## Chapter IR:III

#### III. Retrieval Models

- Overview of Retrieval Models
- Empirical Models
- Boolean Retrieval
- □ Vector Space Model
- Probabilistic Models
- □ Binary Independence Model
- □ Okapi BM25
- □ Hidden Variable Models
- □ Latent Semantic Indexing
- Explicit Semantic Analysis
- Generative Models
- □ Language Models
- Divergence From Randomness
- □ Combining Evidence
- □ Web Search
- Learning to Rank

## Learning to Rank Motivation

## **Traditional IR Models**

#### Generative models

- Learn the joint probability P(q, d) of query and document(s)
- i.e., TFIDF similarity, BM25 score, Naive Bayes probability, ...

#### Use a very small number of features

- Term frequency
- Inverse document frequency
- Document length

#### □ Few features, few parameters; can be tuned manually

#### But what if we want to exploit many features?

## Learning to Rank Motivation

### Learning to Rank Models

#### Discriminative models

- Learn the conditional probability P(d|q) of document(s) given a query
- Distinguish the decision boundary relevant vs. non-relevant
- i.e., classification confidence, regression score, ...

#### Use a large number of features

- Document-query features (term overlap, query term importance, ...)
- Document-only features (images, links, length, recency, ...)
- User feedback (click data, dwell times, eye tracking, ...)
- □ Many features, many parameters; have to be learned from data

## ML for IR!

## Learning to Rank Formalization

Learning to Rank (LTR) refers to supervised, feature-based, discriminative learning methods for IR. [Liu 2011]

- □ Supervised: based on training data with ground-truth relevance labels
- □ Feature-based: documents are represented by feature vectors
- Discriminative: relevance is estimated directly from observed features

#### Learning to Rank Formalization

LTR tackles the ranking problem using machine learning techniques. This includes:

- □ Input space  $\mathbf{X} \subseteq \mathbb{R}^n$ , i.e., feature vectors  $\mathbf{x}_i$  of query document pairs
- □ Output space  $Y \subseteq \mathbb{R}$ , i.e., relevance scores  $y_i$  of documents
- □ Model *y*, i.e., function mapping from input to outsput space
- $\hfill\square$  Hypothesis space, i.e., parametrizations h of the model function
- □ Loss function  $\ell$ , i.e., a measure to interpret the residual between the prediction  $y(\mathbf{x}_i)$  and label  $y_i$  to choose an optimal h



## Learning to Rank Components

Training an LTR system requires three components:

- a ground truth source to obtain training data from
- □ a feature extraction from query-document pairs
- a model architecture to train for relevance prediction





#### Where do we get training data from?

## Learning to Rank Relevance Feedback

How can supervised ground truth data for relevance be collected?

#### □ Explicit relevance feedback

- Asking a user whether a result is relevant/non-relevant to a query
- Obtrusive to users, expensive if tasked, hard to scale
- Requires a group of assessors!
- □ Implicit relevance feedback
  - Predicting relevance based on user interactions (clicks)
  - Non-obtrusive, inexpensive, lots of data
  - Requires a live system with users!

### But are clicks a reliable form of ground truth?

## Learning to Rank

Mining Training Data From Clicks [Joachims et al., 2005]

#### □ How do users behave?

- Users tend to look close to where they click clicks are guided by presented content
- They view higher-ranks before clicking on a result rankings are evaluated sequentially

#### □ What are clicks influenced by?

- Relevance influence: reversed rankings have more clicks at low ranks
- Position influence: users tend to click on higher ranks even when lower ranks are more relevant

#### • What does that mean for LTR training data?

- Clicks should not be used to derive absolute relevance judgements
- Clicks can be used to derive pairwise preference judgements a clicked result is more relevant than all higher ranked results that were skipped

## Learning to Rank Feature Extraction

Different kinds of features:

## Query features

- Content features (query intent classification, performance prediction, ...)
- Metadata features (time of day/month/year, ...)

## Document features

- Content features (spam/quality scoring, text classification models, ...)
- Metadata features (number of slashes in URL, timestamps, ...)
- Link features (PageRank, number of links, number of child pages, ...)

## Query-document features

- Scores of other retrieval models (BM25, TFIDF, ...)
- Term matching (edit distances, occurence scores, ...)

## User behaviour features

- session data
- user profiling

Recap: what kinds of ground truth data are available for LTR?

□ Pointwise: a single feature vecotr and its absolute relevance score



Recap: what kinds of ground truth data are available for LTR?

- □ Pointwise: a single feature vecotr and its absolute relevance score
- □ Pairwise: a pair of feature vectors and a preference between them



Recap: what kinds of ground truth data are available for LTR?

- □ Pointwise: a single feature vecotr and its absolute relevance score
- □ Pairwise: a pair of feature vectors and a preference between them
- □ Listwise: a ranking of feature vectors and its effectiveness



Recap: what kinds of ground truth data are available for LTR?

- □ Pointwise: a single feature vecotr and its absolute relevance score
- □ Pairwise: a pair of feature vectors and a preference between them
- □ Listwise: a ranking of feature vectors and its effectiveness



Each kind can be used to define a loss function for an LTR system!

## Learning to Rank Pointwise Loss

- □ A pointwise loss ...
  - $\ldots$  operates on a single feature vector  $\mathbf{x}_i$
  - ... quantifies the error between predicted relevance and ground-truth relevance of document  $d_i$
  - ... takes  $(q, d_i, y_i)$  triples of query, document, and relevance as training instances

#### Relevance estimations are absolute

- scores are invariant w.r.t. strictly monotonous transformations (shifting/scaling all scores results in the same ranking)
- absolute estimation is not as robust as relative estimation (small score changes might result in large rank changes)

#### □ Relevance estimations are independent

- only as single document is used to infer a relevance value
- all other potential documents in the collection are ignored

#### Remarks:

□ Pointwise LTR can alternatively be operationalized as classification (ranking by probability of belonging to class 'relevant';  $P(y(\mathbf{x}_i) = 1|q)$ ) or ordinal regression (membership of an ordered relevance class;  $y(\mathbf{x}_i) \in [0, 1, ..., k]$ ) [Liu 2011]

## Learning to Rank Pairwise Loss

- □ A pairwise loss ...
  - ... operates on a pair of feature vectors  $(\mathbf{x}_i, \mathbf{x}_j)$
  - ... quantifies the error of pairwise comparisons as indicated predicted relevances  $s_i$  and  $s_j$  and ground-truth comparison
  - ... takes 4-tuples  $(q, d_i, d_j, y_i)$  of query, documents, and preference as training instances
- □ Relevance estimations are relative (take other documents into account)
- □ Problem: comparison errors are not equally important at all ranks in practice
  - blue are relevant, gray are irrelevant
  - same number of pairwise errors (7)
  - e.g. nDCG is higher for left ranking

## Learning to Rank Pairwise Example – RankSVM [Joachims 2002]

- Idea: Learn a ranking function so that the number of violated pairwise training preferences is minimized
- □ Ranking function: margin distance to hyperplane w; select w such that  $y(\mathbf{x}_i) > y(\mathbf{x}_j) \iff d_i \succ d_j$  where the order is given by the training data
- Example: 2 features, points are training documents with their ground-truth rank; two different parametrizations for w shown.





## Learning to Rank Pairwise Inference (?)

#### Why not infer pairwise scores?

#### Obtained pairwise comparisons are independent

- Outcome of  $y(\mathbf{x}_i, \mathbf{x}_j)$  is not dependent of, e.g.,  $y(\mathbf{x}_j, \mathbf{x}_i)$  or  $y(\mathbf{x}_i, \mathbf{x}_k)$
- Possibly inconsistent w.r.t. complementarity  $(y(\mathbf{x}_i, \mathbf{x}_j) \neq 1 y(\mathbf{x}_j, \mathbf{x}_i))$  or transitivity  $(y(\mathbf{x}_i, \mathbf{x}_j) > 0.5 \land y(\mathbf{x}_j, \mathbf{x}_k) > 0.5 \land y(\mathbf{x}_k, \mathbf{x}_i) > 0.5)$

#### Post-processing needed to convert comparison scores into a ranking

- Sorting methods require total order, incompatible with inconsistencies
- Ranking can be statistically approximated from inconsistent pairs
- Computational complexity is quadratic w.r.t. document count
  - For k documents, at worst k(k-1) comparisons have to be made
  - Sampled comparisons for reduced complexity increase uncertainty

## Learning to Rank

#### Listwise Loss

- □ A listwise loss ...
  - $\ldots$  operates on a sequence of feature vectors  $[\mathbf{x}_1, \ldots, \mathbf{x}_i]$
  - ... quantifies the error of the ranking given by  $s_1, \ldots, s_i$  with a ranking metric
  - ... takes  $(q, (d_1, y_1), ..., (d_k, y_k))$  as training samples, i.e., a query and a sequence of document-relevance pairs, for which the metric is calculated
- Problem: Ranking metrics are non-differentiable w.r.t. model parameters
  - sort operator is non-smooth
  - change in parameters might not produce a different ranking, thus optimization is not possible on the ranking metric's score
  - instead, proxy metrics can be used that resemble the original metric with modifications to establish differentiability

### Learning to Rank Listwise Example – LambdaMART [Wu et al. 2010]

- Intuition: we do not need to explicitly define a smooth cost function, we only need to know its gradients (how does it change w.r.t to its input)
  - if a ranking metric changes a lot if we modify the rank of a document, the document should be ranked high
  - higher document relevance leads to higher impact w.r.t. ranking changes
  - We can use  $\lambda$  directly to rank documents!
- □ to optimize a metric M, we can just calculate the change  $\lambda_i$  of M for each  $\mathbf{x}_i$ while modifying the ranking, i.e. swapping  $\mathbf{x}_i$  with another feature vector
- optimization target becomes cumulative score change for all swaps
  - positive gradient document is pushed up the ranking; negative gradient
    document is pushed down the ranking
  - any metric *M* can be used as target, even non-smooth ones; ususally, nDCG is optimized

## Learning to Rank

#### Listwise Example – LambdaMART

Given a query q and a set of documents with their relevance labels  $\{(d_i, y_i)\}_{i=1}^k$ :

1. Compute  $\Delta_{ij}M$ , the change in metric M if documents  $d_i$  and  $d_j$  with scores  $s_i$  and  $s_j$  are swapped; value is rescaled by predicted score difference; sign of value depends on ordering implied by ground-truth labels

$$\lambda_{ij} = S_{ij} \left| \Delta_{ij} M \frac{-1}{1 + e^{s_i - s_j}} \right|, S_{ij} = \begin{cases} 1 & y_i \ge y_j \\ -1 & y_i < y_j \end{cases}$$

2. gradient  $\lambda_i$  of a document is the sum of its metric value changes

$$\lambda_i = \sum_{j=0, i \neq j}^k \lambda_{ij}$$

3. Train a gradient boosted tree model (MART) to predict  $\lambda_i$  given features  $\mathbf{x}_i$ 

## Learning to Rank

Listwise Inference (?)

### Why not infer the ranking directly?

#### Predict a score for a given ranking?

- Given a permutation of documents, predict its effectiveness
- Every possible permutation would have to be scored to find optimal one
- Input space is combinatorial (k! for k documents)  $\rightarrow$  Not feasible!
- Directly predict the ranking?
  - Given a set of documents, predict the indices of their optimal ordering
  - Model needs to be invariant to rearranging the input  $\forall \sigma \in S_k : y(\sigma((\mathbf{x}_1, ..., \mathbf{x}_k))) = y((\mathbf{x}_1, ..., \mathbf{x}_k))$
  - Output space is combinatorial (k! for k documents)  $\rightarrow$  Not feasible!

## Learning to Rank Comparison of Approaches

|               | Pointwise   | Pairwise  | Listwise     |
|---------------|-------------|-----------|--------------|
| Loss          | Single Doc. | Doc. Pair | Doc. Ranking |
| Relevance     | Absolute    | Relative  | Relative     |
| Effectiveness | Good        | Better    | Best         |
| Complexity    | Low         | Medium    | High         |

Overview

Combine different systems or ranking functions into a single ranked list. [Wu 2012]

- **Collection of documents** *D*
- $\Box$  All retrieval systems execute a query q on D
- □ Final set of rankings  $r_i \in R$  from each retrieval system  $r_i = \langle d_{i_1}, d_{i_2}, ..., d_{i_m} \rangle$
- $\Box$  Fusion method produces a final ranking from set of rankings *R*

Overview

Combine different systems or ranking functions into a single ranked list. [Wu 2012]

- **Collection of documents** *D*
- $\Box$  All retrieval systems execute a query q on D
- □ Final set of rankings  $r_i \in R$  from each retrieval system  $r_i = \langle d_{i_1}, d_{i_2}, ..., d_{i_m} \rangle$
- $\Box$  Fusion method produces a final ranking from set of rankings *R*

Two methods of fusion:

- □ Score-based
- □ Rank-based

Score-based

Score-based rank fusion's aim is to provide a global score for a document g(R, d)

#### CombSUM

 $\Box$  Global score computed by summing relevance score  $\rho$  of document across R

$$g(R,d) = \sum_{r_i \in R} s(d,r_i)$$

 $\Box \quad \text{If } d \notin r_i \text{, then } s(d, r_i) = 0$ 

Score-based

Score-based rank fusion's aim is to provide a global score for a document g(R, d)

#### CombSUM

 $\Box$  Global score computed by summing relevance score  $\rho$  of document across R

$$g(R,d) = \sum_{r_i \in R} s(d,r_i)$$

$$\neg$$
 If  $d \notin r_i$ , then  $s(d, r_i) = 0$ 

#### CombMNZ

Summed score multiplied by times document appears across all rankings

$$g(R,d) = |d \in R| \sum_{r_i \in R} s(d,r_i)$$

□ No default score if  $d \notin R$ 

Score-based

Score-based rank fusion's aim is to provide a global score for a document g(R, d)

#### CombSUM

 $\Box$  Global score computed by summing relevance score  $\rho$  of document across R

$$g(R,d) = \sum_{r_i \in R} s(d,r_i)$$

$$\neg$$
 If  $d \notin r_i$ , then  $s(d, r_i) = 0$ 

#### CombMNZ

Summed score multiplied by times document appears across all rankings

$$g(R,d) = |d \in R| \sum_{r_i \in R} s(d,r_i)$$

□ No default score if  $d \notin R$ 

#### It is important to normalise the scores for each $r_i$ . Why?

IR:III-267 Retrieval Models

Score-based with Learning To Rank

Learn the weights for each ranker under CombSUM:

 $\Box$  Each ranker is assigned a weight  $w_i$ , linearly combine the weights

$$g(R,d) = \sum_{r_i \in R} w_i \cdot s(d,r_i)$$

- □ Heuristics weights, e.g., query performance prediction (QPP)
- Performance weights, e.g., grid search using nDCG@k over representative training queries
- Learned weights, e.g., consider scores from rankers as features and apply LTR

## Rank Fusion Rank-based

Re-rank documents according to their rank position in  $r_i$ , ignoring relevance scores.

#### **Borda Count**

Score of a document is the number of documents ranked lower (Election voting algorithm)

$$g(R,d) = \sum_{r_i \in R} \frac{|r_i| - \operatorname{rank}(r_i,d) + 1}{|r_i|}$$

- Conceptually the same as CombSUM, but uses document positions instead of scores
- □ Can be used if scores are low quality or not available

Intuition behind success of rank fusion: [Vogt 1999]

- □ Chorus Effect → Multiple retrieval approaches suggest that a document is relevant to a query
- □ Dark Horse Effect → One retrieval approach suggests document is very relevant while not retrieved by other approaches

Which of these effects are lessened or boosted by CombMNZ? What about other rank fusion methods?