III. Retrieval Models

- Overview of Retrieval Models
- Empirical Models
- Boolean Retrieval
- Vector Space Model
- Probabilistic Models
- Binary Independence Model
- Okapi BM25
- Hidden Variable Models
- Latent Semantic Indexing
- Explicit Semantic Analysis
- Generative Models
- Language Models
- Divergence From Randomness
- Combining Evidence
- Web Search
- Learning to Rank
Learning to Rank

Motivation

Traditional IR Models

- Generative models
 - Learn the joint probability $P(q, d)$ of query and document(s)
 - i.e., TFIDF similarity, BM25 score, Naive Bayes probability, . . .

- Use a very small number of features
 - Term frequency
 - Inverse document frequency
 - Document length

- Few features, few parameters; can be tuned manually

But what if we want to exploit many features?
Learning to Rank

Motivation

Learning to Rank Models

- **Discriminative models**
 - Learn the conditional probability $P(d|q)$ of document(s) given a query
 - Distinguish the decision boundary relevant vs. non-relevant
 - i.e., classification confidence, regression score, …

- **Use a large number of features**
 - Document-query features (term overlap, query term importance, …)
 - Document-only features (images, links, length, recency, …)
 - User feedback (click data, dwell times, eye tracking, …)

- Many features, many parameters; have to be learned from data

ML for IR!
Learning to Rank (LTR) refers to supervised, feature-based, discriminative learning methods for IR. [Liu 2011]

- Supervised: based on training data with ground-truth relevance labels
- Feature-based: documents are represented by feature vectors
- Discriminative: relevance is estimated directly from observed features
Learning to Rank

Formalization

LTR tackles the ranking problem using machine learning techniques. This includes:

- **Input space** \(X \subseteq \mathbb{R}^n \), i.e., feature vectors \(x_i \) of query document pairs
- **Output space** \(Y \subseteq \mathbb{R} \), i.e., relevance scores \(y_i \) of documents
- **Model** \(y \), i.e., function mapping from input to output space
- **Hypothesis space**, i.e., parametrizations \(h \) of the model function
- **Loss function** \(\ell \), i.e., a measure to interpret the residual between the prediction \(y(x_i) \) and label \(y_i \) to choose an optimal \(h \)
Learning to Rank
Components

Training an LTR system requires three components:

- a ground truth source to obtain training data from (supervised)
- a feature extraction from query-document pairs (feature-based)
- a model architecture to train for relevance prediction (discriminative)

Where do we get training data from?
Learning to Rank
Relevance Feedback

How can supervised ground truth data for relevance be collected?

- **Explicit relevance feedback**
 - Asking a user whether a result is relevant/non-relevant to a query
 - Obtrusive to users, expensive if tasked, hard to scale
 - Requires a group of assessors!

- **Implicit relevance feedback**
 - Predicting relevance based on user interactions (clicks)
 - Non-obtrusive, inexpensive, lots of data
 - Requires a live system with users!

But are clicks a reliable form of ground truth?
Learning to Rank
Mining Training Data From Clicks [Joachims et al., 2005]

- How do users behave?
 - Users tend to look close to where they click – clicks are guided by presented content
 - They view higher-ranks before clicking on a result – rankings are evaluated sequentially

- What are clicks influenced by?
 - Relevance influence: reversed rankings have more clicks at low ranks
 - Position influence: users tend to click on higher ranks even when lower ranks are more relevant

- What does that mean for LTR training data?
 - Clicks should not be used to derive absolute relevance judgements
 - Clicks can be used to derive pairwise preference judgements – a clicked result is more relevant than all higher ranked results that were skipped
Learning to Rank
Feature Extraction

Different kinds of features:

- **Query features**
 - Content features (query intent classification, performance prediction, ...)
 - Metadata features (time of day/month/year, ...)

- **Document features**
 - Content features (spam/quality scoring, text classification models, ...)
 - Metadata features (number of slashes in URL, timestamps, ...)
 - Link features (PageRank, number of links, number of child pages, ...)

- **Query-document features**
 - Scores of other retrieval models (BM25, TFIDF, ...)
 - Term matching (edit distances, occurrence scores, ...)

- **User behaviour features**
 - session data
 - user profiling
Recap: what kinds of ground truth data are available for LTR?

- **Pointwise**: a single feature vector and its absolute relevance score
Recap: what kinds of ground truth data are available for LTR?

- **Pointwise**: a single feature vector and its absolute relevance score
- **Pairwise**: a pair of feature vectors and a preference between them
Learning to Rank
Training Tasks

Recap: what kinds of ground truth data are available for LTR?

- **Pointwise**: a single feature vector and its absolute relevance score
- **Pairwise**: a pair of feature vectors and a preference between them
- **Listwise**: a ranking of feature vectors and its effectiveness
Learning to Rank
Training Tasks

Recap: what kinds of ground truth data are available for LTR?

- **Pointwise**: a single feature vector and its absolute relevance score
- **Pairwise**: a pair of feature vectors and a preference between them
- **Listwise**: a ranking of feature vectors and its effectiveness

Each kind can be used to define a loss function for an LTR system!
Learning to Rank
Pointwise Loss

- A pointwise loss...

 ... operates on a single feature vector x_i

 ... quantifies the error between predicted relevance and ground-truth relevance of document d_i

 ... takes (q, d_i, y_i) triples of query, document, and relevance as training instances

- Relevance estimations are absolute

 - scores are invariant w.r.t. strictly monotonous transformations (shifting/scaling all scores results in the same ranking)

 - absolute estimation is not as robust as relative estimation (small score changes might result in large rank changes)

- Relevance estimations are independent

 - only as single document is used to infer a relevance value

 - all other potential documents in the collection are ignored
Remarks:

- Pointwise LTR can alternatively be operationalized as classification (ranking by probability of belonging to class ‘relevant’; \(P(y(x_i) = 1|q) \)) or ordinal regression (membership of an ordered relevance class; \(y(x_i) \in [0, 1, \ldots, k] \)) [Liu 2011]
Learning to Rank

Pairwise Loss

- A pairwise loss...

 ... operates on a pair of feature vectors \((x_i, x_j)\)

 ... quantifies the error of pairwise comparisons as indicated predicted relevances \(s_i\) and \(s_j\) and ground-truth comparison

 ... takes 4-tuples \((q, d_i, d_j, y_i)\) of query, documents, and preference as training instances

- Relevance estimations are relative (take other documents into account)

- **Problem:** comparison errors are not equally important at all ranks in practice

 - blue are relevant, gray are irrelevant

 - same number of pairwise errors (7)

 - e.g. nDCG is higher for left ranking
Learning to Rank
Pairwise Example – RankSVM [Joachims 2002]

- Idea: Learn a ranking function so that the number of violated pairwise training preferences is minimized
- Ranking function: margin distance to hyperplane w; select w such that $y(x_i) > y(x_j) \iff d_i > d_j$ where the order is given by the training data
- Example: 2 features, points are training documents with their ground-truth rank; two different parametrizations for w shown.
Why not infer pairwise scores?

- Obtained pairwise comparisons are independent
 - Outcome of $y(x_i, x_j)$ is not dependent of, e.g., $y(x_j, x_i)$ or $y(x_i, x_k)$
 - Possibly inconsistent w.r.t. complementarity ($y(x_i, x_j) \neq 1 - y(x_j, x_i)$) or transitivity ($y(x_i, x_j) > 0.5 \land y(x_j, x_k) > 0.5 \land y(x_k, x_i) > 0.5$)

- Post-processing needed to convert comparison scores into a ranking
 - Sorting methods require total order, incompatible with inconsistencies
 - Ranking can be statistically approximated from inconsistent pairs

- Computational complexity is quadratic w.r.t. document count
 - For k documents, at worst $k(k - 1)$ comparisons have to be made
 - Sampled comparisons for reduced complexity increase uncertainty
Learning to Rank
Listwise Loss

- A listwise loss...

 ... operates on a sequence of feature vectors \([x_1, \ldots, x_i]\)

 ... quantifies the error of the ranking given by \(s_1, \ldots, s_i\) with a ranking metric

 ... takes \((q, (d_1, y_1), \ldots, (d_k, y_k))\) as training samples, i.e., a query and a sequence of document-relevance pairs, for which the metric is calculated

- **Problem**: Ranking metrics are non-differentiable w.r.t. model parameters

 - sort operator is non-smooth

 - change in parameters might not produce a different ranking, thus optimization is not possible on the ranking metric’s score

 - instead, proxy metrics can be used that resemble the original metric with modifications to establish differentiability
Learning to Rank
Listwise Example – LambdaMART [Wu et al. 2010]

- **Intuition**: we do not need to explicitly define a smooth cost function, we only need to know its gradients (how does it change w.r.t to its input)
 - if a ranking metric changes a lot if we modify the rank of a document, the document should be ranked high
 - higher document relevance leads to higher impact w.r.t. ranking changes
 - We can use λ directly to rank documents!

- to optimize a metric M, we can just calculate the change λ_i of M for each x_i while modifying the ranking, i.e. swapping x_i with another feature vector

- optimization target becomes cumulative score change for all swaps
 - positive gradient – document is pushed up the ranking; negative gradient – document is pushed down the ranking
 - any metric M can be used as target, even non-smooth ones; usually, nDCG is optimized
Learning to Rank
Listwise Example – LambdaMART

Given a query q and a set of documents with their relevance labels $\{(d_i, y_i)\}_{i=1}^{k}$:

1. Compute $\Delta_{ij}M$, the change in metric M if documents d_i and d_j with scores s_i and s_j are swapped; value is rescaled by predicted score difference; sign of value depends on ordering implied by ground-truth labels

$$\lambda_{ij} = S_{ij} \left| \Delta_{ij}M \frac{-1}{1 + e^{s_i - s_j}} \right|, S_{ij} = \begin{cases} 1 & y_i \geq y_j \\ -1 & y_i < y_j \end{cases}$$

2. gradient λ_i of a document is the sum of its metric value changes

$$\lambda_i = \sum_{j=0, i \neq j}^{k} \lambda_{ij}$$

3. Train a gradient boosted tree model (MART) to predict λ_i given features x_i
Learning to Rank
Listwise Inference (?)

Why not infer the ranking directly?

- Predict a score for a given ranking?
 - Given a permutation of documents, predict its effectiveness
 - Every possible permutation would have to be scored to find optimal one
 - Input space is combinatorial ($k!$ for k documents) → Not feasible!

- Directly predict the ranking?
 - Given a set of documents, predict the indices of their optimal ordering
 - Model needs to be invariant to rearranging the input
 \[\forall \sigma \in S_k : y(\sigma((x_1, \ldots, x_k))) = y((x_1, \ldots, x_k)) \]
 - Output space is combinatorial ($k!$ for k documents) → Not feasible!
Learning to Rank

Comparison of Approaches

<table>
<thead>
<tr>
<th></th>
<th>Pointwise</th>
<th>Pairwise</th>
<th>Listwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevance</td>
<td>Absolute</td>
<td>Relative</td>
<td>Relative</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>Good</td>
<td>Better</td>
<td>Best</td>
</tr>
<tr>
<td>Complexity</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
</tbody>
</table>
Rank Fusion

Overview

Combine different systems or ranking functions into a single ranked list. [Wu 2012]

- Collection of documents D

- All retrieval systems execute a query q on D

- Final set of rankings $r_i \in R$ from each retrieval system $r_i = \langle d_{i1}, d_{i2}, \ldots, d_{im} \rangle$

- Fusion method produces a final ranking from set of rankings R
Rank Fusion

Overview

Combine different systems or ranking functions into a single ranked list. [Wu 2012]

- Collection of documents D
- All retrieval systems execute a query q on D
- Final set of rankings $r_i \in R$ from each retrieval system $r_i = \langle d_{i1}, d_{i2}, \ldots, d_{im} \rangle$
- Fusion method produces a final ranking from set of rankings R

Two methods of fusion:
- Score-based
- Rank-based
Rank Fusion
Score-based

Score-based rank fusion’s aim is to provide a global score for a document $g(R, d)$

CombSUM

- Global score computed by summing relevance score ρ of document across R

 $$
 g(R, d) = \sum_{r_i \in R} s(d, r_i)
 $$

- If $d \notin r_i$, then $s(d, r_i) = 0$
Rank Fusion

Score-based

Score-based rank fusion’s aim is to provide a global score for a document $g(R, d)$

CombSUM

- Global score computed by summing relevance score ρ of document across R

$$ g(R, d) = \sum_{r_i \in R} s(d, r_i) $$

- If $d \notin r_i$, then $s(d, r_i) = 0$

CombMNZ

- Summed score multiplied by times document appears across all rankings

$$ g(R, d) = |d \in R| \sum_{r_i \in R} s(d, r_i) $$

- No default score if $d \notin R$
Rank Fusion
Score-based

Score-based rank fusion’s aim is to provide a global score for a document $g(R, d)$.

CombSUM

- Global score computed by summing relevance score ρ of document across R.

$$g(R, d) = \sum_{r_i \in R} s(d, r_i)$$

- If $d \notin r_i$, then $s(d, r_i) = 0$.

CombMNZ

- Summed score multiplied by times document appears across all rankings.

$$g(R, d) = |d \in R| \sum_{r_i \in R} s(d, r_i)$$

- No default score if $d \notin R$.

It is important to normalise the scores for each r_i. Why?
Rank Fusion
Score-based with Learning To Rank

Learn the weights for each ranker under CombSUM:

- Each ranker is assigned a weight w_i, linearly combine the weights
 $$g(R, d) = \sum_{r_i \in R} w_i \cdot s(d, r_i)$$

- Heuristics weights, e.g., query performance prediction (QPP)

- Performance weights, e.g., grid search using nDCG@k over representative training queries

- Learned weights, e.g., consider scores from rankers as features and apply LTR
Rank Fusion

Rank-based

Re-rank documents according to their rank position in r_i, ignoring relevance scores.

Borda Count

- Score of a document is the number of documents ranked lower (Election voting algorithm)

$$g(R, d) = \sum_{r_i \in R} \frac{|r_i| - \text{rank}(r_i, d) + 1}{|r_i|}$$

- Conceptually the same as CombSUM, but uses document positions instead of scores

- Can be used if scores are low quality or not available
Rank Fusion
Intuitions

Intuition behind success of rank fusion: [Vogt 1999]

- Chorus Effect ➔ Multiple retrieval approaches suggest that a document is relevant to a query
- Dark Horse Effect ➔ One retrieval approach suggests document is very relevant while not retrieved by other approaches

Which of these effects are lessened or boosted by CombMNZ?
What about other rank fusion methods?