
Chapter DM:II (continued)

II. Cluster Analysis
q Cluster Analysis Basics
q Hierarchical Cluster Analysis
q Iterative Cluster Analysis
q Density-Based Cluster Analysis
q Cluster Evaluation
q Constrained Cluster Analysis

DM:II-22 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Merging Principles

meta-search-
controlled

Cluster
analysis

gradient-based

density-based
point-density-based

attraction-based

competitive

hierarchical
agglomerative

divisive

iterative
exemplar-based

exchange-based

stochastic
Gaussian mixtures

...

single link, group average

MinCut

k-means, k-medoid

Kerninghan-Lin

DBSCAN

MajorClust

simulated annealing

evolutionary strategies

hierarchical
agglomerative

divisive

DM:II-23 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Hierarchical Agglomerative Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
dC. Distance measure for two clusters.

Output: T = 〈VT , ET 〉. Cluster hierarchy or dendrogram.

1. C = {{v} | v ∈ V } // initial clustering

2. VT = {vC | C ∈ C}, ET = ∅ // initial dendrogram

3. WHILE |C| > 1 DO

4. update_distance_matrix(C, G, dC)

5. {C,C ′} = argmin
{Ci,Cj}∈ C:Ci 6=Cj

dC(Ci, Cj) // find closest clusters

6. C = (C \ {C,C ′}) ∪ {C ∪ C ′} // merge clusters

7. VT = VT ∪ {vC,C ′}, ET = ET ∪ {{vC,C ′, vC}, {vC,C ′, vC ′}} // dendrogram

8. ENDDO

9. RETURN(T)

Compare the above algorithm to the hierarchical divisive algorithm.
DM:II-24 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Hierarchical Agglomerative Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
dC. Distance measure for two clusters.

Output: T = 〈VT , ET 〉. Cluster hierarchy or dendrogram.

1. C = {{v} | v ∈ V } // initial clustering

2. VT = {vC | C ∈ C}, ET = ∅ // initial dendrogram

3. WHILE |C| > 1 DO

4. update_distance_matrix(C, G, dC)

5. {C,C ′} = argmin
{Ci,Cj}∈ C:Ci 6=Cj

dC(Ci, Cj) // find closest clusters

6. C = (C \ {C,C ′}) ∪ {C ∪ C ′} // merge clusters

7. VT = VT ∪ {vC,C ′}, ET = ET ∪ {{vC,C ′, vC}, {vC,C ′, vC ′}} // dendrogram

8. ENDDO

9. RETURN(T)

Compare the above algorithm to the hierarchical divisive algorithm.
DM:II-25 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor

DM:II-26 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor

DM:II-27 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor

Distance

DM:II-28 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor

Distance

DM:II-29 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor

Distance

DM:II-30 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor

Distance

DM:II-31 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor

Distance

DM:II-32 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor

Distance

DM:II-33 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor

Distance

DM:II-34 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Distance Re-Computation after each Merging Step [algorithm]

t = 0

C1 C2 . . . Cn

C1 0 dC(C1,C2) . . . dC(C1,Cn)

C2 - 0 . . . dC(C2,Cn)
...
Cn - - . . . 0

≡

x1 x2 . . . xn

x1 0 d(x1,x2) . . . d(x1,xn)

x2 - 0 . . . d(x2,xn)
...
xn - - . . . 0

DM:II-35 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Distance Re-Computation after each Merging Step [algorithm]

t = 0

C1 C2 . . . Cn

C1 0 dC(C1,C2) . . . dC(C1,Cn)

C2 - 0 . . . dC(C2,Cn)
...
Cn - - . . . 0

≡

x1 x2 . . . xn

x1 0 d(x1,x2) . . . d(x1,xn)

x2 - 0 . . . d(x2,xn)
...
xn - - . . . 0

DM:II-36 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Distance Re-Computation after each Merging Step [algorithm]

t = 0

C1 C2 . . . Cn

C1 0 dC(C1,C2) . . . dC(C1,Cn)

C2 - 0 . . . dC(C2,Cn)
...
Cn - - . . . 0

≡

x1 x2 . . . xn

x1 0 d(x1,x2) . . . d(x1,xn)

x2 - 0 . . . d(x2,xn)
...
xn - - . . . 0

Ü

t = i

Ci1 Ci2 . . . Cin−i

Ci1 0 dC(C1,Ci2) . . . dC(Ci1,Cin−i)

Ci2 - 0 . . . dC(Ci2,Cin−i)
...

Cin−i - - . . . 0

DM:II-37 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Distance Re-Computation after each Merging Step [algorithm]

t = 0

C1 C2 . . . Cn

C1 0 dC(C1,C2) . . . dC(C1,Cn)

C2 - 0 . . . dC(C2,Cn)
...
Cn - - . . . 0

≡

x1 x2 . . . xn

x1 0 d(x1,x2) . . . d(x1,xn)

x2 - 0 . . . d(x2,xn)
...
xn - - . . . 0

Ü

t = i

Ci1 Ci2 . . . Cin−i

Ci1 0 dC(C1,Ci2) . . . dC(Ci1,Cin−i)

Ci2 - 0 . . . dC(Ci2,Cin−i)
...

Cin−i - - . . . 0

Ü

t = n− 1 Cn1

DM:II-38 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Distance Measures of Hierarchical Agglomerative Algorithms [characteristics]

dC(C,C
′) = min

u∈C
v∈C′

d(u, v) single link
(nearest neighbor)

dC(C,C
′) = max

u∈C
v∈C′

d(u, v) complete link
(furthest / farthest neighbor)

dC(C,C
′) =

1

|C| · |C ′|
∑
u∈C
v∈C′

d(u, v) group average link

dC(C,C
′) =

√
2 · |C| · |C ′|
|C| + |C ′|

· ||ū− v̄|| Ward criterion (variance)
|| · || = || · ||2 = Euclidean norm

How the distance measures are employed:

q hierarchical agglomerative algorithm

q hierarchical divisive algorithm

DM:II-39 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares,
ESS, in the new cluster that results from merging the two clusters C and C ′.
Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(
||ū||2 − 2 · 〈u, ū〉 + ||u||2

)
= |C| · ||ū||2 − 2|C| · ||ū||2 +

∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, where w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
DM:II-40 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares,
ESS, in the new cluster that results from merging the two clusters C and C ′.
Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(
||ū||2 − 2 · 〈u, ū〉 + ||u||2

)
= |C| · ||ū||2 − 2|C| · ||ū||2 +

∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, where w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
DM:II-41 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares,
ESS, in the new cluster that results from merging the two clusters C and C ′.
Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(
||ū||2 − 2 · 〈u, ū〉 + ||u||2

)
= |C| · ||ū||2 − 2|C| · ||ū||2 +

∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, where w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
DM:II-42 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares,
ESS, in the new cluster that results from merging the two clusters C and C ′.
Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(
||ū||2 − 2 · 〈u, ū〉 + ||u||2

)
= |C| · ||ū||2 − 2|C| · ||ū||2 +

∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, where w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
DM:II-43 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares,
ESS, in the new cluster that results from merging the two clusters C and C ′.
Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(
||ū||2 − 2 · 〈u, ū〉 + ||u||2

)
= |C| · ||ū||2 − 2|C| · ||ū||2 +

∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, where w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
DM:II-44 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares,
ESS, in the new cluster that results from merging the two clusters C and C ′.
Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(
||ū||2 − 2 · 〈u, ū〉 + ||u||2

)
= |C| · ||ū||2 − 2|C| · ||ū||2 +

∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, where w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
DM:II-45 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares,
ESS, in the new cluster that results from merging the two clusters C and C ′.
Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(
||ū||2 − 2 · 〈u, ū〉 + ||u||2

)
= |C| · ||ū||2 − 2|C| · ||ū||2 +

∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, where w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
DM:II-46 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Update Formula for Cluster Distances

After merging two clusters C and C ′ into a single new cluster, the resulting
distances to other the clusters Ci, dC(C ∪ C ′, Ci), have to be computed.

By exploiting the already computed distances, the Lance-Williams update formula
provides an efficient means (linear time in the current number of clusters) to obtain
the desired new distances:

dC(C ∪ C ′, Ci) = α · dC(C,Ci) +

β · dC(C ′, Ci) +

γ · dC(C,C ′) +

δ · |dC(C,Ci)− dC(C ′, Ci)|

The constants α, β, γ, δ are specific for single link, complete link, average link, and
the ward criterion. The constants are derived on the basis of the respective
computation rules for dC.

DM:II-47 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Update Formula for Cluster Distances (continued)

After merging two clusters C and C ′ into a single new cluster, the resulting
distances to other the clusters Ci, dC(C ∪ C ′, Ci), have to be computed.

Derivation of the update formula for single link, where dC = nearest neighbor:

dC(C ∪ C ′, Ci) = min
u∈(C∪C ′)

v∈Ci

d(u, v) [distance measure]

= min{dC(C,Ci), dC(C ′, Ci)}

= 0.5 ·
(
dC(C,Ci) + dC(C

′, Ci)
)
− 0.5 · |dC(C,Ci)− dC(C ′, Ci)|

= 0.5

↓
α

· dC(C,Ci) + 0.5

↓
β

· dC(C ′, Ci) + (−0.5)

↓
δ

· |dC(C,Ci)− dC(C ′, Ci)|

DM:II-48 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Update Formula for Cluster Distances (continued)

After merging two clusters C and C ′ into a single new cluster, the resulting
distances to other the clusters Ci, dC(C ∪ C ′, Ci), have to be computed.

Derivation of the update formula for single link, where dC = nearest neighbor:

dC(C ∪ C ′, Ci) = min
u∈(C∪C ′)

v∈Ci

d(u, v) [distance measure]

= min{dC(C,Ci), dC(C ′, Ci)}

= 0.5 ·
(
dC(C,Ci) + dC(C

′, Ci)
)
− 0.5 · |dC(C,Ci)− dC(C ′, Ci)|

= 0.5

↓
α

· dC(C,Ci) + 0.5

↓
β

· dC(C ′, Ci) + (−0.5)

↓
δ

· |dC(C,Ci)− dC(C ′, Ci)|

DM:II-49 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Update Formula for Cluster Distances (continued)

After merging two clusters C and C ′ into a single new cluster, the resulting
distances to other the clusters Ci, dC(C ∪ C ′, Ci), have to be computed.

Derivation of the update formula for single link, where dC = nearest neighbor:

dC(C ∪ C ′, Ci) = min
u∈(C∪C ′)

v∈Ci

d(u, v) [distance measure]

= min{dC(C,Ci), dC(C ′, Ci)}

= 0.5 ·
(
dC(C,Ci) + dC(C

′, Ci)
)
− 0.5 · |dC(C,Ci)− dC(C ′, Ci)|

= 0.5

↓
α

· dC(C,Ci) + 0.5

↓
β

· dC(C ′, Ci) + (−0.5)

↓
δ

· |dC(C,Ci)− dC(C ′, Ci)|

DM:II-50 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Update Formula for Cluster Distances (continued)

After merging two clusters C and C ′ into a single new cluster, the resulting
distances to other the clusters Ci, dC(C ∪ C ′, Ci), have to be computed.

Derivation of the update formula for single link, where dC = nearest neighbor:

dC(C ∪ C ′, Ci) = min
u∈(C∪C ′)

v∈Ci

d(u, v) [distance measure]

= min{dC(C,Ci), dC(C ′, Ci)}

= 0.5 ·
(
dC(C,Ci) + dC(C

′, Ci)
)
− 0.5 · |dC(C,Ci)− dC(C ′, Ci)|

= 0.5

↓
α

· dC(C,Ci) + 0.5

↓
β

· dC(C ′, Ci) + (−0.5)

↓
δ

· |dC(C,Ci)− dC(C ′, Ci)|

DM:II-51 Cluster Analysis © STEIN 2021

Remarks:

q Link-based algorithms can be used with arbitrary measures for distances and similarities.

q Single link can be operationalized straightforwardly with a minimum spanning tree algorithm
such as Prim’s algorithm. [Wikipedia]

q Variance-based approaches presume interval-based measurement scales for all features.

q The uniform pseudo code structure of the hierarchical agglomerative algorithm reveals the
close relation of the different cluster analysis variants. However, this structural similarity must
be regarded with caution: the features’ measurement scales along with the point distance
computation rule, d(u, v), determine the basic merging characteristics of a cluster analysis
algorithm.

q Basic idea of the Lance-Williams update formula: instead of analyzing after a merging step
all members (points) of two clusters again, the formula exploits the cluster distances that
were already computed in the preceding iteration before the merger.
How large is the runtime improvement compared to a naive approach that exploits only the
distance information in G = 〈V,E,w〉?

DM:II-52 Cluster Analysis © STEIN 2021

https://en.wikipedia.org/wiki/Prim's_algorithm

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)

DM:II-53 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)

DM:II-54 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)

DM:II-55 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)

DM:II-56 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)

DM:II-57 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor) [characteristics]

DM:II-58 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)

DM:II-59 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)

DM:II-60 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)

Distance

DM:II-61 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)

Distance

DM:II-62 Cluster Analysis © STEIN 2021

Remarks:

q A k-nearest-neighbor variant may help to mitigate the chaining problem.

q A k-nearest-neighbor variant will prefer larger clusters as agglomeration candidates: larger
clusters contain more points and hence are more likely to become a nearest neighbor than
smaller clusters.

DM:II-63 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

DM:II-64 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

DM:II-65 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

DM:II-66 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

DM:II-67 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

DM:II-68 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

DM:II-69 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

DM:II-70 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.

DM:II-71 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.

DM:II-72 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.

DM:II-73 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.

DM:II-74 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)

Particular pattern recognition tasks or the detection of hyperspheres requires to
deal with nested clusters.

DM:II-75 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)

DM:II-76 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor) [characteristics]

DM:II-77 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)

DM:II-78 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)

DM:II-79 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor) [characteristics]

DM:II-80 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)

DM:II-81 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)

Reality Wish

DM:II-82 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Characteristics of Hierarchical Agglomerative Algorithms [distance measures]

Geometrical characteristics:

single link complete link average link Ward criterion

characteristic contractive: dilating: conservative: conservative:
cluster number low high medium medium
cluster form extended small compact spherical

chaining tendency strong low low low
outlier-detecting very good poor medium medium

DM:II-83 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Characteristics of Hierarchical Agglomerative Algorithms [distance measures]

Geometrical characteristics:

single link complete link average link Ward criterion

characteristic contractive: dilating: conservative: conservative:
cluster number low high medium medium
cluster form extended small compact spherical

chaining tendency strong low low low
outlier-detecting very good poor medium medium

Data-related characteristics:

noisy data susceptible susceptible unaffected unaffected
feature transformation invariant invariant – –

DM:II-84 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Characteristics of Hierarchical Agglomerative Algorithms [distance measures]

Geometrical characteristics:

single link complete link average link Ward criterion

characteristic contractive: dilating: conservative: conservative:
cluster number low high medium medium
cluster form extended small compact spherical

chaining tendency strong low low low
outlier-detecting very good poor medium medium

Data-related characteristics:

noisy data susceptible susceptible unaffected unaffected
feature transformation invariant invariant – –

Characteristics of the cluster distance measure dC :

monotonicity 3 3 3 3

order dependence 3 3 3 3

consistency −→ 0 −→∞ 3 −→∞

DM:II-85 Cluster Analysis © STEIN 2021

Remarks:

q The previous table also shows the usage frequency of the algorithms: single link and
complete link are the most popular hierarchical agglomerative algorithms.
[Jain/Murty/Flynn 1999]

q The Ward criterion has been well-proven for cluster of equal sizes.

q Average link prefers spherical cluster forms, but it will also be able to detect “potato-shaped”
clusters. [Kaufman/Rousseeuw 1990, p.47]

q Chaining will also happen when the median distance is employed.

q The median distance and is not a monotonic cluster distance measure.
[Kaufman/Rousseeuw 1990, pp. 205+240]

DM:II-86 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Merging Principles

meta-search-
controlled

Cluster
analysis

gradient-based

density-based
point-density-based

attraction-based

competitive

hierarchical
agglomerative

divisive

iterative
exemplar-based

exchange-based

stochastic
Gaussian mixtures

...

single link, group average

MinCut

k-means, k-medoid

Kerninghan-Lin

DBSCAN

MajorClust

simulated annealing

evolutionary strategies

hierarchical
agglomerative

divisive
hierarchical

agglomerative

divisive

DM:II-87 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Hierarchical Divisive Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
dC. Distance measure for two clusters.

Output: T = 〈VT , ET 〉. Cluster hierarchy or dendrogram.

1. C = {V } // initial clustering

2. VT = {vC | C ∈ C}, ET = ∅ // initial dendrogram

3. WHILE ∃Cx : (Cx ∈ C ∧ |Cx| > 1) DO

4. {C,C ′} = argmax
{Ci,Cj} :

Ci∪Cj=Cx ∧ Ci∩Cj=∅

dC(Ci, Cj) // find farthest cluster candidates

5. C = (C \ {Cx}) ∪ {C,C ′} // update clustering

6. VT = VT ∪ {vC, vC ′}, ET = ET ∪ {{vCx, vC}, {vCx, vC ′}} // dendrogram

7. ENDDO

8. RETURN(T)

Compare the above algorithm to the hierarchical agglomerative algorithm.

DM:II-88 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Hierarchical Divisive Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
dC. Distance measure for two clusters.

Output: T = 〈VT , ET 〉. Cluster hierarchy or dendrogram.

1. C = {V } // initial clustering

2. VT = {vC | C ∈ C}, ET = ∅ // initial dendrogram

3. WHILE ∃Cx : (Cx ∈ C ∧ |Cx| > 1) DO

4. {C,C ′} = argmax
{Ci,Cj} :

Ci∪Cj=Cx ∧ Ci∩Cj=∅

dC(Ci, Cj) // find farthest cluster candidates

5. C = (C \ {Cx}) ∪ {C,C ′} // update clustering

6. VT = VT ∪ {vC, vC ′}, ET = ET ∪ {{vCx, vC}, {vCx, vC ′}} // dendrogram

7. ENDDO

8. RETURN(T)

Compare the above algorithm to the hierarchical agglomerative algorithm.

DM:II-89 Cluster Analysis © STEIN 2021

Remarks:

q The cluster distance measure dC can be chosen as with the hierarchical agglomerative
algorithms. However, the worst-case complexity is exponential instead of quadratic.

q Hierarchical divisive algorithm are often designed according to the monothetic paradigm:
within each decision step only a single feature is considered.
The monothetic paradigm is particularly useful for features with ordinal and interval-based
measurement scales: instead of considering all possible partitionings, a set of feature vectors
is split with regard to a location parameter such as a feature’s median or a feature’s mean.

q In contrast to hierarchical agglomerative algorithms, a hierarchical divisive algorithm cannot
repair a “wrong” partitioning from a previous iteration.

q A powerful hierarchical divisive algorithm is based on the cut weight of a graph:

simC(C,C
′) =

∑
e∈cut({C,C ′})

w(e) or dC(C,C
′) =

1

simC(C,C ′)

DM:II-90 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
MinCut

Definition 4 (Cut, Minimum Cut)

Let G = 〈V,E,w〉 be a graph with a non-negative weight function w. Let U ⊂ V be a
non-empty subset of the node set V and let Ū be defined as Ū = V \ U . Then the
cut between U and Ū is defined as follows:

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}

DM:II-91 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
MinCut

Definition 4 (Cut, Minimum Cut)

Let G = 〈V,E,w〉 be a graph with a non-negative weight function w. Let U ⊂ V be a
non-empty subset of the node set V and let Ū be defined as Ū = V \ U . Then the
cut between U and Ū is defined as follows:

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}

The weight (or the capacity) of cut({U, Ū}) is defined as follows:

w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)

DM:II-92 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
MinCut

Definition 4 (Cut, Minimum Cut)

Let G = 〈V,E,w〉 be a graph with a non-negative weight function w. Let U ⊂ V be a
non-empty subset of the node set V and let Ū be defined as Ū = V \ U . Then the
cut between U and Ū is defined as follows:

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}

The weight (or the capacity) of cut({U, Ū}) is defined as follows:

w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)

cut({U, Ū}) is called minimum capacity cut of G, iff for all splittings {W, W̄},
W, W̄ 6= ∅ holds:

w({U, Ū}) ≤ w({W, W̄})

DM:II-93 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
MinCut

DM:II-94 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
MinCut

DM:II-95 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
MinCut

DM:II-96 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
MinCut

DM:II-97 Cluster Analysis © STEIN 2021

Remarks:

q Each partitioning requires the computation of a minimum capacity cut. Note that no node is
labeled as source or sink.

q The runtime complexity of the best known algorithm for the computation of a minimum
capacity cut is in O(|V | · |E|+ |V |2 · log |V |). [Nagamochi/Ono/Ibaraki 1994]

q |V | − 1 computations of a minimum capacity cut are necessary to obtain a complete
partitioning (= one node per cluster).

q The effort for the computation of a minimum s-t-cut, i.e., a cut that considers a source s and a
sink t, is in O(|V |2 log(|E|)).

q The effort for the computation of a balanced minimum cut (k-way, k ≥ 2) is NP complete.

q In the literature on the subject, MinCut is not classified as a hierarchical algorithm but treated
as a special approach.

DM:II-98 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Splitting Problem of MinCut

DM:II-99 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Splitting Problem of MinCut

Wish

DM:II-100 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Splitting Problem of MinCut

Reality

Solution: Normalization of the cut capacity with regard to the node number.
DM:II-101 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Splitting Problem of MinCut

Normalized cut capacity: w({U, Ū}) =
w({U, Ū})
w({U, V })

+
w({U, Ū})
w({Ū , V })

Illustration of w:

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}, w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)

DM:II-102 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Splitting Problem of MinCut

Normalized cut capacity: w({U, Ū}) =
w({U, Ū})
w({U, V })

+
w({U, Ū})
w({Ū , V })

Illustration of w:

w ({U, U }) = 2

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}, w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)

DM:II-103 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Splitting Problem of MinCut

Normalized cut capacity: w({U, Ū}) =
w({U, Ū})
w({U, V })

+
w({U, Ū})
w({Ū , V })

Illustration of w:

w ({U, V }) = 2

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}, w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)

DM:II-104 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Splitting Problem of MinCut

Normalized cut capacity: w({U, Ū}) =
w({U, Ū})
w({U, V })

+
w({U, Ū})
w({Ū , V })

Illustration of w:

w ({U, V }) = 30

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}, w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)

DM:II-105 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Splitting Problem of MinCut

Normalized cut capacity: w({U, Ū}) =
w({U, Ū})
w({U, V })

+
w({U, Ū})
w({Ū , V })

Illustration of w:

w ({U, U }) = 2/10 + 2/22 ≈ 0.29

w ({U, U }) = 2/16 + 2/16 ≈ 0.25

w ({U, U }) = 2/2 + 2/30 ≈ 1.07

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}, w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)

DM:II-106 Cluster Analysis © STEIN 2021

Remarks:

q The computation of a minimum cut of normalized cut capacity is NP complete.

q Efficient approximations for the computation of w({U, Ū}) have been developed and used for
image segmentation and gene expression cluster analysis. [Shi/Malik 2000]

DM:II-107 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Combination of Hierarchical Algorithms

The system Chameleon combines graph thinning, graph partitioning, and a
hierarchical cluster analysis [Karypis/Han/Kumar 2000] :

DM:II-108 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Combination of Hierarchical Algorithms

The system Chameleon combines graph thinning, graph partitioning, and a
hierarchical cluster analysis [Karypis/Han/Kumar 2000] :

The cluster distance dC(C,C ′) is defined as dC =
1

RI(C,C ′) · (RC(C,C ′))α

DM:II-109 Cluster Analysis © STEIN 2021

Hierarchical Cluster Analysis
Combination of Hierarchical Algorithms

Chameleon (continued)[Karypis/Han/Kumar 2000] :

The hyperparameter α in dC is task-depending and has to be determined by the
user (via trial and error).
DM:II-110 Cluster Analysis © STEIN 2021

