ stopping level for hierarchical algorithms
 - □ neighborhood size for DBSCAN
- 2. Set of clusterings $C = \{C_{\pi_1}, \ldots, C_{\pi_m}\}$ associated with π_1, \ldots, π_m .
- 3. Points of an error curve $\{(\pi_i, e(\mathcal{C}_{\pi_i})) \mid i = 1, ..., m\}$.



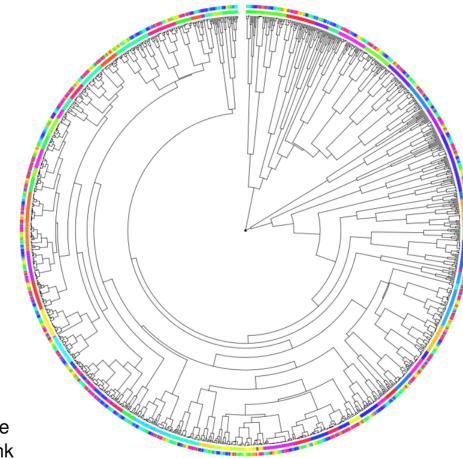
(3) Relative Validity Measures: Elbow Criterion

- 1. Hyperparameter alternatives of a clustering algorithm: π_1, \ldots, π_m
 - □ number of centroids for *k*-means
 - □ stopping level for hierarchical algorithms
 - neighborhood size for DBSCAN
- 2. Set of clusterings $C = \{C_{\pi_1}, \ldots, C_{\pi_m}\}$ associated with π_1, \ldots, π_m .
- 3. Points of an error curve $\{(\pi_i, e(\mathcal{C}_{\pi_i})) \mid i = 1, ..., m\}$.



4. Find the point that maximizes error reduction with regard to its successor.

(3) Relative Validity Measures: Elbow Criterion



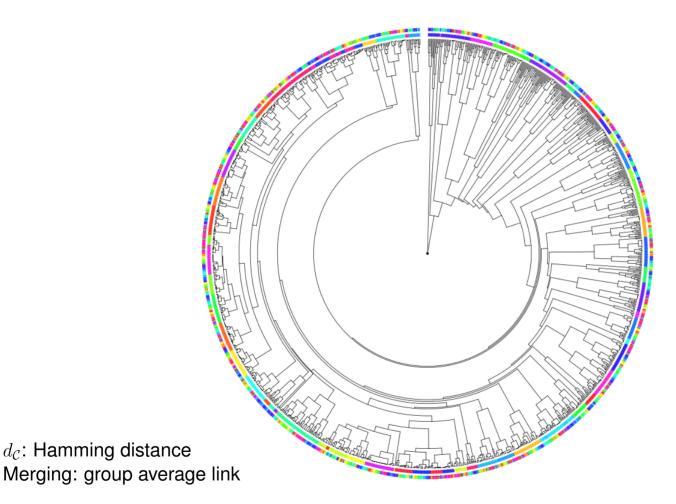
$d_{\mathcal{C}}$: Hamming distance Merging: complete link

http://cs.jhu.edu/~razvanm/fs-expedition/2.6.x.html

Relations between 1377 file systems for Linux Kernel 2.6.0. [Razvan Musaloiu 2009]

DM:II-264 Cluster Analysis

(3) Relative Validity Measures: Elbow Criterion



http://cs.jhu.edu/~razvanm/fs-expedition/2.6.x.html

Relations between 1377 file systems for Linux Kernel 2.6.0. [Razvan Musaloiu 2009]

DM:II-265 Cluster Analysis

Correlation between External and Internal Measures

In the wild, we are not given a reference classification.

→ An external evaluation is not possible.

(though many papers report on such experiments)

→ Resort to an internal evaluation.

(connectivity, squared error sums, distance-diameter heuristics, etc.)

Correlation between External and Internal Measures

In the wild, we are not given a reference classification.

→ An external evaluation is not possible.

(though many papers report on such experiments)

→ Resort to an internal evaluation.

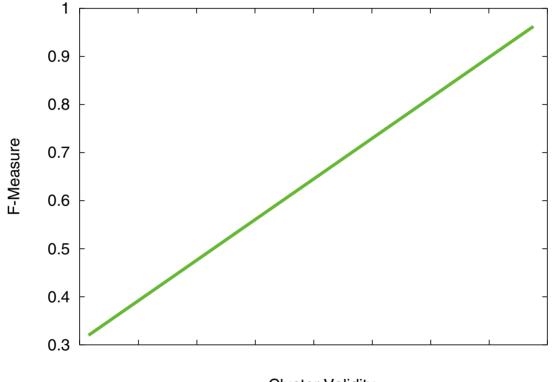
(connectivity, squared error sums, distance-diameter heuristics, etc.)

"To which extent can an internal evaluation ϕ be used to predict for a clustering its distance from the best reference classification—say, to predict the F-measure?"

$$\underset{\phi}{\operatorname{argmax}} \left\{ \tau \langle X, Y \rangle \mid x = F(\mathcal{C}), \ y = \phi(\mathcal{C}), \ \mathcal{C} \in \mathcal{C} \right\}$$

[Stein/Meyer zu Eissen 2007]

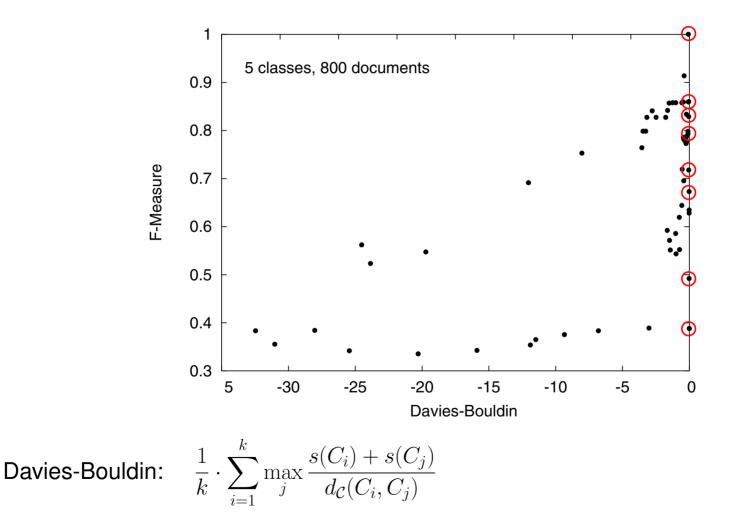
Correlation between External and Internal Measures



Cluster Validity

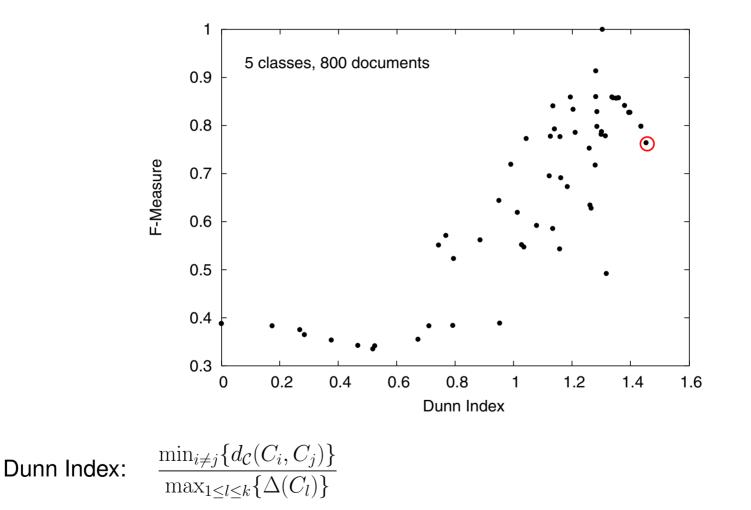
Perfect correlation (desired). DM:II-268 Cluster Analysis

Correlation between External and Internal Measures



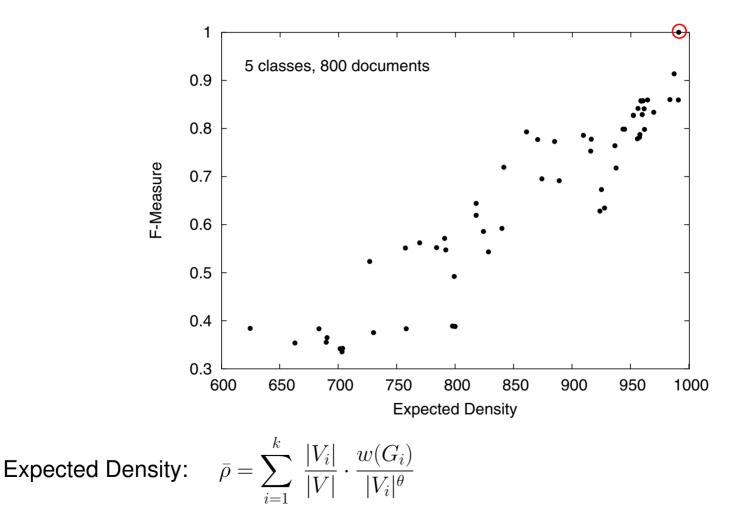
Prefers spherical clusters. DM:II-269 Cluster Analysis

Correlation between External and Internal Measures



Maximizes dilatation = inter/intra-cluster-diameter.

Correlation between External and Internal Measures



Independent of cluster forms and sizes. DM:II-271 Cluster Analysis