
Chapter DM:II (continued)

II. Cluster Analysis
q Cluster Analysis Basics
q Hierarchical Cluster Analysis
q Iterative Cluster Analysis
q Density-Based Cluster Analysis
q Cluster Evaluation
q Constrained Cluster Analysis
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Iterative Cluster Analysis
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Iterative Cluster Analysis
Exemplar-Based Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
d. Distance measure for two nodes in V .
e. Minimization criterion for cluster representatives, based on d.
k. Number of desired clusters.

Output: r1, . . . , rk. Cluster representatives.

1. t = 0

2. FOR i = 1 to k DO ri(t) = choose(V ) // init representatives

3. REPEAT

4. t = t+ 1

5. FOR i = 1 to k DO Ci = ∅

6. FOREACH v ∈ V DO // find closest representative

7. i = argmin
j: j∈{1,...,k}

d(rj(t), v), Ci = Ci ∪ {v} // cluster assignment

8. ENDDO

9. FOR i = 1 to k DO ri(t) = argmin
v∈Ci or v∈Rp

e(Ci) // update representatives

10. UNTIL (convergence(r1(t), . . . , rk(t)) OR t > tmax)

11. RETURN({r1(t), . . . , rk(t)})
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Remarks:

q The cluster representatives are called centroids or, more general, medoids.

q The function choose(V ) operationalizes a random sampling without replacement
(in German: „zufälliges Ziehen ohne Zurücklegen“).

q If the data is from a metric space, then the Euclidean distance between two data points is
usually chosen as distance function d. An alternative and more general approach is to
choose the shortest path between two points in the graph G.

q If the data is from a metric space, then the sum of the squared distances to the cluster
representatives (= variance criterion) is usually chosen as minimization criterion e: For points
v ∈ V from Rp, the components of the optimum cluster representative (= vector of minimum
variance) are given by the component-wise arithmetic mean of the points in the cluster.
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Iterative Cluster Analysis
k-Means with Minimization Criterion e = Variance
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Iterative Cluster Analysis
Minimization Criteria of Exemplar-Based Algorithms [algorithm]

e(Ci) =
∑
v∈Ci

(v − ri)2 ri = v̄Ci

centroid computation
via variance minimization
(k-means)

e(Ci) =
∑
v∈Ci

|v − ri| ri ∈ Ci
medoid computation
(k-medoid)

e(Ci) = max
v∈Ci

|v − ri| ri ∈ Ci k-center

e(Ci) =
∑
v∈V

(µi(v))2 · (v − ri)2 ri =

∑
v∈V (µi(v))2 · v∑
v∈V (µi(v))2

Fuzzy k-means
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Remarks:

q v̄Ci
denotes the arithmetic mean of the points v ∈ Ci.

q To simplify notation the cluster representative is denoted with ri instead of with ri(t).

q The sum of the squared distances to a cluster representative ri becomes minimum, if ri is the
arithmetic mean of the points in Ci. Hence, the computation of the centroid in k-means
corresponds to a local—i.e., cluster-specific—minimization of the variance.

q The medoid or central element of a cluster denotes a point ri ∈ Ci that minimizes the sum of
the distances from ri to all other points in Ci. An advantage of medoids compared to
centroids is their robustness with respect to outliers and, as a consequence, an improved
convergence behavior (= less iterations).

q k-medoid and k-center can employ nearly arbitrary distance or similarity measures.

q k-means and Fuzzy k-means presume interval-based measurement scales for all features.

q Within Fuzzy k-means, µi(v) denotes the membership value of the point v ∈ V with respect
to cluster Ci.
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Remarks: (continued)

q k-means can be operationalized straightforwardly as Kohonen self-organizing map, SOM,
a particular kind of neural network:

– The SOM network is comprised of an input layer with p nodes, which correspond
one-to-one to the features, and a so-called “competitive layer” with k nodes.

– Based on the network’s current edge weights the training algorithm determines for a
feature vector the so-called “winning neuron”, whose edge weights are raised according
to a learning rate η.
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Iterative Cluster Analysis
k-Means versus Single Link

Exemplar-based algorithms fail to detect nested clusters.
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Iterative Cluster Analysis
k-Means versus Single Link

Exemplar-based algorithms fail to detect clusters with large difference in size.
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Iterative Cluster Analysis
Exclusive versus Non-Exclusive Algorithms

Let C = {C1, . . . , Ck} be a partitioning of a set V with
⋃

i=1...k

Ci = V .

q exclusive algorithms: ∀i, j ∈ {1, . . . , k} : i 6= j implies Ci ∩ Cj = ∅

q non-exclusive algorithms allow for multiple cluster membership
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Let C = {C1, . . . , Ck} be a partitioning of a set V with
⋃

i=1...k

Ci = V .

q exclusive algorithms: ∀i, j ∈ {1, . . . , k} : i 6= j implies Ci ∩ Cj = ∅

q non-exclusive algorithms allow for multiple cluster membership

q Fuzzy cluster analysis quantifies cluster membership of the v ∈ V by means
of a membership function µi(v), i ∈ {1, . . . , k}. [minimization criterion]

[Höppner/Klawonn/Kruse 1997]
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Iterative Cluster Analysis
Exclusive versus Non-Exclusive Algorithms

Application of Fuzzy cluster analysis to represent and envision cerebral tissue:

[Pham/Prince/Dagher/Xn 1996]
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Remarks:

q The domain of the linguistic variable of the Fuzzy model is comprised of k elements, which
correspond to the clusters C1, . . . , Ck.

q Usually a normalization constraint for the membership function is stated:
∑
i=1...k

µi(v) = 1

q A drawback of Fuzzy k-means variants that neglect normalization is that points with small
membership function values for a cluster are treated as outliers, instead of moving the cluster
towards these points. Hence it is useful to apply the iteration procedure with a normalization
constraint—at least within an initialization phase.

q A categorization by a Fuzzy cluster analysis is beneficial if no clear class structure is given or
if various feature vectors belong to several classes at the same time.

q A disadvantage of Fuzzy cluster analysis is the fact that the concept of cluster
representatives does not exist.
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