Chapter DM:I (continued)

I. Introduction

- Data Mining Overview
- On Data

- \Box An object $o \in O$ is described by a set of attributes. An object is also known as record, point, case, sample, entity, or instance.
- \Box An attribute A is a property of an object. An attribute is also known as variable, field, characteristic, or feature.
- □ A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

		ID	Check	Status	Income	Risk
	(1	+	single	125 000	No
		2	-	married	100 000	No
		3	-	single	70 000	No
		4	+	married	120 000	No
biosta		5	-	divorced	95 000	Yes
		6	-	married	60 000	No
		7	+	divorced	220 000	No
		8	-	single	85 000	Yes
		9	-	married	75 000	No
		10	-	single	90 000	Yes

Attributes

С

- □ An object $o \in O$ is described by a set of attributes. An object is also known as record, point, case, sample, entity, or instance.
- An attribute A is a property of an object.
 An attribute is also known as variable, field, characteristic, or feature.
- A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

		/				
		ID	Check	Status	Income	Risk
	(1	+	single	125 000	No
		2	-	married	100 000	No
		3	-	single	70 000	No
		4	+	married	120 000	No
		5	-	divorced	95 000	Yes
Objects		6	-	married	60 000	No
		7	+	divorced	220 000	No
		8	-	single	85 000	Yes
		9	-	married	75 000	No
		10	-	single	90 000	Yes

Attributes

- □ An object $o \in O$ is described by a set of attributes. An object is also known as record, point, case, sample, entity, or instance.
- An attribute A is a property of an object.
 An attribute is also known as variable, field, characteristic, or feature.
- A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

		Allibules				
		_				
	-					
		ID	Check	Status	Income	Risk
(1	1	+	single	125 000	No
		2	-	married	100 000	No
		3	-	single	70 000	No
		4	+	married	120 000	No
Objects {		5	-	divorced	95 000	Yes
		6	-	married	60 000	No
		7	+	divorced	220 000	No
		8	-	single	85 000	Yes
		9	-	married	75 000	No
		10	-	single	90 000	Yes

Attributoo

- □ Attribute values may vary from one object to another or one time to another.
- The same attribute can be mapped to different attribute values.
 Example: height can be measured in feet or meters.
- Different attributes can be mapped to the same set of values.
 Example: attribute values for person ID and age are integers.

- □ Attribute values may vary from one object to another or one time to another.
- The same attribute can be mapped to different attribute values.
 Example: height can be measured in feet or meters.
- Different attributes can be mapped to the same set of values.
 Example: attribute values for person ID and age are integers.

The way an attribute is measured may not match the attribute's properties:

Measuring	1	◀	 1
lengths	3	◄	 2
	7	∢	 3
	8	∢	 4
	10	∢	 5

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects $= \neq$	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}

Туре		Comparison	Statistics	Examples
categorical nominal values are name (qualitative) only information distinguish obje $= \neq$	values are names, only information to distinguish objects $= \neq$	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}	
	ordinal	enough information to order objects $< > \leq \geq$	median, percentiles, rank correlation, run tests, sign tests	hardness of minerals, grades, street numbers, quality: {good, better, best}

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects $= \neq$	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}
	ordinal	enough information to order objects $< > \leq \geq$	median, percentiles, rank correlation, run tests, sign tests	hardness of minerals, grades, street numbers, quality: {good, better, best}
numeric (quantitative)	interval	differences are meaningful, a unit of measurement exists + -	mean, standard deviation, Pearson's correlation, <i>t</i> -test, <i>F</i> -test	calendar dates, temperature in Celsius, temperature in Fahrenheit

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects $= \neq$	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}
	ordinal	enough information to order objects $< > \leq \geq$	median, percentiles, rank correlation, run tests, sign tests	hardness of minerals, grades, street numbers, quality: {good, better, best}
numeric (quantitative,	interval	differences are meaningful, a unit of measurement exists + -	mean, standard deviation, Pearson's correlation, <i>t</i> -test, <i>F</i> -test	calendar dates, temperature in Celsius, temperature in Fahrenheit
	ratio	differences and ratios are meaningful * /	geometric mean, harmonic mean, percent variation	temperature in Kelvin, monetary quantities, counts, age, length, electrical current

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.
	ordinal	any order-preserving change of values: $x \mapsto f(x)$, where f is a monotonic	An attribute encompassing the notion of {good, better, best} can be represented equally well by the values $\{1, 2, 3\}$.

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.
	ordinal	any order-preserving change of values: $x \mapsto f(x)$, where f is a monotonic	An attribute encompassing the notion of {good, better, best} can be represented equally well by the values $\{1, 2, 3\}$.
numeric (quantitative)	interval	$x \mapsto a \cdot x + b$, where a and b are constants	The Fahrenheit and Celsius temperature scales differ in terms of where their zero value is, as well as the size of a unit (degree).

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.
	ordinal	any order-preserving change of values: $x \mapsto f(x)$, where f is a monotonic	An attribute encompassing the notion of $\{good, better, best\}$ can be represented equally well by the values $\{1, 2, 3\}$.
numeric (quantitative)	interval	$x \mapsto a \cdot x + b$, where a and b are constants	The Fahrenheit and Celsius temperature scales differ in terms of where their zero value is, as well as the size of a unit (degree).
	ratio	$x \mapsto a \cdot x$, where a is a constant	Length can be measured in meters or feet.

Remarks:

- □ Identifying, considering, and measuring an attribute *A* of an object $o \in O$ is the heart of model formation and always goes along with a sort of abstraction. Formally, this abstraction is operationalized by a model formation function $\alpha : O \rightarrow \mathbf{X}$, where **X** is called the feature space. [ML Introduction]
- □ The terms "attribute" and "feature" can be used synonymously. However, a slight distinction is the following: attributes are often associated with objects, *O*, while features usually designate the dimensions of the feature space X.
- □ The type of an attribute is also referred to as the type of a *measurement scale* or *level of measurement*.
- □ We call a transformation of an attribute *permissible* if its meaning is unchanged after the transformation.
- Distinguish between *discrete* attributes and *continuous* attributes. The former can only take a finite or countably infinite set of values, the latter can be measured in infinitely small units. Be careful when deriving from this distinction an attribute's type.
- We will encode attributes of interval type or ratio type by real numbers. Note that attributes of nominal type and ordinal type can also be encoded by real numbers.
- Derticular learning methods require particular attribute types.

On Data [Tan et al. 2005] Types of Data Sets

Data sets may not be a homogeneous collection of objects but come along with differently intricate characteristics:

- 1. Inhomogeneity of *attributes*:
- 2. Inhomogeneity of *objects*:
- 3. Inhomogeneity of *distributions*:
- 4. Resolution:
- 5. Curse of dimensionality:

On Data [Tan et al. 2005] Types of Data Sets

Data sets may not be a homogeneous collection of objects but come along with differently intricate characteristics:

1. Inhomogeneity of *attributes*:

Consider the combination of different attribute types within a single object.

2. Inhomogeneity of *objects*:

Consider the combination of different objects in a single data set.

3. Inhomogeneity of *distributions*:

The correlation between attributes varies in the sample space.

4. Resolution:

The attributes may be given at different resolutions.

5. Curse of dimensionality:

Attribute number and object density stand in exponential relation.

On Data [Tan et al. 2005] Types of Data Sets: Record Data

Collection of records, each of which consists of a fixed set of attributes:

ID	Check	Status	Income	Risk
1	+	single	125 000	No
2	-	married	100 000	No
3	-	single	70 000	No
4	+	married	120 000	No
5	-	divorced	95 000	Yes
6	-	married	60 000	No
7	+	divorced	220 000	No
8	-	single	85 000	Yes
9	-	married	75 000	No
10	-	single	90 000	Yes

- If all elements in a data set have the same fixed set of numeric attributes, they can be thought of as points in a multi-dimensional space.
- Such data can be represented by a matrix, where each row stores an object and each column stores an attribute.

Example: term-document matrices in information retrieval.

On Data [Tan et al. 2005] Types of Data Sets: Graph Data

Graph of the Linked Open Data cloud [lod-cloud.net] :

On Data [Tan et al. 2005] Types of Data Sets: Ordered Data

Average monthly temperature of land and ocean (= spatio-temporal data):

On Data [Tan et al. 2005] Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

On Data [Tan et al. 2005] Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

Definition 1 (Precision, Bias, Accuracy)

Given a set of repeated measurements of the same quantity. Then, the closeness of the measurements to one another is called *precision*, a possible systematic variation is called *bias*, and the closeness to the true value is called *accuracy*.

On Data [Tan et al. 2005] Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

Definition 1 (Precision, Bias, Accuracy)

Given a set of repeated measurements of the same quantity. Then, the closeness of the measurements to one another is called *precision*, a possible systematic variation is called *bias*, and the closeness to the true value is called *accuracy*.

Examples for data quality problems:

- □ noise, artifacts, outliers
- missing values
- duplicate data

On Data [Tan et al. 2005] Data Quality: Noise

Noise refers to random modifications of attributes that often have a spatial or temporal characteristics:

Noise represents the intrinsic variability of data. [Bishop 2006, p.47]

Artifacts refer to deterministic distortions of a measurement process.

On Data [Tan et al. 2005] Data Quality: Outliers

Outliers are members in the data set with characteristics that are considerably different than most of the other elements:

On Data [Tan et al. 2005] Data Quality: Outliers

Outliers are members in the data set with characteristics that are considerably different than most of the other elements:

On Data [Tan et al. 2005] Data Quality: Missing Values

Main reasons for missing values:

- Information is not collected.
 Example: people decline to give their age or weight.
- 2. Attributes may not be applicable to all elements in *O*. Example: annual income is not applicable to children.
- 3. Information is not trustworthy. Example: profile data on Facebook is intentionally misleading.

Strategies for handling missing values:

- eliminate members of the data
- estimate missing values
- □ ignore the missing value during analysis
- replace with all possible values weighted by their probabilities

On Data [Tan et al. 2005] Data Preprocessing

- □ sampling of object set O
- **u** modeling of objects, $\alpha : O \to \mathbf{X}$
- □ sampling of the feature space X [Evaluating Effectiveness]
- selection of attributes (features) [attributes versus features]
- transformation of attributes (features)
- discretization and binarization of attributes (features)
- $\hfill\square$ dimensionality reduction of the feature space ${\bf X}$