
Chapter IR:II

II. Indexing
q Indexing Basics
q Inverted Index
q Query Processing I
q Query Processing II
q Index Construction
q Index Compression
q Size Estimation

IR:II-22 Indexing © HAGEN/POTTHAST/STEIN 2023

Inverted Index
Term–Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 1 1 0 0 0

t2 1 1 0 1 0

t3 1 1 0 1 1

t4 0 1 0 0 0

t5 1 0 0 0 0
... . . .

IR:II-23 Indexing © HAGEN/POTTHAST/STEIN 2023

Inverted Index
Term–Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 1 1 0 0 0

t2 1 1 0 1 0

t3 1 1 0 1 1

t4 0 1 0 0 0

t5 1 0 0 0 0
... . . .

q Documents D
d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T
t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

IR:II-24 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term–Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 1 1 0 0 0

t2 1 1 0 1 0

t3 1 1 0 1 1

t4 0 1 0 0 0

t5 1 0 0 0 0
... . . .

q Documents D
d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T
t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

IR:II-25 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term–Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 1 1 0 0 0

t2 1 1 0 1 0

t3 1 1 0 1 1

t4 0 1 0 0 0

t5 1 0 0 0 0
... . . .

q Documents D
d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T
t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

IR:II-26 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term–Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 382 128 0 0 0

t2 4 379 0 1 0

t3 289 272 0 2 1

t4 0 16 0 0 0

t5 271 0 0 0 0
... . . .

q Documents D
d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T
t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

IR:II-27 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term–Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 w1,1 w1,2 w1,3 w1,4 w1,5

t2 w2,1 w2,2 w2,3 w2,4 w2,5

t3 w3,1 w3,2 w3,3 w3,4 w3,5

t4 w4,1 w4,2 w4,3 w4,4 w4,5

t5 w5,1 w5,2 w5,3 w5,4 w5,5
... . . .

q Documents D
d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T
t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

IR:II-28 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term–Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 w1,1 w1,2 w1,3 w1,4 w1,5

t2 w2,1 w2,2 w2,3 w2,4 w2,5

t3 w3,1 w3,2 w3,3 w3,4 w3,5

t4 w4,1 w4,2 w4,3 w4,4 w4,5

t5 w5,1 w5,2 w5,3 w5,4 w5,5
... . . .

q Documents D
d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T
t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

q Term Weights
– Boolean
– Term frequency
– . . .

IR:II-29 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term–Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 w1,1 w1,2 w1,3 w1,4 w1,5

t2 w2,1 w2,2 w2,3 w2,4 w2,5

t3 w3,1 w3,2 w3,3 w3,4 w3,5

t4 w4,1 w4,2 w4,3 w4,4 w4,5

t5 w5,1 w5,2 w5,3 w5,4 w5,5
... . . .

Observations:

q Most retrieval models induce a term–document matrix by computing term
weights wi,j for each pair of term ti ∈ T and document dj ∈ D.

q Query-independent computations that depend only on D are done offline.

q Online, for a query q, the required term weights are looked up to score
documents.

IR:II-30 Indexing © HAGEN/POTTHAST/STEIN 2023

Inverted Index
Term–Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 w1,1 w1,2 w1,3 w1,4 w1,5

t2 w2,1 w2,2 w2,3 w2,4 w2,5

t3 w3,1 w3,2 w3,3 w3,4 w3,5

t4 w4,1 w4,2 w4,3 w4,4 w4,5

t5 w5,1 w5,2 w5,3 w5,4 w5,5
... . . .

Observations:

q The size of the term–document matrix is |T | · |D|.

q The term–document matrix is sparse: the vast majority of term weights are 0.

q Therefore, most of the storage space required for the full matrix is wasted.

q Using a sparse-matrix representation yields significant space savings.

Ü An inverted index efficiently encodes a sparse term–document matrix.

IR:II-31 Indexing © HAGEN/POTTHAST/STEIN 2023

Inverted Index
Data Structure

T → Postings (Posting Lists, Postlists)

t1 → d1, w1,1 d2, w1,2

t2 → d1, w2,1 d2, w2,2 d4, w2,4

t3 → d1, w3,1 d2, w3,2 d4, w3,4 d5, w3,5

t4 → d2, w4,2

t5 → d1, w5,1
...

An index is implemented as a multimap (i.e., a
::::::::
hash

::::::::
table with multiple values).

Components of an externalized implementation:

q Term vocabulary file
Lookup table which maps terms ti ∈ T to the start of their posting list in the postings file.

q Postings file(s)
File(s) that store posting lists on disk.

q Index entries di, [. . .] , so-called postings

IR:II-32 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Multimap
https://webis.de/downloads/lecturenotes/https://webis.de/lecturenotes.html#unit-de-hash-tables
https://www.merriam-webster.com/dictionary/posting

Inverted Index
Data Structure

T → Postings (Posting Lists, Postlists)

t1 → d1, w1,1 d2, w1,2

t2 → d1, w2,1 d2, w2,2 d4, w2,4

t3 → d1, w3,1 d2, w3,2 d4, w3,4 d5, w3,5

t4 → d2, w4,2

t5 → d1, w5,1
...

An index is implemented as a multimap (i.e., a
::::::::
hash

::::::::
table with multiple values).

Design choices:

q Information stored in a posting di, [. . .] .

q Ordering of each term’s posting list.

q Encoding and compression techniques for further space savings.

q Physical implementation details, such as external memory and distribution.

IR:II-33 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Multimap
https://webis.de/downloads/lecturenotes/https://webis.de/lecturenotes.html#unit-de-hash-tables

Inverted Index
Posting

Given term t and document d, their posting may include the following:

<document> [<weights>] [<positions>] ...

<document>:

q Reference to the document d in which term t occurs (or to which it applies).

<weights>:

q Term weight w for term t in document d.

q Often, only basic term weights are stored (e.g., term frequency tf (t, d)).
Storing model-specific weights saves runtime at the expense of flexibility.

<positions>:

q Term positions within the document, e.g., term, sentence, page, chapter, etc.

q Field information, e.g., title, author, introduction, etc.
IR:II-34 Indexing © HAGEN/POTTHAST/STEIN 2023

Inverted Index
Posting

Two special-purpose entries are distinguished:

... [<list length>] ... [<skip pointer>]

<list length>:

q Added to the first entry of the posting list of a term t.

q Stores the length of the posting list.

q What does the length of a posting list indicate?

<skip pointer>:

q Used to implement a skip list in a term’s posting list, when ordered by ID.

q Allows for random access to postings in O(log df (t,D)).

q An effective amount of skip entries has been found to be
√

df (t,D).
First entry of a posting list, and then at random (or regular) intervals.

IR:II-35 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Skip_list

Inverted Index
Posting

Two special-purpose entries are distinguished:

... [<list length>] ... [<skip pointer>]

<list length>:

q Added to the first entry of the posting list of a term t.

q Stores the length of the posting list.

q Equals the number of documents containing t (document frequency df (t,D)).

<skip pointer>:

q Used to implement a skip list in a term’s posting list, when ordered by ID.

q Allows for random access to postings in O(log df (t,D)).

q An effective amount of skip entries has been found to be
√

df (t,D).
First entry of a posting list, and then at random (or regular) intervals.

IR:II-36 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Skip_list

Inverted Index
Posting List, Postlist

Example for two posting lists, where for term ti postings k, tf (ti, dk) are stored:

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

Ordering:

q by document identifier. Problem: “good” documents randomly distributed.

q by document quality. Problem: index updates more complicated.

q by term weight. Problem: no canonical order across rows; skip lists useless.

Compression:

q The size of an index is in O(|D|), where |D| denotes the disk size of D.

q Posting lists can be effectively compressed with tailored techniques.

IR:II-37 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q The term “inverted index” is redundant: “index” already denotes the structure in which terms
are assigned to the (parts of) documents in which they occur. Better suited, but less
frequently used, is “inverted file”, which expresses that a (document) file is “inverted” to form
an index. So instead of assigning terms to documents, an index assigns documents to terms.

q A trade-off must be made between the amount of information stored in a posting and the time
required to process a post list. The more information stored in a posting, the more has to be
loaded into memory and decoded as the posting list is traversed.

q A skip entry can contain more than one pointer, so skip steps of different lengths are possible.

q Depending on the search domain, it may be beneficial to create more than one index with
different properties.

IR:II-38 Indexing © HAGEN/POTTHAST/STEIN 2023

Chapter IR:II

II. Indexing
q Indexing Basics
q Inverted Index
q Query Processing I
q Query Processing II
q Index Construction
q Index Compression
q Size Estimation

IR:II-39 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Retrieval Types

Query processing can be based on two basic approaches:

q Set retrieval
A query induces a subset of the indexed documents which is considered relevant.
Important applications: e-discovery, patent search, systematic reviews.

q Ranked retrieval
A query induces a ranking among all indexed documents in descending order of relevance.

Ranked retrieval is the norm in virtually all modern search engines.

IR:II-40 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Query Semantics for Set Retrieval

Keyword queries have Boolean semantics that is either implicitly specified by user
behavior and expectations or explicitly specified.

We distinguish four types:

q Single-term queries

q Disjunctive multi-term queries
Only Boolean OR connectives. Example: Antony ∨ Brutus ∨ Calpurnia.

q Conjunctive multi-term queries
Only Boolean AND connectives. Example: Antony ∧ Brutus ∧ Calpurnia.

+ Constraint: Proximity
Example: Antony /5 Caesar

+ Constraint: Phrase
Example: “Antony and Caesar”

q “Complex” Boolean multi-term queries
Remainder of Boolean formulas. Example: (Antony ∨ Caesar) ∧¬ Calpurnia.
Normalized to disjunctive or conjunctive normal form.

IR:II-41 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Which index configuration applies to which type of query?

Query types:

– Single-term queries

– Disjunctive multi-term queries

– Conjunctive multi-term queries

• Boolean AND queries

• Proximity queries

• Phrase queries

Index configurations:

– Postlists ordered by document ID

– Postlists ordered by document quality

– Postlists ordered by term weight

– Positional indexing
Postings also store term positions.

IR:II-42 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Which index configuration applies to which type of query?

Query types:

– Single-term queries

– Disjunctive multi-term queries

– Conjunctive multi-term queries

• Boolean AND queries

• Proximity queries

• Phrase queries

Index configurations:

– Postlists ordered by document ID

– Postlists ordered by document quality

– Postlists ordered by term weight

– Positional indexing
Postings also store term positions.

q Single-term queries are directly answered with a term weight ordering.

q Disjunctive multi-term queries can be processed with any postlist ordering.

q Conjunctive multi-term queries benefit from a canonical postlist order.

q Proximity and phrase queries require positional indexing.

IR:II-43 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Conjunctive Multi-Term Queries

Given an index with postings k, tf (t, dk) and a query q = t1 ∧ . . . ∧ tn, compute the
collection R ⊆ D of documents relevant to q.

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

What is the underlying problem to which processing query q can be reduced?

IR:II-44 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Conjunctive Multi-Term Queries

Given an index with postings k, tf (t, dk) and a query q = t1 ∧ . . . ∧ tn, compute the
collection R ⊆ D of documents relevant to q.

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

Problem: List Intersection.

Instance: L1, . . . , Ln. n ≥ 2 skip lists of numbers.

Solution: A sorted list R of numbers, so that each number occurs in all n lists.

Idea: (1) Intersection of the two shortest lists Li and Lj to obtain R′ ⊇ R.

(2) Iterative intersection of R′ with the remaining lists in ascending
order of length.

IR:II-45 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection

Algorithm: Intersection of Two Lists.

Input: L1, L2. Skip lists of numbers implemented as
:::::::::
singly

::::::::::
linked

:::::::
lists.

Output: Sorted list of numbers occurring in both L1 and L2.

IntersectTwo(L1, L2)

1. Initialization of result list R and one iterator variable x1 and x2 per list.

2. While the iterators point to list entries, process them as follows.

3. If the list entries’ keys match, append a merged entry to the result list R.

4. While the key of x1 is smaller than that of x2 advance x1.

5. While the key of x2 is smaller than that of x1 advance x2.

6. Return R, once an iterator reaches the end of its list.

IR:II-46 Indexing © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/algorithms-and-datastructures/unit-de-lists.pdf

Query Processing I
List Intersection

Algorithm: Intersection of Two Lists.

Input: L1, L2. Skip lists of numbers implemented as
:::::::::
singly

::::::::::
linked

:::::::
lists.

Output: Sorted list of numbers occurring in both L1 and L2.

IntersectTwo(L1, L2)

1. R = list(); x1 = L1.head ; x2 = L2.head
2. WHILE x1 6= NIL AND x2 6= NIL DO
3. IF x1.key == x2.key THEN
4. R = Insert(R,merge(x1, x2))
5. x1 = x1.next ; x2 = x2.next
6. ENDIF
7. WHILE x1 6= NIL AND x2 6= NIL AND x1.key < x2.key DO
8. IF CanSkip(x1, x2.key) THEN
9. x1 = Skip(x1, x2.key)

10. ELSE
11. x1 = x1.next
12. ENDIF
13. ENDDO

... Like lines 7-13 with x1 and x2 exchanged.
21. ENDDO
22. return(R)

IR:II-47 Indexing © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/algorithms-and-datastructures/unit-de-lists.pdf

Query Processing I
List Intersection

Algorithm: Intersection of Two Lists.

Input: L1, L2. Skip lists of numbers implemented as
:::::::::
singly

::::::::::
linked

:::::::
lists.

Output: Sorted list of numbers occurring in both L1 and L2.

IntersectTwo(L1, L2)

1. R = list(); x1 = L1.head ; x2 = L2.head
2. WHILE x1 6= NIL AND x2 6= NIL DO
3. IF x1.key == x2.key THEN
4. R = Insert(R,merge(x1, x2))
5. x1 = x1.next ; x2 = x2.next
6. ENDIF
... Like lines 14-20 with x1 and x2 exchanged.

14. WHILE x1 6= NIL AND x2 6= NIL AND x2.key < x1.key DO
15. IF CanSkip(x2, x1.key) THEN
16. x2 = Skip(x2, x1.key)
17. ELSE
18. x2 = x2.next
19. ENDIF
20. ENDDO
21. ENDDO
22. return(R)

IR:II-48 Indexing © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/algorithms-and-datastructures/unit-de-lists.pdf

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

Execute IntersectTwo(Li, Lj).

IR:II-49 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

Execute IntersectTwo(Li, Lj).

Result R = ()

IR:II-50 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = ()

IR:II-51 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ...

IR:II-52 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ...

IR:II-53 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ...

IR:II-54 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ...

IR:II-55 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ...

IR:II-56 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ...

IR:II-57 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ...

IR:II-58 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ... 41, ...

IR:II-59 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ... 41, ...

IR:II-60 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ... 41, ...

IR:II-61 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ... 41, ... 77, ...

IR:II-62 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ∧ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ... 41, ... 77, ...

IR:II-63 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Postlists are usually too large to fit in main memory, so iterating them brings performance
benefits.

q The key attribute stores the document identifier of a posting.

q The merge function returns a posting merged from the two postings passed in. It merges the
potentially stored term weights and other information stored in them.

q The next attribute stores the successive posting.

q The CanSkip function checks whether the current posting contains skip information and
whether a target with a document identifier less than or equal to the key value passed is
available.

q The Skip function returns the posting that is closest to but less than or equal to the key value
passed.

IR:II-64 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection

Algorithm: Intersect Many Lists.

Input: L1, . . . , Ln. Skip lists of numbers implemented as
:::::::::
singly

::::::::::
linked

:::::::
lists.

Output: Sorted list of numbers occurring in all L1, . . . , Ln.

IntersectMany(L1, . . . , Ln)

// Sort by list length.

1. H = BuildMinHeap(L1, . . . , Ln);

2. R = ExtractMin(H)

3. WHILE |H| > 0 DO

4. Lmin = ExtractMin(H)

5. R = IntersectTwo(R,Lmin)

6. ENDDO

7. return(R)

Why are lists intersected in ascending
order of list length?

IR:II-65 Indexing © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/algorithms-and-datastructures/unit-de-lists.pdf

Query Processing I
List Intersection

Algorithm: Intersect Many Lists.

Input: L1, . . . , Ln. Skip lists of numbers implemented as
:::::::::
singly

::::::::::
linked

:::::::
lists.

Output: Sorted list of numbers occurring in all L1, . . . , Ln.

IntersectMany(L1, . . . , Ln)

// Sort by list length.

1. H = BuildMinHeap(L1, . . . , Ln);

2. R = ExtractMin(H)

3. WHILE |H| > 0 DO

4. Lmin = ExtractMin(H)

5. R = IntersectTwo(R,Lmin)

6. ENDDO

7. return(R)

Observations:

q The amount of memory required to
store the result list R is bounded by
the shortest list from L1, . . . , Ln.

q The smaller the result list R, the
more effective are the skip pointers.

q Hard disk seeking is minimized
since every list is read sequentially.

IR:II-66 Indexing © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/algorithms-and-datastructures/unit-de-lists.pdf

Query Processing I
Proximity Queries

Given a query q = ti /ε tj, retrieve documents in which ti and tj are in close
proximity, i.e., within an ε-environment of one another, where ε ≥ 1 terms.

IR:II-67 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Proximity Queries

Given a query q = ti /ε tj, retrieve documents in which ti and tj are in close
proximity, i.e., within an ε-environment of one another, where ε ≥ 1 terms.

Processing proximity queries requires term positions in postings:

<document> [<weights>] [<positions>] [...]

IR:II-68 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Proximity Queries

Given a query q = ti /ε tj, retrieve documents in which ti and tj are in close
proximity, i.e., within an ε-environment of one another, where ε ≥ 1 terms.

Processing proximity queries requires term positions in postings:

<document> [<weights>] [<positions>] [...]

Example:

d = “You
1

cannot
2

end
3

a
4

sentence
5

with
6

because
7

because
8

because
9

is
10

a
11

conjun
12

ction.”

Posting for “because” and d:

d, 3, (7,8,9)

Posting for “sentence” and d:

d, 1, (5)

In d, “because” is in a 2-environment of {“sentence”, “with”, “because”, “is”, “a”}.

IR:II-69 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Proximity Queries

Algorithm: Position List Intersection.

Input: A1, A2. Sorted arrays of positions of two terms t1, t2 in a document d.
ε. Maximal term distance.

Output: For each position in A1, the positions from A2 within an ε-environment.

IntersectPositions(A1, A2, ε)

1. R = map()
2. FOR i = 1 TO A1.length DO
3. R′ = list()
4. FOR j = 1 TO A2.length DO
5. IF |A1[i]− A2[j]| ≤ ε THEN
6. insert(R′, A2[j])

7. ELSE IF A2[j] > A1[i] THEN
8. break
9. ENDIF

10. ENDDO
11. insert(R,A1[i], R

′)

12. ENDDO
13. return(R)

Remarks:

q Pruning unnecessary comparisons
Lines 7–9: Stop comparing once the j-th
position in A2 exceeds the i-th position in
A1 by more than ε. The difference can
never get smaller than ε again.

q Integration into postlist intersection
The if-statement of Line 3 of IntersectTwo
then additionally checks whether
IntersectPositions returns a non-empty
result.

IR:II-70 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Phrase Queries

Given a phrase query q =“t1 . . . tm”, retrieve documents in which the terms
t1, . . . , tm occur in the same order as in the query q.

IR:II-71 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Phrase Queries

Given a phrase query q =“t1 . . . tm”, retrieve documents in which the terms
t1, . . . , tm occur in the same order as in the query q.

Processing phrase queries requires term positions in postings.

Example:

T Postings
to . . . 4, 250, (..., 133, 137, ...) . . .

be . . . 4, 125, (..., 134, 138, ...) . . .

or . . . 4, 40, (..., 135, ...) . . .

not . . . 4, 15, (..., 136, ...) . . .

What phrase does document 4
contain?

IR:II-72 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Phrase Queries

Given a phrase query q =“t1 . . . tm”, retrieve documents in which the terms
t1, . . . , tm occur in the same order as in the query q.

Processing phrase queries requires term positions in postings.

Example:

T Postings
to . . . 4, 250, (..., 133, 137, ...) . . .

be . . . 4, 125, (..., 134, 138, ...) . . .

or . . . 4, 40, (..., 135, ...) . . .

not . . . 4, 15, (..., 136, ...) . . .

Document 4 contains the phrase
to be or not to be

at term positions 133–138.

Observations:

q Processing phrase queries can be reduced to the list intersection problem.
Algorithms IntersectMany and IntersectTwo can be adjusted to process phrase queries.

q The additional run time for phrase processing is in O(
∑

d∈IntersectMany(Lt:t∈q) |d|).

IR:II-73 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Phrase Queries

Given a phrase query q =“t1 . . . tm”, retrieve documents in which the terms
t1, . . . , tm occur in the same order as in the query q.

To speed up phrase search, n-grams can be used as index terms.

Example:

T Postings
to be . . . 4, 80, (..., 133, 137, ...) . . .

be or . . . 4, 55, (..., 134, ...) . . .

or not . . . 4, 20, (..., 135, ...) . . .

not to . . . 4, 7, (..., 136, ...) . . .

Document 4 contains the phrase
to be or not to be

at term positions 133–138.

How much faster can phrase queries be processed?

IR:II-74 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Phrase Queries

Given a phrase query q =“t1 . . . tm”, retrieve documents in which the terms
t1, . . . , tm occur in the same order as in the query q.

To speed up phrase search, n-grams can be used as index terms.

Example:

T Postings
to be . . . 4, 80, (..., 133, 137, ...) . . .

be or . . . 4, 55, (..., 134, ...) . . .

or not . . . 4, 20, (..., 135, ...) . . .

not to . . . 4, 7, (..., 136, ...) . . .

Document 4 contains the phrase
to be or not to be

at term positions 133–138.

Observations:

q The time to process phrase queries of length at least n is divided by n.
Only non-overlapping n-grams need to be intersected.

q Maintaining an index with n-grams and/or common phrases as index terms
speeds up non-phrase queries as well.

IR:II-75 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q The space requirements of a positional index are 2–4 times that of a nonpositional index.

q Most basic retrieval models do not directly employ positional information. If keyword proximity
is a desired feature in a retrieval system using a basic retrieval model, positional information
usually is implemented as an additional relevance signal or as a prior probability for a
document.

IR:II-76 Indexing © HAGEN/POTTHAST/STEIN 2023

Chapter IR:II

II. Indexing
q Indexing Basics
q Inverted Index
q Query Processing I
q Query Processing II
q Index Construction
q Index Compression
q Size Estimation

IR:II-77 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Retrieval Types

Query processing can be based on two basic approaches:

q Set retrieval
A query induces a subset of the indexed documents which is considered relevant.
Important applications: e-discovery, patent search, systematic reviews.

q Ranked retrieval
A query induces a ranking among all indexed documents in descending order of relevance.

Ranked retrieval is the norm in virtually all modern search engines.

IR:II-78 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Relevance Scoring (Recap)

Quantification of the relevance of an indexed document d to a query q.

IR:II-79 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Relevance Scoring (Recap)

Quantification of the relevance of an indexed document d to a query q.

Let t ∈ T denote a term t from the terminology T of index terms, and let
ωX : T ×X → R denote a term weighting function, where X may be a set of
documents D or a set of queries Q. Then the most basic relevance function ρ is:

ρ(q, d) =
∑
t∈T

ωQ(t, q) · ωD(t, d),

where ωQ(t, q) and ωD(t, d) are term weights indicating the importance of t for the
query q ∈ Q and the document d ∈ D, respectively.

IR:II-80 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Relevance Scoring (Recap)

Quantification of the relevance of an indexed document d to a query q.

Let t ∈ T denote a term t from the terminology T of index terms, and let
ωX : T ×X → R denote a term weighting function, where X may be a set of
documents D or a set of queries Q. Then the most basic relevance function ρ is:

ρ(q, d) =
∑
t∈T

ωQ(t, q) · ωD(t, d),

where ωQ(t, q) and ωD(t, d) are term weights indicating the importance of t for the
query q ∈ Q and the document d ∈ D, respectively.

Observations:

q A term t may have importance, and hence non-zero weights, for a query q or
document d despite not occurring in them. Example: synonyms.

q The majority of terms from T will have insignificant importance to both.

q The term weights ωD(t, d) can be pre-computed and indexed.

q The term weights ωQ(t, q) must be computed on the fly.
IR:II-81 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Query Semantics for Ranked Retrieval

Keyword queries have Boolean semantics that is either implicitly specified by user
behavior and expectations or explicitly specified.

We distinguish four types:

q Single-term queries

q Disjunctive multi-term queries
Only Boolean OR connectives. Example: Antony ∨ Brutus ∨ Calpurnia.

q Conjunctive multi-term queries
Only Boolean AND connectives. Example: Antony ∧ Brutus ∧ Calpurnia.

+ Constraint: Proximity
Example: Antony /ε Caesar

+ Constraint: Phrase
Example: “Antony and Caesar”

q “Complex” Boolean multi-term queries
Remainder of Boolean formulas. Example: (Antony ∨ Caesar) ∧¬ Calpurnia.
Can be normalized to disjunctive or conjunctive normal form.

IR:II-82 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Single-Term Queries

Given a single-term query q = t, the optimal postlist ordering is by term weight.

Example:

T Postings (ordered by document identifier)
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

Worst case: The last document of the postlist is the most relevant one.
The whole postlist must be examined.

IR:II-83 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Single-Term Queries

Given a single-term query q = t, the optimal postlist ordering is by term weight.

Example:

T Postings (ordered by term weight)
...
ti 4, 9 41, 8 77, 8 19, 7 28, 6 50, 6 23, 5 2, 4 8, 2 16, 1 . . .

tj 8, 17 41, 6 3, 5 51, 5 60, 5 2, 3 71, 3 5, 2 77, 2 1, 1 . . .
...

Best case: The document whose content is best represented by the term t is the
one with the highest term weight. A partial examination of the postlist suffices.

Including a skip list in a postlist ordered by term weights may not be useful.

IR:II-84 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

In general, a query q is processed as a disjunctive query, where each term ti ∈ q
may or may not occur in a relevant document d, as long as at least one ti occurs.

Document-at-a-time scoring

q Precondition: a total order of documents in the index’s postlists is enforced
Ordering criterion: document ID or document quality

q Parallel traversal of query term postlists, document ID by document ID.

q Each document’s score is instantly complete, but the ranking only at the end.

q Concurrent disk IO overhead increases with query length.

IR:II-85 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

In general, a query q is processed as a disjunctive query, where each term ti ∈ q
may or may not occur in a relevant document d, as long as at least one ti occurs.

Document-at-a-time scoring

q Precondition: a total order of documents in the index’s postlists is enforced
Ordering criterion: document ID or document quality

q Parallel traversal of query term postlists, document ID by document ID.

q Each document’s score is instantly complete, but the ranking only at the end.

q Concurrent disk IO overhead increases with query length.

Term-at-a-time scoring

q Iterative traversal of query term postlists (e.g., in order of term frequency).

q Temporary query postlist contains candidate documents.

q As document scores accumulate, an approximate ranking becomes available.

q More main memory required for maintaining temporary postlist.

Safe and unsafe optimizations exist (e.g., to stop the search early).
IR:II-86 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Web search engines often return results without some of a query’s terms for very specific
queries, indicating a disjunctive interpretation. Nevertheless, many retrieval models assign
higher scores to documents matching more of a query’s terms, leaning toward a “conjunctive”
interpretation at least for the (visible) top results.

IR:II-87 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

Algorithm: Document-at-a-time Scoring.

Input: L1, . . . , Lm. The postlists of the terms t1, . . . , tm of query q.
q. Representation of query q, e.g., as array of m term weights.

Output: A list of documents in D, sorted in descending order of relevance to q.

DAATScoring(L1, . . . , Lm,q)

1. Initialization of result list R as priority queue, and postlist iterator variables.

2. While not all postlists have been processed, repeat the following steps.

3. Determine the smallest document identifier d to which the iterators point.

4. Collect all term weights of d in an array d.

5. Calculate the relevance score ρ(q,d) and insert it in R.

6. Advance all iterators pointing to d.

7. Return the list of scored documents R.

IR:II-88 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head
3. continue = TRUE
4. WHILE continue DO
5. d = mini∈[1,m](xi.key)
6. d = Array(|q|)
7. FOR i ∈ [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ρ(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE
15. FOR i ∈ [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next
18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE
21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
...
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
...
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
...
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

...
5
...
8
...
3
...

IR:II-89 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head
3. continue = TRUE
4. WHILE continue DO
5. d = mini∈[1,m](xi.key)
6. d = Array(|q|)
7. FOR i ∈ [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ρ(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE
15. FOR i ∈ [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next
18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE
21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

...
5
...
8
...
3
...

d1 =

...
4
...
1
...
2
...

IR:II-90 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head
3. continue = TRUE
4. WHILE continue DO
5. d = mini∈[1,m](xi.key)
6. d = Array(|q|)
7. FOR i ∈ [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ρ(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE
15. FOR i ∈ [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next
18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE
21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

...
5
...
8
...
3
...

d2 =

...
0
...
3
...
4
...

IR:II-91 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head
3. continue = TRUE
4. WHILE continue DO
5. d = mini∈[1,m](xi.key)
6. d = Array(|q|)
7. FOR i ∈ [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ρ(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE
15. FOR i ∈ [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next
18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE
21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

...
5
...
8
...
3
...

d4 =

...
9
...
0
...
0
...

IR:II-92 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head
3. continue = TRUE
4. WHILE continue DO
5. d = mini∈[1,m](xi.key)
6. d = Array(|q|)
7. FOR i ∈ [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ρ(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE
15. FOR i ∈ [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next
18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE
21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

...
5
...
8
...
3
...

d5 =

...
0
...
5
...
1
...

IR:II-93 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head
3. continue = TRUE
4. WHILE continue DO
5. d = mini∈[1,m](xi.key)
6. d = Array(|q|)
7. FOR i ∈ [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ρ(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE
15. FOR i ∈ [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next
18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE
21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

...
5
...
8
...
3
...

d6 =

...
0
...
0
...
3
...

IR:II-94 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head
3. continue = TRUE
4. WHILE continue DO
5. d = mini∈[1,m](xi.key)
6. d = Array(|q|)
7. FOR i ∈ [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ρ(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE
15. FOR i ∈ [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next
18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE
21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

...
5
...
8
...
3
...

d7 =

...
0
...
2
...
0
...

IR:II-95 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head
3. continue = TRUE
4. WHILE continue DO
5. d = mini∈[1,m](xi.key)
6. d = Array(|q|)
7. FOR i ∈ [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ρ(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE
15. FOR i ∈ [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next
18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE
21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

...
5
...
8
...
3
...

d8 =

...
2
...
8
...
5
...

IR:II-96 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head
3. continue = TRUE
4. WHILE continue DO
5. d = mini∈[1,m](xi.key)
6. d = Array(|q|)
7. FOR i ∈ [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ρ(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE
15. FOR i ∈ [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next
18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE
21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

...
5
...
8
...
3
...

d16 =

...
1
...
wj
...
wk
...

IR:II-97 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head
3. continue = TRUE
4. WHILE continue DO
5. d = mini∈[1,m](xi.key)
6. d = Array(|q|)
7. FOR i ∈ [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ρ(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE
15. FOR i ∈ [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next
18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE
21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

...
5
...
8
...
3
...

d19 =

...
7
...
wj
...
wk
...

IR:II-98 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head
3. continue = TRUE
4. WHILE continue DO
5. d = mini∈[1,m](xi.key)
6. d = Array(|q|)
7. FOR i ∈ [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ρ(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE
15. FOR i ∈ [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next
18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE
21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

...
5
...
8
...
3
...

d =

...
wi
...
wj
...
wk
...

IR:II-99 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q DAAT = Document at a time

q We distinguish between a real-world query q and its computer representation q. Likewise,
document (identifier) d’s representation is d. More complex representations can be imagined
than the array-of-weights representations exemplified.

q Relevance function ρ(q,d) maps pairs of document and query representations to a
real-valued score indicating document d’s relevance to query q.

q Document-at-a-time scoring makes heavy use of disk seeks. With increasing query length
|q|, dependent on the type of disks used, and the distribution of the index across disks, the
practical run time of this approach can be poor (albeit, theoretically, exactly the same
postings are processed as for term-at-a-time scoring).

q Document-at-a-time scoring has a rather small memory footprint on the order of the number
of documents to return. This footprint can easily be bounded within top-k retrieval by limiting
the size of the results priority queue to the k entries with the currently highest scores.

q Document-at-a-time scoring presumes a global postlist ordering by document identifier or
document quality.

IR:II-100 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

Algorithm: Term-at-a-time Scoring.

Input: L1, . . . , Lm. The postlists of the terms t1, . . . , tm of query q.
q. Representation of query q, e.g., as array of m term weights.

Output: A list of documents in D, sorted in descending order of relevance to q.

TAATScoring(L1, . . . , Lm,q)

1. R = map()

2. FOR i ∈ [1,m] DO

3. xi = Li.head

4. WHILE xi 6= NIL DO

5. d = xi.key

6. w = xi.weight

7. R[d] = R[d] + q[i] · w
8. xi = xi.next

9. ENDDO

10. ENDDO

11. return(PriorityQueue(R))

1. Initialization of result list R as map.

2. Process postlists interatively.

3. Initialization of postlist iterator for the i-th postlist.

4. For each document d’s posting in the postlist:

5. Get d’s ID.

6. Get t’s term weight for d.

7. Update d’s partial document score.

8. Advance the iterator.

11. Return the result list, ordered by document scores.

IR:II-101 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q TAAT = Term at a time

q Term-at-a-time scoring has a comparably high main memory load, since the last
“intermediate” |R| = |

⋃m
i=1 Li| before an actual ordering is performed. Otherwise, postlists are

read consecutively, which suits rotating hard disks. Massive parallelization is possible.

q The order in which terms are processed (Line 2) affects how quick the intermediate scores in
R approach the final document scores.

q The relevance function ρ must be additive (Line 7), or otherwise incrementally computable.

q Term-at-a-time scoring makes no a priori assumptions about postlist ordering; in case of
conjunctive interpretation some ordering by document identifier is still very helpful since then
skip lists can be exploited. However, to speed up retrieval and allow for (unsafe) early
termination, ordering by term weight is required.

IR:II-102 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Top-k Retrieval

Search engine users are often interested only in the top ranked k documents.
Lower-ranked documents will likely never be viewed.

Query processing optimization approaches:

q Term weight threshold
TAAT-scoring: skip query terms whose inverse document frequency is lower than that of
other query terms. Exception: stop word-heavy queries (e.g., to be or not to be).

q Relevance score threshold
DAAT-scoring: once >k documents have been found, determine co-occurring query terms in
the top k ones; skip remaining documents not containing co-occurring query terms.

q Early termination
Postlists ordered by term weight: stop postlist traversal early, disregarding the rest of the
postlist that cannot contribute enough to a document’s relevance score.

q Tiered indexes
Divide documents into index tiers by quality or term frequency. If an insufficient amount of
documents is found in the top tier, resort to the next one.

IR:II-103 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Index Distribution

The larger the size of the document collection D to be indexed, the more query
processing time can be improved by scaling up and scaling out.

Term distribution

q Distribution of postlists across local disks.
q Speeds up processing on spinning hard drives.

Document distribution (also: sharding)

q Random division of the document collection into subsets (so-called shards)
and indexing of each shard on a different server for parallel query processing.

q Benefit: Smaller indexes return (more) results faster due to shorter postlists.
q Overhead: Query broker to dispatch queries and fuse each server’s results.

Tiered indexes

q Sharding of the document collection into tiers (e.g., by document importance)
q For instance: Tier 1 shards are kept in RAM, Tier 2 shards are kept in flash

memory, and Tier 3 shards on spinning hard disks.
IR:II-104 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Scalability#Horizontal_(scale_out)_and_vertical_scaling_(scale_up)

Query Processing II
Caching

Queries obey Zipf’s law: roughly half the queries a day are unique on that day.
Moreover, about 15% of the queries per day have never occurred before [Gomes 2017].

Consequently, the majority of queries have been seen before, enabling the use of
caching to speed up query processing.

Caching can be applied at various points:

q Result caching

q Caching of postlist intersections

q Postlist caching

Individual cache refresh strategies must be employed to avoid stale data. Cache
hierarchies of hardware and operating system should be exploited.

IR:II-105 Indexing © HAGEN/POTTHAST/STEIN 2023

https://blog.google/products/search/our-latest-quality-improvements-search/

Chapter IR:II

II. Indexing
q Indexing Basics
q Inverted Index
q Query Processing I
q Query Processing II
q Index Construction
q Index Compression
q Size Estimation

IR:II-106 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
In-Memory Index Construction

Algorithm: Index Construction.

Input: D = {d1, . . . , dn}. Set of documents di = (t1, . . . , tm) as lists of terms.

Output: Inverted index of D; postlist of term tj contains postings i, tf (tj, di) .

InMemoryIndex(D)

1. I = map()
2. FOR i ∈ [1, n] DO
3. di = D[i]; T = set(); TF = map()
4. FOR t ∈ di DO
5. Insert(T, t)
6. TF [t] = TF [t] + 1

7. ENDDO
8. FOR t ∈ T DO
9. IF t /∈ I THEN I[t] = list() ENDIF

10. L = I[t]

11. posting = record(i, TF [t])
12. InsertEnd(L,posting)
13. ENDDO
14. ENDDO
15. return(I)

1. Initialization of an empty map as index I.
2. For each document d in D:

3. Collect d’s terminology in T .
4. Accumulate d’s term frequencies.

5. For each term t in d’s terminology T :

6. Insert new posting i, tf (tj, di) for d in I.

7. Return index of D.
IR:II-107 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

If the document collection D does not fit into main memory, indexing is done
iteratively, sharding the document collection and merging the shard indexes similar
to an external merge sort:

1. The InMemoryIndex procedure runs until main memory is full.

2. The postlists are written to disk in alphabetical order of terms.

3. Steps 1 and 2 are repeated until D is processed.

4. All k postlist files created are read concurrently, performing a k-way merge.

IR:II-108 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/External_sorting#External_merge_sort

Index Construction
Index Merging

T Postings
...
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
...
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

IR:II-109 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
... xi1
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
... xi2
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti

IR:II-110 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
... xi1
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
... xi2
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti 2, 4

IR:II-111 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
... xi1
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
... xi2
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti 2, 4 4, 9

IR:II-112 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
... xi1
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
... xi2
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti 2, 4 4, 9 8, 2

IR:II-113 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
... xi1
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
... xi2
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1

IR:II-114 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
... xi1
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
... xi2
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7

IR:II-115 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
... xi1
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
... xi2
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5

IR:II-116 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
... xi1
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
... xi2
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6

IR:II-117 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
... xi1
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
... xi2
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8

IR:II-118 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
... xi1
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
... xi2
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6

IR:II-119 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
... xi1
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
... xi2
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

IR:II-120 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Index Merging

T Postings
...
ti 4, 9 19, 7 23, 5 28, 6 50, 6 . . .

tj 1, 1 3, 5 51, 5 60, 5 71, 3 . . .
...

T Postings
...
ti 2, 4 8, 2 16, 1 41, 8 77, 8 . . .

tj 2, 3 5, 2 8, 17 41, 6 77, 2 . . .
...

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...
IR:II-121 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Alphabetical ordering of intermediary postlist files ensures that the index can be read
sequentially, albeit concurrently, during merging. Compare to document-at-a-time scoring.

q If a term appears in only one of the indexes, its postlist is directly added to the merged index.

q Postings with skip pointers can be pre-determined before merging a postlist so that
appropriate space can be allocated immediately, but the actual skip pointers need to be
recomputed after the postlist is merged.

q The number k of intermediary postlist files that can be read concurrently without causing too
much seeking overhead depends on the underlying hardware (e.g., k is smaller for spinning
hard disks than for solid state disks). In case k is too large, the intermediary postlist files are
merged in multiple passes, k′ < k at a time, until all are merged.

IR:II-122 Indexing © HAGEN/POTTHAST/STEIN 2023

Index Construction
Distributed Indexing

If neither the document collection D, nor its index can be stored on a single
machine, indexing must be performed distributed across a computer cluster.

Many cluster computing frameworks exist nowadays; the NoSQL movement, and
ultimately the Big Data hype, was kicked off by Google’s MapReduce [Dean 2004].

IR:II-123 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/NoSQL
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf

Index Construction
Distributed Indexing

If neither the document collection D, nor its index can be stored on a single
machine, indexing must be performed distributed across a computer cluster.

Many cluster computing frameworks exist nowadays; the NoSQL movement, and
ultimately the Big Data hype, was kicked off by Google’s MapReduce [Dean 2004].

From a developer perspective, data processing with MapReduce boils down to
implementing two procedures:

q Map: Given a key–value pair as input, it outputs a list of key–value pairs.

q Reduce: Given a key and the list of values output by map under that key, it
outputs a key–value pair.

IR:II-124 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/NoSQL
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf

Index Construction
Distributed Indexing

If neither the document collection D, nor its index can be stored on a single
machine, indexing must be performed distributed across a computer cluster.

Many cluster computing frameworks exist nowadays; the NoSQL movement, and
ultimately the Big Data hype, was kicked off by Google’s MapReduce [Dean 2004].

From a developer perspective, data processing with MapReduce boils down to
implementing two procedures:

q Map: Given a key–value pair as input, it outputs a list of key–value pairs.

q Reduce: Given a key and the list of values output by map under that key, it
outputs a key–value pair.

Example:

q IndexingMapper: Given a pair (i, di), where i is the document identifier of
document di as input, output a pair (t, i) for every unique t ∈ di.

q DFReducer: Given (t, [. . . , i, . . .]) as input, output (t, |[. . . , i, . . .]|) = (t,df (t,D)).

IR:II-125 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/NoSQL
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf

Remarks:
q Computer clusters are often built from inexpensive

commodity hardware. In the early days, desktop
computers were used as Beowulf clusters, or
dismantled and stacked. Google 1997 and 1999:

q The key contributions of the MapReduce framework are not the actual map and reduce
functions, but the scalability and fault-tolerance achieved for a variety of applications by
optimizing the execution engine [Wikipedia].

q This framework is best-suited for problems that are embarrassingly parallel.

q The most widespread open-source implementation is found in Apache Hadoop.
IR:II-126 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Beowulf_cluster
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Embarrassingly_parallel
http://hadoop.apache.org/

Index Construction
Distributed Indexing

Presuming the document collection is stored in a distributed document storage
across the cluster, the execution of a MapReduce job divides into three basic
phases:

q Map phase
The map function is called in parallel on all cluster nodes and fed chunks of the data. Its
output is recorded locally on each cluster node.

q Shuffle phase
The output is transferred to a random cluster node chosen using a hash function, so that the
same key is always transferred to the same cluster node. Once all data belonging to a key
are on the same node, the values are sorted.

q Reduce phase
The reduce function is called in parallel on all cluster nodes and fed the sorted lists, recording
their output.

The map and reduce functions are idempotent: they are reexecuted in case of
failures. To make optimal use of available resources, the framework may execute
the same task more than once on different machines, retaining the first output that
emerges (so-called speculative execution).
IR:II-127 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Speculative_execution

Index Construction
Distributed Indexing: Example Netspeak [www.netspeak.org]

Distribution Map Shuffle Sort /
secondary sort

Reduce Index serialization
(details not shown)

Google
n-gram
corpus

n-gram
symbol
table

postlist
skiplist
index

n-gram
inverted

index

(line number, line)

(1, hello world 712963 4)

(2, hello kitty 1468134 5)

Input records

((word, len, pos), (freq, id))

((hello, 2, 0), (712963, 4))

((world, 2, 1), (712963, 4))

((hello, 2, 0), (1468134, 5))

((kitty, 2, 1), (1468134, 5))

Intermediate records

((word, len, pos), ((freq, id) ... (freq, id)))

((hello, 2, 0), ((1468134, 5),(712963, 4)))

((world, 2, 1), ((712963, 4)))

((kitty, 2, 1), ((1468134, 5)))

Sorted records

records
0 ... 4

records
5 ... 9

Output records

(reduced sorted records)

Cluster-wide data copy

Local data copy

record 0

record 3
record 2
record 1

record 4

record 5

record 8
record 7
record 6

record 9

slot 0
slot 1

split

reduce

map

split map

split map

slot 0
slot 1

slot 0
slot 1

slot 0
slot 0
slot 0

slot 1
slot 1
slot 1

reduce

IR:II-128 Indexing © HAGEN/POTTHAST/STEIN 2023

http://www.netspeak.org

Index Construction
Index Updates

Document collections grow and change. Therefore, the index must be updated. The
following strategies are applied:

q Index merging
When new documents arrive in large numbers at a time, they are indexed and then the
existing index is merged with the new one.

q Result merging
When new documents arrive in small numbers at a time, a separate, small index is
maintained and updated. Queries are processed against both the existing index and the
small one containing the new arrivals, fusing the results.

q Deletions list
Deletions are recorded in a deletions list, and deleted documents are removed from search
results before results are shown.

Modifications are done by inserting a new document, and deleting the previous
version.

IR:II-129 Indexing © HAGEN/POTTHAST/STEIN 2023

Chapter IR:II

II. Indexing
q Indexing Basics
q Inverted Index
q Query Processing I
q Query Processing II
q Index Construction
q Index Compression
q Size Estimation

IR:II-130 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Query Result Set Size

Searchtropical fish aquarium

Web results Page 1 of 3,880,000 results

The total number of results is estimated, since web search engines typically do not
explore the entire indexed document collection to compute the first page of results
returned, but only a subset.

Approaches:

q Joint probability estimation

q Conditional probability estimation

q Initial result set-based estimation

IR:II-131 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Example data from the GOV2 collection (collection size |D| is 25,205,179):

Query Document frequency

aquarium 26,480
breeding 81,885
fish 1,131,855
lincoln 771,326
tropical 120,990

aquarium breeding 1,848
fish aquarium 9,722
fish breeding 36,427
tropical aquarium 1,921
tropical breeding 5,510
tropical fish 18,472

tropical fish aquarium 1,529
tropical fish breeding 3,629

IR:II-132 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Query Result Set Size: Joint Probability

Let Pdf (t) denote the probability of t occurring at least once in a document:

Pdf (t) =
df (t)
|D|

,

where D denotes the document collection of size |D| and df (t) the number of
documents in D containing t, called document frequency.

IR:II-133 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Query Result Set Size: Joint Probability

Let Pdf (t) denote the probability of t occurring at least once in a document:

Pdf (t) =
df (t)
|D|

,

where D denotes the document collection of size |D| and df (t) the number of
documents in D containing t, called document frequency.

The result set size df (q) of a query q of length |q| terms can be estimated with

df (q) = |D| ·
|q|∏
i=1

Pdf (ti) =

∏|q|
i=1 df (ti)
|D||q|−1

,

where ti denotes the i-th term in q. This estimation presumes term independence.

IR:II-134 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Query Result Set Size: Joint Probability

Let Pdf (t) denote the probability of t occurring at least once in a document:

Pdf (t) =
df (t)
|D|

,

where D denotes the document collection of size |D| and df (t) the number of
documents in D containing t, called document frequency.

The result set size df (q) of a query q of length |q| terms can be estimated with

df (q) = |D| ·
|q|∏
i=1

Pdf (ti) =

∏|q|
i=1 df (ti)
|D||q|−1

,

where ti denotes the i-th term in q. This estimation presumes term independence.

Examples:

q df (tropical fish aquarium) = 5.71 actual: 1,529 documents

q df (tropical fish breeding) = 17.65 actual: 3,629 documents

IR:II-135 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Query Result Set Size: Conditional Probability

By exploiting term co-occurrence information, we can obtain better estimates with

Pdf (q) = Pdf (t1, t2, t3) = Pdf (t1, t2) · Pdf (t3 | t1, t2),

where Pdf (t3 | t1, t2) ≈ Pdf (t3 | tx) = max{Pdf (t3 | t1), Pdf (t3 | t2)} and |q| = 3. Recall
that P (A | B) = P (A,B)/P (B). Hence

df (q) = |D| · Pdf (q) =
df (t1, t2) · df (tx, t3)

df (tx)
.

IR:II-136 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Query Result Set Size: Conditional Probability

By exploiting term co-occurrence information, we can obtain better estimates with

Pdf (q) = Pdf (t1, t2, t3) = Pdf (t1, t2) · Pdf (t3 | t1, t2),

where Pdf (t3 | t1, t2) ≈ Pdf (t3 | tx) = max{Pdf (t3 | t1), Pdf (t3 | t2)} and |q| = 3. Recall
that P (A | B) = P (A,B)/P (B). Hence

df (q) = |D| · Pdf (q) =
df (t1, t2) · df (tx, t3)

df (tx)
.

q Queries of length |q| = 2 need not be estimated, anymore.

q Queries of length |q| = 3 are typically underestimated.

q Queries of length |q| > 3 still require estimations based on term
independence, or storing higher-order co-occurrence information.

Examples:

q df (tropical fish aquarium) = 293 actual: 1,529 documents

q df (tropical fish breeding) = 841 actual: 3,629 documents

IR:II-137 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Query Result Set Size: Initial Result Set-based Estimation

Let D′ ⊂ D denote the documents initially scored for a query q (e.g., in tiered index).
Then the size of the total result set in D can be estimated with

df (q) = |Dt| ·
|D′q|
|D′|

= df (t) · |{d | d ∈ D
′ ∧ q ∈ d}|
|D′|

,

where t is the query term with the smallest subset Dt ⊂ D of documents that
contain t, and D′q ⊂ D′ is the subset of the initially scored documents D′ that contain
all terms of q.

IR:II-138 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Query Result Set Size: Initial Result Set-based Estimation

Let D′ ⊂ D denote the documents initially scored for a query q (e.g., in tiered index).
Then the size of the total result set in D can be estimated with

df (q) = |Dt| ·
|D′q|
|D′|

= df (t) · |{d | d ∈ D
′ ∧ q ∈ d}|
|D′|

,

where t is the query term with the smallest subset Dt ⊂ D of documents that
contain t, and D′q ⊂ D′ is the subset of the initially scored documents D′ that contain
all terms of q.

This estimation presumes relevant documents are uniformly distributed across all
documents in Dt. Why does it usually overestimate the result set size?

Examples:

q With Daquarium = 26, 480, let |D′| = 3, 000, and |D′q| = 258:

q df (tropical fish aquarium) = 2, 277 actual: 1,529 documents

q With Dbreeding = 81, 885, let |D′| = 3, 000, and |D′q| = 150:

q df (tropical fish breeding) = 4, 094 actual: 3,629 documents

IR:II-139 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Query Result Set Size: Initial Result Set-based Estimation

Let D′ ⊂ D denote the documents initially scored for a query q (e.g., in tiered index).
Then the size of the total result set in D can be estimated with

df (q) = |Dt| ·
|D′q|
|D′|

= df (t) · |{d | d ∈ D
′ ∧ q ∈ d}|
|D′|

,

where t is the query term with the smallest subset Dt ⊂ D of documents that
contain t, and D′q ⊂ D′ is the subset of the initially scored documents D′ that contain
all terms of q.

This estimation presumes relevant documents are uniformly distributed across all
documents in Dt. Overestimations result from D′ containing the most “important”
documents indexed. As |D′| approaches |Dw|, estimations approach the true value.

Examples:

q With Daquarium = 26, 480, let |D′| = 6, 000, and |D′q| = 402:

q df (tropical fish aquarium) = 1, 774 actual: 1,529 documents

q With Dbreeding = 81, 885, let |D′| = 6, 000, and |D′q| = 276:

q df (tropical fish breeding) = 3, 767 actual: 3,629 documents

IR:II-140 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Indexed Collection Size: Joint Probability-based

Most search engines are black boxes to outsiders, and many do not share the size
of the document collection they index.

IR:II-141 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Indexed Collection Size: Joint Probability-based

Most search engines are black boxes to outsiders, and many do not share the size
of the document collection they index.

Given a web search engine, the size |D| of the document collection D indexed can
be estimated using two independently occurring terms t1 and t2:

Pdf (t1, t2) = Pdf (t1) · Pdf (t2) ; |D| = df (t1) · df (t2)
df (t1, t2)

.

Averaging over many term pairs improves the estimate.

Example for GOV2:

q df (tropical) = 120, 990,
df (lincoln) = 771, 326, and
df (tropical, lincoln) = 3018.

q Then |D| = 30, 922, 045 actual: 25,205,179 documents

IR:II-142 Indexing © HAGEN/POTTHAST/STEIN 2023

Size Estimation
Indexed Collection Size: Proportionality [van den Bosch 2016] [worldwidewebsize.com]

Given a web search engine, the size |D| of the document collection D indexed can
be estimated when presuming proportionality to a different reference collection D′:

P
(D)
df (t) = P

(D′)
df (t) ; |D| = dfD(t) · |D′|

dfD′(t)
,

where t is a term occurring in both D and D′, and dfD (dfD′) computes the
document frequency for D (D′).

Averaging over terms of varying frequencies improves the estimate.

IR:II-143 Indexing © HAGEN/POTTHAST/STEIN 2023

https://doi.org/10.1007/s11192-016-1863-z
http://www.worldwidewebsize.com/

Size Estimation
Indexed Collection Size: Proportionality [van den Bosch 2016] [worldwidewebsize.com]

Google
Bing

1 2 3

10

E
st

im
at

ed
 n

um
be

ro
f w

eb
 p

ag
es

10 billion

5 billion

20 billion

15 billion

30 billion

25 billion

40 billion

35 billion

45 billion

55 billion

50 billion

0

12

13

19

16

21

22

25 27

30

31

Launch of
Bing (#9)

Caffeine
update
(#14)

Panda 1.0
update
(#20)

18

23

24
2614

Panda 4.0
update
(#32)

35

36

33

32

Launch of
BingBot

crawler (#18)

Catapult
update
(#33)

344 6 75 8 9 11 20 28 29

2007 20152014201320122011201020092008

2007 20152014201320122011201020092008

17

15

IR:II-144 Indexing © HAGEN/POTTHAST/STEIN 2023

https://doi.org/10.1007/s11192-016-1863-z
http://www.worldwidewebsize.com/

Remarks:

1. [2006-07-04] MSN Search outage
2. [2006-09-11] Launch of (improvements to) Live Search
3. [2007-07-31] Update to supplemental results indexing
4. [2007-12-18] No more supplemental index; whole index is searched for every query
5. [2008-02-12] Crawler improvements for Live Search
6. [2008-04-11] Improved crawling of HTML forms
7. [2008-06-30] Improved Flash indexing
8. [2008-12-11] First experiments with MSNBot 2.0
9. [2009-05-28] Launch of Bing

10. [2009-06-18] Improved Flash indexing
11. [2009-07-31] Bing and Yahoo! team up on search
12. [2009-11-04] MSNBot 2.0
13. [2009-12-07] Updates to real-time search
14. [2010-06-08] Launch of new web indexing system Caffeine
15. [2010-06-28] Experiments with BingBot crawler
16. [2010-07-29] Improved Flash & AJAX indexing
17. [2010-08-31] Google indexes SVG
18. [2010-09-03] Launch of BingBot crawler
19. [2010-11-11] Improved Flash indexing
20. [2011-02-24] Panda Refresh (update to promote (English) high-quality sites more)

IR:II-145 Indexing © HAGEN/POTTHAST/STEIN 2023

http://web.archive.org/web/20140702160516/http://blogs.bing.com/search/2006/04/07/msn-search-outage/
http://web.archive.org/web/20150922152804/https://blogs.bing.com/search/2006/09/11/live-search-is-live/
https://webmasters.googleblog.com/2007/07/supplemental-goes-mainstream.html
https://webmasters.googleblog.com/2007/12/ultimate-fate-of-supplemental-results.html
http://web.archive.org/web/20140911034028/https://blogs.bing.com/webmaster/2008/02/12/announcing-crawler-improvements-for-live-search/
https://webmasters.googleblog.com/2008/04/crawling-through-html-forms.html
https://webmasters.googleblog.com/2008/06/improved-flash-indexing.html
http://blogs.bing.com/webmaster/2008/12/11/another-crawler-in-your-logs/
http://blogs.bing.com/webmaster/2009/05/28/announcing-bing-microsofts-new-search-engine/
http://googlewebmastercentral.blogspot.com/2009/06/flash-indexing-with-external-resource.html
http://blogs.bing.com/webmaster/2009/07/31/bing-and-yahoo-team-up-on-search/
http://blogs.bing.com/webmaster/2009/11/04/msnbot-1-1-is-retired/
http://googleblog.blogspot.com/2009/12/relevance-meets-real-time-web.html
http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html
http://blogs.bing.com/webmaster/2010/06/28/bing-crawler-bingbot-on-the-horizon/
http://googlewebmastercentral.blogspot.com/2007/11/spiders-view-of-web-20.html
http://googlewebmastercentral.blogspot.com/2010/08/google-now-indexes-svg.html
http://blogs.bing.com/webmaster/2010/09/03/bingbot-is-coming-to-town/
http://googlewebmastercentral.blogspot.com/2010/11/what-feeling-even-better-indexing-of.html
http://googleblog.blogspot.com/2011/02/finding-more-high-quality-sites-in.html

Remarks: (continued)

21. [2011-06-21] Panda 2.2
22. [2011-08-12] Panda (rolled out to all languages)
23. [2011-08-15] Gradual roll-out of Tiger indexing architecture
24. [2011-11-03] Panda (update, affects 35% of queries)
25. [2012-04-24] Penguin update (targeting Web spam, impacting around 3.1% of queries)
26. [2012-05-26] Penguin 2 update (impacting less than 0.1% of queries)
27. [2012-10-05] Penguin 3 update (impacting around 0.3% of queries)
28. [2013-03-12] Panda update
29. [2013-05-22] Penguin 4 (v2.0, impacting 2.3% of queries)
30. [2013-07-18] Panda update
31. [2013-10-04] Penguin 5 (v2.1, impacting around 1% of queries)
32. [2014-05-21] Panda 4.0
33. [2014-06-18] Launch of Bing Catapult
34. [2014-09-09] Improved spam filtering
35. [2014-09-26] Panda 4.1 (3-5% of queries affected)
36. [2014-10-17] Penguin 6 (v3.0, impacting less than 1% English queries)

IR:II-146 Indexing © HAGEN/POTTHAST/STEIN 2023

http://web.archive.org/web/20150215062157/https://www.searchenginewatch.com/sew/news/2080631/google-quietly-launches-panda-update-version-22
http://googlewebmastercentral.blogspot.com/2011/08/high-quality-sites-algorithm-launched.html
http://web.archive.org/web/20141220000655/https://www.searchenginewatch.com/sew/news/2113363/bing-unleashing-tiger-speed-search-results
http://googleblog.blogspot.com/2011/11/giving-you-fresher-more-recent-search.html
http://web.archive.org/web/20150124041431/https://www.searchenginewatch.com/sew/news/2170391/google-search-algorithm-update-targets-web-spam
http://en.wikipedia.org/wiki/Google_Penguin
http://en.wikipedia.org/wiki/Google_Penguin
http://searchenginewatch.com/sew/news/2254280/google-panda-update-coming-within-days-next-generation-of-penguin-in-works
http://en.wikipedia.org/wiki/Google_Penguin
http://searchenginewatch.com/sew/how-to/2283724/new-google-panda-update-rolling-out-now-what-changes-are-webmasters-seeing
http://en.wikipedia.org/wiki/Google_Penguin
http://web.archive.org/web/20141231181850/https://www.searchenginewatch.com/sew/news/2345884/google-launches-panda-40
http://searchenginewatch.com/sew/news/2350901/bing-catapult-new-technology-delivers-faster-more-relevant-search-results
http://blogs.bing.com/webmaster/2014/09/09/url-keyword-stuffing-spam-filtering/
https://web.archive.org/web/20181207043055/https://plus.google.com/+PierreFar/posts/7CWs3a3yoeY
http://en.wikipedia.org/wiki/Google_Penguin

