Chapter DM:II (continued)

II. Cluster Analysis

- □ Cluster Analysis Basics
- □ Hierarchical Cluster Analysis
- □ Iterative Cluster Analysis
- Density-Based Cluster Analysis
- Cluster Evaluation
- Constrained Cluster Analysis

Merging Principles

Exemplar-Based Algorithm

Input: $G = \langle V, E, w \rangle$. Weighted graph. d. Distance measure for two nodes in V. e. Minimization criterion for cluster representatives, based on d. k. Number of desired clusters. Output: r_1, \ldots, r_k . Cluster representatives. 1. FOR i = 1 to k DO $r_i(t) = choose(V)$ // init representatives 2. 3. 4. 5. 6. **FOREACH** $v \in V$ **DO** // find closest representative $i = \operatorname{argmin} d(r_i(t), v)$, $C_i = C_i \cup \{v\}$ // cluster assignment 7. $j: j \in \{1, ..., k\}$ 8. **ENDDO** FOR i = 1 to k DO $r_i(t) =$ argmin $e(C_i)$ // update representatives 9. $v \in C_i$ or $v \in \mathbf{R}^p$

10.

11.

Exemplar-Based Algorithm

- Input: $G = \langle V, E, w \rangle$. Weighted graph.
 - d. Distance measure for two nodes in V.
 - e. Minimization criterion for cluster representatives, based on d.
 - k. Number of desired clusters.
- Output: r_1, \ldots, r_k . Cluster representatives.
 - 1. t = 0

2. FOR
$$i = 1$$
 to k DO $r_i(t) = choose(V)$ // init representatives

- 3. REPEAT
- 4. t = t + 1
- 5. FOR i=1 to k DO $C_i=\emptyset$
- 6. FOREACH $v \in V$ DO // find closest representative
- 7. $i = \underset{j: j \in \{1, \dots, k\}}{\operatorname{argmin}} d(r_j(t), v)$, $C_i = C_i \cup \{v\}$ // cluster assignment
- 8. **ENDDO**
- 9. FOR i = 1 to k DO $r_i(t) = \underset{v \in C_i \text{ or } v \in \mathbb{R}^p}{\operatorname{argmin}} e(C_i)$ // update representatives
- 10. UNTIL (convergence $(r_1(t), \ldots, r_k(t))$ or $t > t_{max}$)
- 11. **RETURN** $(\{r_1(t), \ldots, r_k(t)\})$

Remarks:

- □ The cluster representatives are called centroids or, more general, medoids.
- □ The function *choose*(V) operationalizes a random sampling without replacement (in German: "zufälliges Ziehen ohne Zurücklegen").
- □ If the data is from a metric space, then the Euclidean distance between two data points is usually chosen as distance function *d*. An alternative and more general approach is to choose the *shortest path* between two points in the graph *G*.
- □ If the data is from a metric space, then the sum of the squared distances to the cluster representatives (= variance criterion) is usually chosen as minimization criterion *e*: For points $v \in V$ from \mathbb{R}^p , the components of the optimum cluster representative (= vector of minimum variance) are given by the component-wise arithmetic mean of the points in the cluster.

Minimization Criteria of Exemplar-Based Algorithms [algorithm]

$e(C_i) = \sum_{v \in C_i} (v - r_i)^2$	$r_i = \bar{v}_{C_i}$	centroid computation via variance minimization (k-means)
$e(C_i) = \sum_{v \in C_i} v - r_i $	$r_i \in C_i$	medoid computation (<i>k</i> -medoid)

 $e(C_i) = \max_{v \in C_i} |v - r_i| \qquad r_i \in C_i \qquad k\text{-center}$

$$e(C_i) = \sum_{v \in V} (\mu_i(v))^2 \cdot (v - r_i)^2 \qquad r_i = \frac{\sum_{v \in V} (\mu_i(v))^2 \cdot v}{\sum_{v \in V} (\mu_i(v))^2} \qquad \text{Fuzzy k-means}$$

Remarks:

- \Box \bar{v}_{C_i} denotes the arithmetic mean of the points $v \in C_i$.
- \Box To simplify notation the cluster representative is denoted with r_i instead of with $r_i(t)$.
- □ The sum of the squared distances to a cluster representative r_i becomes minimum, if r_i is the arithmetic mean of the points in C_i . Hence, the computation of the centroid in *k*-means corresponds to a local—i.e., cluster-specific—minimization of the variance.
- □ The *medoid* or central element of a cluster denotes a point $r_i \in C_i$ that minimizes the sum of the distances from r_i to all other points in C_i . An advantage of medoids compared to centroids is their robustness with respect to outliers and, as a consequence, an improved convergence behavior (= less iterations).
- \Box *k*-medoid and *k*-center can employ nearly arbitrary distance or similarity measures.
- \Box *k*-means and Fuzzy *k*-means presume interval-based measurement scales for all features.
- □ Within Fuzzy *k*-means, $\mu_i(v)$ denotes the membership value of the point $v \in V$ with respect to cluster C_i .

Remarks: (continued)

- □ *k*-means can be operationalized straightforwardly as Kohonen self-organizing map, SOM, a particular kind of neural network:
 - The SOM network is comprised of an input layer with p nodes, which correspond one-to-one to the features, and a so-called "competitive layer" with k nodes.
 - Based on the network's current edge weights the training algorithm determines for a feature vector the so-called "winning neuron", whose edge weights are raised according to a learning rate η .

k-Means versus Single Link

k-Means versus Single Link

k-Means versus Single Link

k-Means versus Single Link

k-Means versus Single Link

Exemplar-based algorithms fail to detect clusters with large difference in size.

k-Means versus Single Link

Exemplar-based algorithms fail to detect clusters with large difference in size.

Exclusive versus Non-Exclusive Algorithms

Let $C = \{C_1, \ldots, C_k\}$ be a partitioning of a set V with $\bigcup_{i=1...k} C_i = V$.

 \Box exclusive algorithms: $\forall i, j \in \{1, \dots, k\} : i \neq j \text{ implies } C_i \cap C_j = \emptyset$

non-exclusive algorithms allow for multiple cluster membership

Exclusive versus Non-Exclusive Algorithms

Let $C = \{C_1, \ldots, C_k\}$ be a partitioning of a set V with $\bigcup_{i=1...k} C_i = V$.

- □ exclusive algorithms: $\forall i, j \in \{1, ..., k\} : i \neq j \text{ implies } C_i \cap C_j = \emptyset$
- non-exclusive algorithms allow for multiple cluster membership
- □ Fuzzy cluster analysis quantifies cluster membership of the $v \in V$ by means of a membership function $\mu_i(v)$, $i \in \{1, ..., k\}$. [minimization criterion]

Exclusive versus Non-Exclusive Algorithms

Application of Fuzzy cluster analysis to represent and envision cerebral tissue:

[Pham/Prince/Dagher/Xn 1996]

Remarks:

- □ The domain of the linguistic variable of the Fuzzy model is comprised of *k* elements, which correspond to the clusters C_1, \ldots, C_k .
- □ Usually a normalization constraint for the membership function is stated: $\sum_{i=1...k} \mu_i(v) = 1$
- A drawback of Fuzzy k-means variants that neglect normalization is that points with small membership function values for a cluster are treated as outliers, instead of moving the cluster towards these points. Hence it is useful to apply the iteration procedure with a normalization constraint—at least within an initialization phase.
- □ A categorization by a Fuzzy cluster analysis is beneficial if no clear class structure is given or if various feature vectors belong to several classes at the same time.
- □ A disadvantage of Fuzzy cluster analysis is the fact that the concept of cluster representatives does not exist.