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Learning to Rank
Motivation

Traditional IR Models

q Generative models

– Learn the joint probability P (q, d) of query and document(s)
– i.e., TFIDF similarity, BM25 score, Naive Bayes probability, . . .

q Use a very small number of features

– Term frequency
– Inverse document frequency
– Document length

q Few features, few parameters; can be tuned manually

But what if we want to exploit many features?
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Learning to Rank
Motivation

Learning to Rank Models

q Discriminative models

– Learn the conditional probability P (d|q) of document(s) given a query
– Distinguish the decision boundary relevant vs. non-relevant
– i.e., classification confidence, regression score, . . .

q Use a large number of features

– Document-query features (term overlap, query term importance, ...)
– Document-only features (images, links, length, recency, ...)
– User feedback (click data, dwell times, eye tracking, ...)

q Many features, many parameters; have to be learned from data

ML for IR!
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Learning to Rank
Formalization

Learning to Rank (LTR) refers to supervised, feature-based, discriminative learning
methods for IR. [Liu 2011]

q Supervised: based on training data with ground-truth relevance labels

q Feature-based: documents are represented by feature vectors

q Discriminative: relevance is estimated directly from observed features
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Learning to Rank
Formalization

LTR tackles the ranking problem using machine learning techniques. This includes:

q Input space X ⊆ Rn, i.e., feature vectors xi of query document pairs
q Output space Y ⊆ R, i.e., relevance scores yi of documents
q Model y, i.e., function mapping from input to outsput space
q Hypothesis space, i.e., parametrizations h of the model function
q Loss function `, i.e., a measure to interpret the residual between the

prediction y(xi) and label yi to choose an optimal h

Input Space X Output Space Y

Input Object xi

Prediction y(xi)

Label yi

Model y()

Hypothesis h

Residual
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Learning to Rank
Components

Training an LTR system requires three components:

q a ground truth source to obtain training data from (supervised)
q a feature extraction from query-document pairs (feature-based)
q a model architecture to train for relevance prediction (discriminative)
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Where do we get training data from?

IR:III-245 Retrieval Models © GIENAPP/SCELLS 2022



Learning to Rank
Relevance Feedback

How can supervised ground truth data for relevance be collected?

q Explicit relevance feedback

– Asking a user whether a result is relevant/non-relevant to a query
– Obtrusive to users, expensive if tasked, hard to scale
– Requires a group of assessors!

q Implicit relevance feedback

– Predicting relevance based on user interactions (clicks)
– Non-obtrusive, inexpensive, lots of data
– Requires a live system with users!

But are clicks a reliable form of ground truth?
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Learning to Rank
Mining Training Data From Clicks [Joachims et al., 2005]

q How do users behave?

– Users tend to look close to where they click – clicks are guided by
presented content

– They view higher-ranks before clicking on a result – rankings are
evaluated sequentially

q What are clicks influenced by?

– Relevance influence: reversed rankings have more clicks at low ranks
– Position influence: users tend to click on higher ranks even when lower

ranks are more relevant

q What does that mean for LTR training data?

– Clicks should not be used to derive absolute relevance judgements
– Clicks can be used to derive pairwise preference judgements – a clicked

result is more relevant than all higher ranked results that were skipped
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Learning to Rank
Feature Extraction

Different kinds of features:

q Query features

– Content features (query intent classification, performance prediction, ...)
– Metadata features (time of day/month/year, ...)

q Document features

– Content features (spam/quality scoring, text classification models, ...)
– Metadata features (number of slashes in URL, timestamps, ...)
– Link features (PageRank, number of links, number of child pages, ...)

q Query-document features

– Scores of other retrieval models (BM25, TFIDF, ...)
– Term matching (edit distances, occurence scores, ...)

q User behaviour features

– session data
– user profiling
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Learning to Rank
Training Tasks

Recap: what kinds of ground truth data are available for LTR?

q Pointwise: a single feature vecotr and its absolute relevance score

Pointwise

11.9
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Learning to Rank
Training Tasks

Recap: what kinds of ground truth data are available for LTR?

q Pointwise: a single feature vecotr and its absolute relevance score

q Pairwise: a pair of feature vectors and a preference between them

Pointwise

11.9

Pairwise

0.76
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Learning to Rank
Training Tasks

Recap: what kinds of ground truth data are available for LTR?

q Pointwise: a single feature vecotr and its absolute relevance score

q Pairwise: a pair of feature vectors and a preference between them

q Listwise: a ranking of feature vectors and its effectiveness

Pointwise

11.9

Pairwise

0.76

Listwise

0.38
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Learning to Rank
Training Tasks

Recap: what kinds of ground truth data are available for LTR?

q Pointwise: a single feature vecotr and its absolute relevance score

q Pairwise: a pair of feature vectors and a preference between them

q Listwise: a ranking of feature vectors and its effectiveness

Pointwise

11.9

Pairwise

0.76

Listwise

0.38

Each kind can be used to define a loss function for an LTR system!
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Learning to Rank
Pointwise Loss

q A pointwise loss . . .

. . . operates on a single feature vector xi

. . . quantifies the error between predicted relevance and ground-truth
relevance of document di

. . . takes (q, di, yi) triples of query, document, and relevance as training
instances

q Relevance estimations are absolute

– scores are invariant w.r.t. strictly monotonous transformations
(shifting/scaling all scores results in the same ranking)

– absolute estimation is not as robust as relative estimation
(small score changes might result in large rank changes)

q Relevance estimations are independent

– only as single document is used to infer a relevance value
– all other potential documents in the collection are ignored
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Remarks:

q Pointwise LTR can alternatively be operationalized as classification (ranking by probability of
belonging to class ‘relevant’; P (y(xi) = 1|q)) or ordinal regression (membership of an ordered
relevance class; y(xi) ∈ [0, 1, . . . , k]) [Liu 2011]
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Learning to Rank
Pairwise Loss

q A pairwise loss . . .

. . . operates on a pair of feature vectors (xi,xj)

. . . quantifies the error of pairwise comparisons as indicated predicted
relevances si and sj and ground-truth comparison

. . . takes 4-tuples (q, di, dj, yi) of query, documents, and preference as
training instances

q Relevance estimations are relative (take other documents into account)

q Problem: comparison errors are not equally important at all ranks in practice

– blue are relevant, gray are irrelevant
– same number of pairwise errors (7)
– e.g. nDCG is higher for left ranking
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Learning to Rank
Pairwise Example – RankSVM [Joachims 2002]

q Idea: Learn a ranking function so that the number of violated pairwise training
preferences is minimized

q Ranking function: margin distance to hyperplane w; select w such that
y(xi) > y(xj) ⇐⇒ di � dj where the order is given by the training data

q Example: 2 features, points are training documents with their ground-truth
rank; two different parametrizations for w shown.
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Ranking: 4,6,2,1,3,5
Pairwise Errors: 7
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Ranking: 3,4,1,2,5,6
Pairwise Errors: 4
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Learning to Rank
Pairwise Inference (?)

Why not infer pairwise scores?

q Obtained pairwise comparisons are independent

– Outcome of y(xi,xj) is not dependent of, e.g., y(xj,xi) or y(xi,xk)

– Possibly inconsistent w.r.t. complementarity (y(xi,xj) 6= 1− y(xj,xi)) or
transitivity (y(xi,xj) > 0.5 ∧ y(xj,xk) > 0.5 ∧ y(xk,xi) > 0.5)

q Post-processing needed to convert comparison scores into a ranking

– Sorting methods require total order, incompatible with inconsistencies
– Ranking can be statistically approximated from inconsistent pairs

q Computational complexity is quadratic w.r.t. document count

– For k documents, at worst k(k − 1) comparisons have to be made
– Sampled comparisons for reduced complexity increase uncertainty
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Learning to Rank
Listwise Loss

q A listwise loss . . .

. . . operates on a sequence of feature vectors [x1, . . . ,xi]

. . . quantifies the error of the ranking given by s1, . . . , si with a ranking metric

. . . takes (q, (d1, y1), ..., (dk, yk)) as training samples, i.e., a query and a
sequence of document-relevance pairs, for which the metric is calculated

q Problem: Ranking metrics are non-differentiable w.r.t. model parameters

– sort operator is non-smooth
– change in parameters might not produce a different ranking, thus

optimization is not possible on the ranking metric’s score
– instead, proxy metrics can be used that resemble the original metric with

modifications to establish differentiability
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Learning to Rank
Listwise Example – LambdaMART [Wu et al. 2010]

q Intuition: we do not need to explicitly define a smooth cost function, we only
need to know its gradients (how does it change w.r.t to its input)

– if a ranking metric changes a lot if we modify the rank of a document, the
document should be ranked high

– higher document relevance leads to higher impact w.r.t. ranking changes
– We can use λ directly to rank documents!

q to optimize a metric M , we can just calculate the change λi of M for each xi
while modifying the ranking, i.e. swapping xi with another feature vector

q optimization target becomes cumulative score change for all swaps

– positive gradient – document is pushed up the ranking; negative gradient
– document is pushed down the ranking

– any metric M can be used as target, even non-smooth ones; ususally,
nDCG is optimized

IR:III-259 Retrieval Models © GIENAPP/SCELLS 2022



Learning to Rank
Listwise Example – LambdaMART

Given a query q and a set of documents with their relevance labels {(di, yi)}ki=1:

1. Compute ∆ijM , the change in metric M if documents di and dj with scores si
and sj are swapped; value is rescaled by predicted score difference; sign of
value depends on ordering implied by ground-truth labels

λij = Sij

∣∣∣∣∆ijM
−1

1 + esi−sj

∣∣∣∣ , Sij =

{
1 yi ≥ yj

−1 yi < yj

2. gradient λi of a document is the sum of its metric value changes

λi =

k∑
j=0,i 6=j

λij

3. Train a gradient boosted tree model (MART) to predict λi given features xi
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Learning to Rank
Listwise Inference (?)

Why not infer the ranking directly?

q Predict a score for a given ranking?

– Given a permutation of documents, predict its effectiveness
– Every possible permutation would have to be scored to find optimal one
– Input space is combinatorial (k! for k documents)→ Not feasible!

q Directly predict the ranking?

– Given a set of documents, predict the indices of their optimal ordering
– Model needs to be invariant to rearranging the input
∀σ ∈ Sk : y(σ((x1, ...,xk))) = y((x1, ...,xk))

– Output space is combinatorial (k! for k documents)→ Not feasible!
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Learning to Rank
Comparison of Approaches

Pointwise Pairwise Listwise

Loss Single Doc. Doc. Pair Doc. Ranking

Relevance Absolute Relative Relative

Effectiveness Good Better Best

Complexity Low Medium High
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Rank Fusion
Overview

Combine different systems or ranking functions into a single ranked list. [Wu 2012]

q Collection of documents D

q All retrieval systems execute a query q on D

q Final set of rankings ri ∈ R from each retrieval system ri = 〈di1, di2, ..., dim〉

q Fusion method produces a final ranking from set of rankings R
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Rank Fusion
Overview

Combine different systems or ranking functions into a single ranked list. [Wu 2012]

q Collection of documents D

q All retrieval systems execute a query q on D

q Final set of rankings ri ∈ R from each retrieval system ri = 〈di1, di2, ..., dim〉

q Fusion method produces a final ranking from set of rankings R

Two methods of fusion:

q Score-based

q Rank-based
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Rank Fusion
Score-based

Score-based rank fusion’s aim is to provide a global score for a document g(R, d)

CombSUM

q Global score computed by summing relevance score ρ of document across R

g(R, d) =
∑
ri∈R

s(d, ri)

q If d /∈ ri, then s(d, ri) = 0
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Rank Fusion
Score-based

Score-based rank fusion’s aim is to provide a global score for a document g(R, d)

CombSUM

q Global score computed by summing relevance score ρ of document across R

g(R, d) =
∑
ri∈R

s(d, ri)

q If d /∈ ri, then s(d, ri) = 0

CombMNZ

q Summed score multiplied by times document appears across all rankings

g(R, d) = |d ∈ R|
∑
ri∈R

s(d, ri)

q No default score if d /∈ R
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Rank Fusion
Score-based

Score-based rank fusion’s aim is to provide a global score for a document g(R, d)

CombSUM

q Global score computed by summing relevance score ρ of document across R

g(R, d) =
∑
ri∈R

s(d, ri)

q If d /∈ ri, then s(d, ri) = 0

CombMNZ

q Summed score multiplied by times document appears across all rankings

g(R, d) = |d ∈ R|
∑
ri∈R

s(d, ri)

q No default score if d /∈ R

It is important to normalise the scores for each ri. Why?
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Rank Fusion
Score-based with Learning To Rank

Learn the weights for each ranker under CombSUM:

q Each ranker is assigned a weight wi, linearly combine the weights

g(R, d) =
∑
ri∈R

wi · s(d, ri)

q Heuristics weights, e.g., query performance prediction (QPP)

q Performance weights, e.g., grid search using nDCG@k over representative
training queries

q Learned weights, e.g., consider scores from rankers as features and apply
LTR
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Rank Fusion
Rank-based

Re-rank documents according to their rank position in ri, ignoring relevance scores.

Borda Count

q Score of a document is the number of documents ranked lower (Election
voting algorithm)

g(R, d) =
∑
ri∈R

|ri| − rank(ri, d) + 1

|ri|

q Conceptually the same as CombSUM, but uses document positions instead
of scores

q Can be used if scores are low quality or not available
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Rank Fusion
Intuitions

Intuition behind success of rank fusion: [Vogt 1999]

q Chorus Effect Ü Multiple retrieval approaches suggest that a document is
relevant to a query

q Dark Horse Effect Ü One retrieval approach suggests document is very
relevant while not retrieved by other approaches

Which of these effects are lessened or boosted by CombMNZ?
What about other rank fusion methods?
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