
Chapter IR:III

III. Retrieval Models
q Overview of Retrieval Models
q Empirical Models
q Boolean Retrieval
q Vector Space Model
q Probabilistic Models
q Binary Independence Model
q Okapi BM25
q Hidden Variable Models
q Latent Semantic Indexing
q Explicit Semantic Analysis
q Generative Models
q Language Models
q Divergence From Randomness
q Combining Evidence
q Web Search
q Learning to Rank

IR:III-240 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Motivation

Traditional IR Models

q Generative models

– Learn the joint probability P (q, d) of query and document(s)
– i.e., TFIDF similarity, BM25 score, Naive Bayes probability, . . .

q Use a very small number of features

– Term frequency
– Inverse document frequency
– Document length

q Few features, few parameters; can be tuned manually

But what if we want to exploit many features?

IR:III-241 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Motivation

Learning to Rank Models

q Discriminative models

– Learn the conditional probability P (d|q) of document(s) given a query
– Distinguish the decision boundary relevant vs. non-relevant
– i.e., classification confidence, regression score, . . .

q Use a large number of features

– Document-query features (term overlap, query term importance, ...)
– Document-only features (images, links, length, recency, ...)
– User feedback (click data, dwell times, eye tracking, ...)

q Many features, many parameters; have to be learned from data

ML for IR!

IR:III-242 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Formalization

Learning to Rank (LTR) refers to supervised, feature-based, discriminative learning
methods for IR. [Liu 2011]

q Supervised: based on training data with ground-truth relevance labels

q Feature-based: documents are represented by feature vectors

q Discriminative: relevance is estimated directly from observed features

IR:III-243 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Formalization

LTR tackles the ranking problem using machine learning techniques. This includes:

q Input space X ⊆ Rn, i.e., feature vectors xi of query document pairs
q Output space Y ⊆ R, i.e., relevance scores yi of documents
q Model y, i.e., function mapping from input to outsput space
q Hypothesis space, i.e., parametrizations h of the model function
q Loss function `, i.e., a measure to interpret the residual between the

prediction y(xi) and label yi to choose an optimal h

Input Space X Output Space Y

Input Object xi

Prediction y(xi)

Label yi

Model y()

Hypothesis h

Residual

IR:III-244 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Components

Training an LTR system requires three components:

q a ground truth source to obtain training data from (supervised)
q a feature extraction from query-document pairs (feature-based)
q a model architecture to train for relevance prediction (discriminative)

(q1, d1, y1,1)...
(qi, dj, yi,j)

Training Data (x1,1, yi,j)

...
(xi,j, yi,j)

Feature Vectors

y(·)

Model

q +
[
d1, . . . , dk

]
Query & Documents

x1
...
xk

Feature Vectors

si = y(xi)

Predictions

sort({si}ki=1)

Ranking

Tr
ai

ni
ng

In
fe

re
nc

e

Where do we get training data from?

IR:III-245 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Relevance Feedback

How can supervised ground truth data for relevance be collected?

q Explicit relevance feedback

– Asking a user whether a result is relevant/non-relevant to a query
– Obtrusive to users, expensive if tasked, hard to scale
– Requires a group of assessors!

q Implicit relevance feedback

– Predicting relevance based on user interactions (clicks)
– Non-obtrusive, inexpensive, lots of data
– Requires a live system with users!

But are clicks a reliable form of ground truth?

IR:III-246 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Mining Training Data From Clicks [Joachims et al., 2005]

q How do users behave?

– Users tend to look close to where they click – clicks are guided by
presented content

– They view higher-ranks before clicking on a result – rankings are
evaluated sequentially

q What are clicks influenced by?

– Relevance influence: reversed rankings have more clicks at low ranks
– Position influence: users tend to click on higher ranks even when lower

ranks are more relevant

q What does that mean for LTR training data?

– Clicks should not be used to derive absolute relevance judgements
– Clicks can be used to derive pairwise preference judgements – a clicked

result is more relevant than all higher ranked results that were skipped

IR:III-247 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Feature Extraction

Different kinds of features:

q Query features

– Content features (query intent classification, performance prediction, ...)
– Metadata features (time of day/month/year, ...)

q Document features

– Content features (spam/quality scoring, text classification models, ...)
– Metadata features (number of slashes in URL, timestamps, ...)
– Link features (PageRank, number of links, number of child pages, ...)

q Query-document features

– Scores of other retrieval models (BM25, TFIDF, ...)
– Term matching (edit distances, occurence scores, ...)

q User behaviour features

– session data
– user profiling

IR:III-248 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Training Tasks

Recap: what kinds of ground truth data are available for LTR?

q Pointwise: a single feature vecotr and its absolute relevance score

Pointwise

11.9

IR:III-249 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Training Tasks

Recap: what kinds of ground truth data are available for LTR?

q Pointwise: a single feature vecotr and its absolute relevance score

q Pairwise: a pair of feature vectors and a preference between them

Pointwise

11.9

Pairwise

0.76

IR:III-250 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Training Tasks

Recap: what kinds of ground truth data are available for LTR?

q Pointwise: a single feature vecotr and its absolute relevance score

q Pairwise: a pair of feature vectors and a preference between them

q Listwise: a ranking of feature vectors and its effectiveness

Pointwise

11.9

Pairwise

0.76

Listwise

0.38

IR:III-251 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Training Tasks

Recap: what kinds of ground truth data are available for LTR?

q Pointwise: a single feature vecotr and its absolute relevance score

q Pairwise: a pair of feature vectors and a preference between them

q Listwise: a ranking of feature vectors and its effectiveness

Pointwise

11.9

Pairwise

0.76

Listwise

0.38

Each kind can be used to define a loss function for an LTR system!

IR:III-252 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Pointwise Loss

q A pointwise loss . . .

. . . operates on a single feature vector xi

. . . quantifies the error between predicted relevance and ground-truth
relevance of document di

. . . takes (q, di, yi) triples of query, document, and relevance as training
instances

q Relevance estimations are absolute

– scores are invariant w.r.t. strictly monotonous transformations
(shifting/scaling all scores results in the same ranking)

– absolute estimation is not as robust as relative estimation
(small score changes might result in large rank changes)

q Relevance estimations are independent

– only as single document is used to infer a relevance value
– all other potential documents in the collection are ignored

IR:III-253 Retrieval Models © GIENAPP/SCELLS 2022

Remarks:

q Pointwise LTR can alternatively be operationalized as classification (ranking by probability of
belonging to class ‘relevant’; P (y(xi) = 1|q)) or ordinal regression (membership of an ordered
relevance class; y(xi) ∈ [0, 1, . . . , k]) [Liu 2011]

IR:III-254 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Pairwise Loss

q A pairwise loss . . .

. . . operates on a pair of feature vectors (xi,xj)

. . . quantifies the error of pairwise comparisons as indicated predicted
relevances si and sj and ground-truth comparison

. . . takes 4-tuples (q, di, dj, yi) of query, documents, and preference as
training instances

q Relevance estimations are relative (take other documents into account)

q Problem: comparison errors are not equally important at all ranks in practice

– blue are relevant, gray are irrelevant
– same number of pairwise errors (7)
– e.g. nDCG is higher for left ranking

IR:III-255 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Pairwise Example – RankSVM [Joachims 2002]

q Idea: Learn a ranking function so that the number of violated pairwise training
preferences is minimized

q Ranking function: margin distance to hyperplane w; select w such that
y(xi) > y(xj) ⇐⇒ di � dj where the order is given by the training data

q Example: 2 features, points are training documents with their ground-truth
rank; two different parametrizations for w shown.

1

2

3

4

5

6

Ranking: 4,6,2,1,3,5
Pairwise Errors: 7

1

2

3

4

5

6

Ranking: 3,4,1,2,5,6
Pairwise Errors: 4

IR:III-256 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Pairwise Inference (?)

Why not infer pairwise scores?

q Obtained pairwise comparisons are independent

– Outcome of y(xi,xj) is not dependent of, e.g., y(xj,xi) or y(xi,xk)

– Possibly inconsistent w.r.t. complementarity (y(xi,xj) 6= 1− y(xj,xi)) or
transitivity (y(xi,xj) > 0.5 ∧ y(xj,xk) > 0.5 ∧ y(xk,xi) > 0.5)

q Post-processing needed to convert comparison scores into a ranking

– Sorting methods require total order, incompatible with inconsistencies
– Ranking can be statistically approximated from inconsistent pairs

q Computational complexity is quadratic w.r.t. document count

– For k documents, at worst k(k − 1) comparisons have to be made
– Sampled comparisons for reduced complexity increase uncertainty

IR:III-257 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Listwise Loss

q A listwise loss . . .

. . . operates on a sequence of feature vectors [x1, . . . ,xi]

. . . quantifies the error of the ranking given by s1, . . . , si with a ranking metric

. . . takes (q, (d1, y1), ..., (dk, yk)) as training samples, i.e., a query and a
sequence of document-relevance pairs, for which the metric is calculated

q Problem: Ranking metrics are non-differentiable w.r.t. model parameters

– sort operator is non-smooth
– change in parameters might not produce a different ranking, thus

optimization is not possible on the ranking metric’s score
– instead, proxy metrics can be used that resemble the original metric with

modifications to establish differentiability

IR:III-258 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Listwise Example – LambdaMART [Wu et al. 2010]

q Intuition: we do not need to explicitly define a smooth cost function, we only
need to know its gradients (how does it change w.r.t to its input)

– if a ranking metric changes a lot if we modify the rank of a document, the
document should be ranked high

– higher document relevance leads to higher impact w.r.t. ranking changes
– We can use λ directly to rank documents!

q to optimize a metric M , we can just calculate the change λi of M for each xi
while modifying the ranking, i.e. swapping xi with another feature vector

q optimization target becomes cumulative score change for all swaps

– positive gradient – document is pushed up the ranking; negative gradient
– document is pushed down the ranking

– any metric M can be used as target, even non-smooth ones; ususally,
nDCG is optimized

IR:III-259 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Listwise Example – LambdaMART

Given a query q and a set of documents with their relevance labels {(di, yi)}ki=1:

1. Compute ∆ijM , the change in metric M if documents di and dj with scores si
and sj are swapped; value is rescaled by predicted score difference; sign of
value depends on ordering implied by ground-truth labels

λij = Sij

∣∣∣∣∆ijM
−1

1 + esi−sj

∣∣∣∣ , Sij =

{
1 yi ≥ yj

−1 yi < yj

2. gradient λi of a document is the sum of its metric value changes

λi =

k∑
j=0,i 6=j

λij

3. Train a gradient boosted tree model (MART) to predict λi given features xi

IR:III-260 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Listwise Inference (?)

Why not infer the ranking directly?

q Predict a score for a given ranking?

– Given a permutation of documents, predict its effectiveness
– Every possible permutation would have to be scored to find optimal one
– Input space is combinatorial (k! for k documents)→ Not feasible!

q Directly predict the ranking?

– Given a set of documents, predict the indices of their optimal ordering
– Model needs to be invariant to rearranging the input
∀σ ∈ Sk : y(σ((x1, ...,xk))) = y((x1, ...,xk))

– Output space is combinatorial (k! for k documents)→ Not feasible!

IR:III-261 Retrieval Models © GIENAPP/SCELLS 2022

Learning to Rank
Comparison of Approaches

Pointwise Pairwise Listwise

Loss Single Doc. Doc. Pair Doc. Ranking

Relevance Absolute Relative Relative

Effectiveness Good Better Best

Complexity Low Medium High

IR:III-262 Retrieval Models © GIENAPP/SCELLS 2022

Rank Fusion
Overview

Combine different systems or ranking functions into a single ranked list. [Wu 2012]

q Collection of documents D

q All retrieval systems execute a query q on D

q Final set of rankings ri ∈ R from each retrieval system ri = 〈di1, di2, ..., dim〉

q Fusion method produces a final ranking from set of rankings R

IR:III-263 Retrieval Models © GIENAPP/SCELLS 2022

https://link.springer.com/book/10.1007/978-3-642-28866-1

Rank Fusion
Overview

Combine different systems or ranking functions into a single ranked list. [Wu 2012]

q Collection of documents D

q All retrieval systems execute a query q on D

q Final set of rankings ri ∈ R from each retrieval system ri = 〈di1, di2, ..., dim〉

q Fusion method produces a final ranking from set of rankings R

Two methods of fusion:

q Score-based

q Rank-based

IR:III-264 Retrieval Models © GIENAPP/SCELLS 2022

https://link.springer.com/book/10.1007/978-3-642-28866-1

Rank Fusion
Score-based

Score-based rank fusion’s aim is to provide a global score for a document g(R, d)

CombSUM

q Global score computed by summing relevance score ρ of document across R

g(R, d) =
∑
ri∈R

s(d, ri)

q If d /∈ ri, then s(d, ri) = 0

IR:III-265 Retrieval Models © GIENAPP/SCELLS 2022

Rank Fusion
Score-based

Score-based rank fusion’s aim is to provide a global score for a document g(R, d)

CombSUM

q Global score computed by summing relevance score ρ of document across R

g(R, d) =
∑
ri∈R

s(d, ri)

q If d /∈ ri, then s(d, ri) = 0

CombMNZ

q Summed score multiplied by times document appears across all rankings

g(R, d) = |d ∈ R|
∑
ri∈R

s(d, ri)

q No default score if d /∈ R

IR:III-266 Retrieval Models © GIENAPP/SCELLS 2022

Rank Fusion
Score-based

Score-based rank fusion’s aim is to provide a global score for a document g(R, d)

CombSUM

q Global score computed by summing relevance score ρ of document across R

g(R, d) =
∑
ri∈R

s(d, ri)

q If d /∈ ri, then s(d, ri) = 0

CombMNZ

q Summed score multiplied by times document appears across all rankings

g(R, d) = |d ∈ R|
∑
ri∈R

s(d, ri)

q No default score if d /∈ R

It is important to normalise the scores for each ri. Why?
IR:III-267 Retrieval Models © GIENAPP/SCELLS 2022

Rank Fusion
Score-based with Learning To Rank

Learn the weights for each ranker under CombSUM:

q Each ranker is assigned a weight wi, linearly combine the weights

g(R, d) =
∑
ri∈R

wi · s(d, ri)

q Heuristics weights, e.g., query performance prediction (QPP)

q Performance weights, e.g., grid search using nDCG@k over representative
training queries

q Learned weights, e.g., consider scores from rankers as features and apply
LTR

IR:III-268 Retrieval Models © GIENAPP/SCELLS 2022

Rank Fusion
Rank-based

Re-rank documents according to their rank position in ri, ignoring relevance scores.

Borda Count

q Score of a document is the number of documents ranked lower (Election
voting algorithm)

g(R, d) =
∑
ri∈R

|ri| − rank(ri, d) + 1

|ri|

q Conceptually the same as CombSUM, but uses document positions instead
of scores

q Can be used if scores are low quality or not available

IR:III-269 Retrieval Models © GIENAPP/SCELLS 2022

Rank Fusion
Intuitions

Intuition behind success of rank fusion: [Vogt 1999]

q Chorus Effect Ü Multiple retrieval approaches suggest that a document is
relevant to a query

q Dark Horse Effect Ü One retrieval approach suggests document is very
relevant while not retrieved by other approaches

Which of these effects are lessened or boosted by CombMNZ?
What about other rank fusion methods?

IR:III-270 Retrieval Models © GIENAPP/SCELLS 2022

https://link.springer.com/content/pdf/10.1023/A:1009980820262.pdf

