
Chapter IR:III

III. Retrieval Models
q Overview of Retrieval Models
q Boolean Retrieval
q Vector Space Model
q Binary Independence Model
q Okapi BM25
q Divergence From Randomness
q Latent Semantic Indexing
q Explicit Semantic Analysis
q Language Models

q Combining Evidence
q Learning to Rank

IR:III-147 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Background

Language models in general include methods to represent the syntactical structures
of languages to study them, and to solve natural language processing tasks.

A key goal of modeling a language is to solve the membership problem:
Given a string and a language, decide whether the string belongs to the language.

Two complementary approaches have been pursued:

q Formal languages
Theoretical approach with an explicit grammar specification and applications in comparably
small, controlled languages (e.g., query languages, programming languages).

q Statistical language models
Probabilistic approach where grammar is captured only implicitly by analyzing large text
collections. Can be applied in less controlled situations.

Important applications of statistical language models:

q Part-of-speech tagging
q Machine translation

q Speech and handwriting recognition
q Information retrieval

IR:III-148 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Basics: Grammar

q Alphabet Σ.
An alphabet Σ is a non-empty set of signs or symbols.

q Word w.
A word w is a finite sequence of symbols from Σ. The length of a word |w| is
the number of symbols it is made of.

ε denotes the empty word; it is the only word of length 0.
Σ∗ denotes the set of all words over Σ.

q Language L.
A language L is a set of words over an alphabet Σ.

q Grammar G.
A grammar G is a calculus to define a language—and a set of rules by which
words can be derived. The language corresponding to G contains all words
that can be generated using its rules.

IR:III-149 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Basics: Grammar

q Alphabet Σ.
An alphabet Σ is a non-empty set of signs or symbols.

q Word w.
A word w is a finite sequence of symbols from Σ. The length of a word |w| is
the number of symbols it is made of.

ε denotes the empty word; it is the only word of length 0.
Σ∗ denotes the set of all words over Σ.

q Language L.
A language L is a set of words over an alphabet Σ.

q Grammar G.
A grammar G is a calculus to define a language—and a set of rules by which
words can be derived. The language corresponding to G contains all words
that can be generated using its rules.

IR:III-150 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Remarks [Kastens 2005] :

q Language properties can be defined at different levels of abstraction. Level 1 deals with the
notation of basic symbols, Level 2 deals with syntactical structures of a language.
To distinguish the levels of a grammar under consideration, the following terminology is used:

– Level 1: alphabet, character, word, language
– Level 2: vocabulary, symbol, sentence, language

q The words {alphabet, vocabulary}, {character, symbol}, and {word, sentence} correspond to
one another at the two respective levels.

IR:III-151 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Basics: Grammar (continued)

Definition 2 (Grammar)

A grammar is a 4-tuple G = (N,Σ, P, S), where

N is a finite set of nonterminal symbols

Σ is a finite set of terminal symbols, N ∩ Σ = ∅

P is a finite set of (production) rules

P ⊂ (N ∪ Σ)∗ N (N ∪ Σ)∗ × (N ∪ Σ)∗

S is a start symbol, S ∈ N

IR:III-152 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Remarks:

q A production rule comprises a left side (premise) and a right side (conclusion), which are
both words composed of terminals and nonterminals. The left side must contain at least one
nonterminal and the right side may, unlike the left side, be the empty word. [Wikipedia]

q A rule can be applied to a word composed of terminals and nonterminals, where an arbitrary
occurrence of the left side of the rule is replaced with its right side: w → w′.

q Given the rule w → w′, the words w,w′ are in a transition relation. A sequence of rule
applications is called a derivation.

IR:III-153 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Formal_grammar

Language Models
Basics: Grammar (continued)

Definition 3 (Generated Language)

Given a grammar G = (N,Σ, P, S), it generates the language L(G) which contains
exactly the words which are composed of only terminal symbols and which can be
derived in a finite number of steps:

L (G) := {w ∈ Σ∗ | S →∗G w} ,

where→∗G denotes the arbitrary application of rules in G, i.e., the reflexive transitive
closure of the transition relation→G.

IR:III-154 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Basics: Grammar (continued)

Definition 3 (Generated Language)

Given a grammar G = (N,Σ, P, S), it generates the language L(G) which contains
exactly the words which are composed of only terminal symbols and which can be
derived in a finite number of steps:

L (G) := {w ∈ Σ∗ | S →∗G w} ,

where→∗G denotes the arbitrary application of rules in G, i.e., the reflexive transitive
closure of the transition relation→G.

Example:

G = (N,Σ, P, S) where N = {S,A,B}, Σ = {a, b} and the following rules P :

S → ABS

S → ε

BA → AB

BS → b

Bb → bb

Ab → ab

Aa → aa

IR:III-155 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Conventionally, nonterminal symbols are denoted with uppercase letters and terminal
symbols with lowercase letters.

q A given language can be generated by an arbitrary number of grammars.

q Another grammar that generates the exemplified languages is:
N = {S,A,B}, Σ = {a, b}, P = {S → aSb, S → ε}

IR:III-156 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Basics: Chomsky Hierarchy

Grammars are organized into four classes in terms of the complexity of the
languages they generate.

q Type 0.
The production rules in P are unrestricted.

q Type 1 ∼ context-sensitive.
For all rules w → w′ ∈ P holds: |w| ≤ |w′|

q Type 2 ∼ context-free.
For all rules w → w′ ∈ P holds: w is a single variable; i.e., w ∈ N .

q Type 3 ∼ regular.
In addition to being a Type 2 grammar, for all rules w → w′ ∈ P holds:
w′ ∈ (Σ ∪ ΣN), i.e., the right side of the rules either are a terminal symbol or a
terminal symbol followed by nonterminal.

IR:III-157 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Basics: Chomsky Hierarchy

Grammars are organized into four classes in terms of the complexity of the
languages they generate.

q Type 0.
The production rules in P are unrestricted.

q Type 1 ∼ context-sensitive.
For all rules w → w′ ∈ P holds: |w| ≤ |w′|

q Type 2 ∼ context-free.
For all rules w → w′ ∈ P holds: w is a single variable; i.e., w ∈ N .

q Type 3 ∼ regular.
In addition to being a Type 2 grammar, for all rules w → w′ ∈ P holds:
w′ ∈ (Σ ∪ ΣN), i.e., the right side of the rules either are a terminal symbol or a
terminal symbol followed by nonterminal.

IR:III-158 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Basics: Chomsky Hierarchy (continued)

recursive enumerable or
Type-0 languages decidable

languages
context-sensitive or
Type-1 languages

regular or
Type-3 languages

context-free or
Type-2 languages

Definition 4 (Language of Type)

A language L ⊆ Σ∗ is called a language of Type 0 (Type 1, Type 2, Type 3), if a
grammar G of Type 0 (Type 1, Type 2, Type 3) exists, so that L(G) = L.
IR:III-159 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Basics: Chomsky Hierarchy (continued)

recursive enumerable or
Type-0 languages decidable

languages
context-sensitive or
Type-1 languages

natural
languagesmildly context-sensitive

regular or
Type-3 languages

context-free or
Type-2 languages

A grammar G is called mildly context-sensitive if
q it generates the copy language {ww | w ∈ Σ∗} with Σ = {a, b},
q the length difference of two strings from the length-ordered L(G) is bounded by a constant,
q the membership problem is decidable in polynomial time.

IR:III-160 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Remarks:

q The Chomsky hierarchy is a hierarchy with true subset relationships: Type 3 ⊂ Type 2 ⊂
Type 1 ⊂ Type 0.

q All languages of Type 1, 2, and 3 are decidable:
i.e., the membership problem is decidable for all languages of Type 1, 2, and 3;
i.e., an algorithm exists, which, given a grammar G and a word w, decides in finite time if
w ∈ L(G) holds.

q The set of Type 0 languages is identical to the set of recursively enumerable or
semidecidable languages. Thus, Type 0 languages exist, which are undecidable.

q Languages and grammars of Types 2 and 3 play a central role in compiler design, namely
syntactic analysis (Type 2), and lexical analysis and tokenization (Type 3), respectively.

q Chomsky introduced context-sensitive grammars as a way to describe the syntax of natural
language where it is often the case that a word may or may not be appropriate in a certain
place depending on the context.
Although certain features of languages (e.g., cross-serial dependencies) are not context-free,
it is an open question how much of the expressive power of context-sensitive grammars is
needed to capture the context-sensitivity found in natural languages. Subsequent research in
this area has focused on the more computationally tractable mildly context-sensitive
languages. [Wikipedia]

q Despite a considerable amount of work on the subject, there is no generally accepted formal
definition of mild context-sensitivity.

IR:III-161 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Cross-serial_dependencies
https://en.wikipedia.org/wiki/Context-sensitive_grammar

Language Models
Basics: Calculi

Calculi for Language Generation

Type 0 unrestricted grammar
generic Turing machine

Type 1 context-sensitive grammar
linear bounded Turing machine [Wikipedia]

Type 2 context-free grammar
push down automaton

Type 3 regular grammar
(non)deterministic finite automaton
regular expression

IR:III-162 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

http://aturingmachine.com/
https://en.wikipedia.org/wiki/Linear_bounded_automaton

Language Models
Basics: Calculi

Calculi for Language Generation

Type 0 unrestricted grammar
generic Turing machine

Type 1 context-sensitive grammar
linear bounded Turing machine [Wikipedia]

Type 2 context-free grammar
push down automaton

Type 3 regular grammar
(non)deterministic finite automaton
regular expression

Complexity of the Membership Problem

Type 0 undecidable
Type 1 exponential complexity, NP-hard
Type 2 O(n3)

Type 3 linear complexity

IR:III-163 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

http://aturingmachine.com/
https://en.wikipedia.org/wiki/Linear_bounded_automaton

Language Models
Example: Deterministic Language Model

Grammar G1 as deterministic finite automaton:

Simon says stop

Generated language:

q L(G1) = {Simon says stop}

q How to allow for other “Simon says” sentences?

IR:III-164 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Example: Deterministic Language Model

Grammar G2 as deterministic finite automaton:

Simon says verb

Generated language:

q Let verb = {jump, run, ...} denote the set of all verbs.

q L(G2) contains Simon says sentences, e.g.:
Simon says jump, Simon says run, ...

q |L(G2)| = |verb|

IR:III-165 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Example: Deterministic Language Model

Grammar G2 as deterministic finite automaton:

Simon says verb

Generated language:

q Let verb = {jump, run, ...} denote the set of all verbs.

q L(G2) contains Simon says sentences, e.g.:
Simon says jump, Simon says run, ...

q |L(G2)| = |verb|

q Is the sentence Simon says science member of L(G2)?

IR:III-166 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Example: Deterministic Language Model

Grammar G2 as deterministic finite automaton:

Simon says verb

Generated language:

q Let verb = {jump, run, ...} denote the set of all verbs.

q L(G2) contains Simon says sentences, e.g.:
Simon says jump, Simon says run, ...

q |L(G2)| = |verb|

q Is the sentence Simon says science member of L(G2)?

I’m gonna have to science the shit out of this.
Mark Watney in The Martian

Ü Allowing every word would still result in exceedingly unlikely sentences.

IR:III-167 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Word classes may be either open or closed. An open class is one that commonly accepts the
addition of new words, while a closed class is one to which new items are very rarely added.
Open classes normally contain large numbers of words, while closed classes are much
smaller. Typical open classes found in English and many other languages are nouns, verbs,
adjectives, adverbs, and interjections. Typical closed classes are prepositions (or
postpositions), determiners, conjunctions, and pronouns.
The open-closed distinction is related to the distinction between lexical and functional
categories, and to that between content words and function words. This is not universal: in
many languages verbs and adjectives are closed classes, usually consisting of few members,
and in Japanese the formation of new pronouns from existing nouns is relatively common.
Words are added to open classes through such processes as compounding, derivation,
coining, and borrowing. In English, for example, new nouns, verbs, etc. are being added to
the language constantly (including by the common process of verbing and other types of
conversion, where an existing word comes to be used in a different part of speech). [Wikipedia]

IR:III-168 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Part_of_speech#Open_and_closed_classes

Language Models
Example: Statistical Language Model

Grammar G3 as probabilistic automaton:

Simon says w

where w is a random variable over a vocabulary T .

w ∈ T P (w)

jump 0.05
run 0.03

... ...
science 0.002

... ...

Generated language:

q L(G3) contains every three-word sentence starting with Simon says

followed by a word w from T with probability P (w) > τ where τ is a threshold.

q Put another way, G3 maps every sentence s that can be formed over its
vocabulary Σ to a probability P (s) so that∑

s∈Σ∗

P (s) = 1

In general, probabilistic automata can be used to generate arbitrary documents.
IR:III-169 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Example: Statistical Language Model

Grammar G4 as probabilistic automaton:

w

where w is a random variable over a vocabulary T .

w ∈ T P (w)

⊥ 0.2
the 0.2
a 0.1
that 0.04
says 0.03

w ∈ T P (w)

likes 0.02
Simon 0.01
Mark 0.01
science 0.002

... ...

Generated language:

q ⊥ denotes the probability that the automaton stops.

q L(G4) contains all sentences that can be formed over the vocabulary T ,
assigning a membership probability to each one, e.g.:
s = Simon says that Mark likes science ⊥
P (s) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.2 = 0.0000000000048 = 4.8 · 10−12

q Suppose every document were generated by its own language model d.

Ü Given a query q, P (d1 | q) > P (d2 | q) may indicate that d1 is more relevant to
q than d2.

IR:III-170 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Remarks:

q This is the most basic form of a statistical language model, called a unigram (1-gram)
language model. It assumes term independence and models language generation as a
Markov process (0th order). Given sentence s = t1 . . . t|s|:

P (s) = P (t1) · . . . · P (t|s|)

q Dependent on the application, term dependence is modeled with conditional probabilities.
Given sentence s = t1 . . . t|s|:

P (s) = P (t1) · P (t2 | t1) · P (t3 | t1t2) · . . . · P (t|s| | t1 . . . t|s|−1)

The conditional probabilities need to be estimated from training data, and the longer the
context of preceding words in the condition, the more data are needed. In practice, the
probabilities are conditioned with up to n preceding words, obtaining an n-gram language
model, where typically n ∈ [1, 5].

q The stop probability P (⊥) is required to fulfill the condition that all probabilities of the
generated language sum to 1. In practice, however, it is usually omitted since doing so is
rank-preserving when comparing probabilities among different language models.

q Since every ordering of the terms in a sentence has the same probability under the unigram
model, one might also employ the multinomial distribution to compute P (s) which would yield
the probability of s regardless of the word order. Again, this is not necessary in practice,
since differences in probability are constant and therefore rank-preserving when comparing
probabilities among different language models.

IR:III-171 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Retrieval Model R = 〈D,Q, ρ〉 [

::::::::
Generic

:::::::
Model] [

::::::::
Boolean] [

:::::
VSM] [

::::
BIM] [

::::::
BM25] [

:::
LSI] [

::::
ESA] [LM]

Document representations D.

q T = {t1, . . . , tm} is the set of m index terms (stemmed words).

q p(t | d) is the probability of generating t given d.

q d = {(t1, p(t1 | d), . . . , (tm, p(tm | d))} is a probability distribution over T .

Query representations Q.

q q = (t1, . . . , t|q|), where ti ∈ T , is a sequence of index terms.

Relevance function ρ.

q ρ(d, q) = P (d | q), the query likelihood model.

q R+ is a set of documents relevant to q obtained via relevance feedback.

q R+ = {(t1, p(t1 | R+), . . . , (tm, p(tm | R+))} is a probability distribution over T .

q ρ(d, q) = ϕKL(d,R+), the relevance model.

IR:III-172 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-retrieval-models.pdf#ir-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models1.pdf#boolean-retrieval-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models1.pdf#vector-space-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models2.pdf#binary-independence-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models2.pdf#okapi-bm25
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-embedding-models.pdf#latent-semantic-indexing
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-embedding-models.pdf#explicit-semantic-analysis

Language Models
Retrieval Model R = 〈D,Q, ρ〉 [

::::::::
Generic

:::::::
Model] [

::::::::
Boolean] [

:::::
VSM] [

::::
BIM] [

::::::
BM25] [

:::
LSI] [

::::
ESA] [LM]

Document representations D.

q T = {t1, . . . , tm} is the set of m index terms (stemmed words).

q p(t | d) is the probability of generating t given d.

q d = {(t1, p(t1 | d), . . . , (tm, p(tm | d))} is a probability distribution over T .

Query representations Q.

q q = (t1, . . . , t|q|), where ti ∈ T , is a sequence of index terms.

Relevance function ρ.

q ρ(d, q) = P (d | q), the query likelihood model.

q R+ is a set of documents relevant to q obtained via relevance feedback.

q R+ = {(t1, p(t1 | R+), . . . , (tm, p(tm | R+))} is a probability distribution over T .

q ρ(d, q) = ϕKL(d,R+), the relevance model.

IR:III-173 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-retrieval-models.pdf#ir-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models1.pdf#boolean-retrieval-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models1.pdf#vector-space-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models2.pdf#binary-independence-model
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-unigram-models2.pdf#okapi-bm25
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-embedding-models.pdf#latent-semantic-indexing
https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-embedding-models.pdf#explicit-semantic-analysis

Language Models
Relevance Function ρ: Derivation

Let d denote a language model for document d, and q the sequence of query terms
from query q. Then the query likelihood model is derived as follows:

P (d | q) =
P (q | d) · P (d)

P (q)
(1)

rank
= P (q | d) · P (d) (2)

= P (q | d) (3)

(1) Application of Bayes’ rule.

(2) Rank-preserving omission of P (q); it does not depend on d.

(3) Assume P (d) is uniform for all d ∈ D, thereby canceling its influence.
This assumption is not required; as a prior, P (d) can be used as a weight of relative
importance of d (e.g., PageRank, quality, etc.).

IR:III-174 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Derivation

Let d denote a language model for document d, and q the sequence of query terms
from query q. Then the query likelihood model is derived as follows:

P (d | q) =
P (q | d) · P (d)

P (q)
(1)

rank
= P (q | d) · P (d) (2)

= P (q | d) (3)

(1) Application of Bayes’ rule.

(2) Rank-preserving omission of P (q); it does not depend on d.

(3) Assume P (d) is uniform for all d ∈ D, thereby canceling its influence.
This assumption is not required; as a prior, P (d) can be used as a weight of relative
importance of d (e.g., PageRank, quality, etc.).

IR:III-175 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Derivation

Let d denote a language model for document d, and q the sequence of query terms
from query q. Then the query likelihood model is derived as follows:

P (d | q) =
P (q | d) · P (d)

P (q)
(1)

rank
= P (q | d) · P (d) (2)

= P (q | d) (3)

(1) Application of Bayes’ rule.

(2) Rank-preserving omission of P (q); it does not depend on d.

(3) Assume P (d) is uniform for all d ∈ D, thereby canceling its influence.
This assumption is not required; as a prior, P (d) can be used as a weight of relative
importance of d (e.g., PageRank, quality, etc.).

IR:III-176 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Derivation

Given a language model d of document d and a sequence q of the terms in query q,
compute the probability that q has been generated by d.

P (q | d) = P (t1, . . . , t|q| | d) (4)

=

|q|∏
i=1

P (ti | d) (5)

=
∏
t∈q

P (t | d)tf (t,q) (6)

(4) Inflating q.

(5) Assuming independence between terms.
Rank-preserving logarithmization to handle small probabilities.

(6) Combine duplicate occurrences of term t in query q.
This corresponds to the multinomial distribution, albeit omitting its factor |d|/

∏
t∈q tf (t, q),

which counts the permutations of q’s terms but is constant for q.

IR:III-177 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Derivation

Given a language model d of document d and a sequence q of the terms in query q,
compute the probability that q has been generated by d.

P (q | d) = P (t1, . . . , t|q| | d) (4)

=

|q|∏
i=1

P (ti | d) (5)

=
∏
t∈q

P (t | d)tf (t,q) (6)

(4) Inflating q.

(5) Assuming independence between terms.
Rank-preserving logarithmization to handle small probabilities.

(6) Combine duplicate occurrences of term t in query q.
This corresponds to the multinomial distribution, albeit omitting its factor |d|/

∏
t∈q tf (t, q),

which counts the permutations of q’s terms but is constant for q.

IR:III-178 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Derivation

Given a language model d of document d and a sequence q of the terms in query q,
compute the probability that q has been generated by d.

P (q | d) = P (t1, . . . , t|q| | d) (4)

=

|q|∏
i=1

P (ti | d) (5)

=
∏
t∈q

P (t | d)tf (t,q) (6)

(4) Inflating q.

(5) Assuming independence between terms.
Rank-preserving logarithmization to handle small probabilities.

(6) Combine duplicate occurrences of term t in query q.
This corresponds to the multinomial distribution, albeit omitting its factor |d|/

∏
t∈q tf (t, q),

which counts the permutations of q’s terms but is constant for q.

IR:III-179 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Derivation

Given a language model d of document d and a sequence q of the terms in query q,
compute the probability that q has been generated by d.

P (q | d) = P (t1, . . . , t|q| | d) (4)

=

|q|∏
i=1

P (ti | d) (5)

=
∏
t∈q

P (t | d)tf (t,q) (6)

(4) Inflating q.

(5) Assuming independence between terms.
Rank-preserving logarithmization to handle small probabilities.

(6) Combine duplicate occurrences of term t in query q.
This corresponds to the multinomial distribution, albeit omitting its factor |d|/

∏
t∈q tf (t, q),

which counts the permutations of q’s terms but is constant for q.

IR:III-180 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Derivation

Given a language model d of document d and a sequence q of the terms in query q,
compute the probability that q has been generated by d.

P (q | d) = P (t1, . . . , t|q| | d) (4)

rank
=

|q|∑
i=1

logP (ti | d) (5)

=
∏
t∈q

P (t | d)tf (t,q) (6)

(4) Inflating q.

(5) Assuming independence between terms.
Rank-preserving logarithmization to handle small probabilities.

(6) Combine duplicate occurrences of term t in query q.
This corresponds to the multinomial distribution, albeit omitting its factor |d|/

∏
t∈q tf (t, q),

which counts the permutations of q’s terms but is constant for q.

IR:III-181 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Estimation

Let t denote a term from the set of index terms T of document collection D. The
construction of a language model d to represent document d is done as follows.

P (t | d) =
tf (t, d)

|d|
, where

∑
t∈T

P (t | d) = 1 (7)

P (t | D) =

∑
d∈D tf (t, d)∑
d∈D |d|

, where
∑
t∈T

P (t | D) = 1 (8)

P (t | d)′ = (1− λ) · P (t | d) + λ · P (t | D) (9)

(7) Maximum likelihood estimation of t’s probability under the assumed language
model d for document d’s topic, given the observed sample d.
Problem: P (t | d) = 0 for t /∈ d, causing P (q | d) = 0 if t ∈ q.

(8) Maximum likelihood estimation of t’s probability in a language model D for D.

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

IR:III-182 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Estimation

Let t denote a term from the set of index terms T of document collection D. The
construction of a language model d to represent document d is done as follows.

P (t | d) =
tf (t, d)

|d|
, where

∑
t∈T

P (t | d) = 1 (7)

P (t | D) =

∑
d∈D tf (t, d)∑
d∈D |d|

, where
∑
t∈T

P (t | D) = 1 (8)

P (t | d)′ = (1− λ) · P (t | d) + λ · P (t | D) (9)

(7) Maximum likelihood estimation of t’s probability under the assumed language
model d for document d’s topic, given the observed sample d.
Problem: P (t | d) = 0 for t /∈ d, causing P (q | d) = 0 if t ∈ q.

(8) Maximum likelihood estimation of t’s probability in a language model D for D.

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

IR:III-183 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Estimation

Let t denote a term from the set of index terms T of document collection D. The
construction of a language model d to represent document d is done as follows.

P (t | d) =
tf (t, d)

|d|
, where

∑
t∈T

P (t | d) = 1 (7)

P (t | D) =

∑
d∈D tf (t, d)∑
d∈D |d|

, where
∑
t∈T

P (t | D) = 1 (8)

P (t | d)′ = (1− λ) · P (t | d) + λ · P (t | D) (9)

(7) Maximum likelihood estimation of t’s probability under the assumed language
model d for document d’s topic, given the observed sample d.
Problem: P (t | d) = 0 for t /∈ d, causing P (q | d) = 0 if t ∈ q.

(8) Maximum likelihood estimation of t’s probability in a language model D for D.

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

IR:III-184 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Remarks:

q A document d must be considered just one sample of all possible documents that can be
generated by the language model of d’s topic. Therefore, it may be that it does not contain all
terms that are potentially relevant.

q At the same time, a query q may contain terms that are not generally found in documents
generated by the language models relating to q’s relevant documents’ topic. The appearance
of such a misleading term should not penalize the relevance score of a potentially relevant
document to zero when it does not contain the term.

q Moreover, the terms occurring just once in a document may be assigned an overestimated
probability of being generated by the language model underlying a document’s topic.

q Smoothing addresses all of these problems by shifting a portion of the probability mass from
the terms occurring in a document to all other terms; just enough to give them a non-zero
probability.

q Smoothing implements a major part of the term weighting component. Unsmoothed
language models and language models with poorly optimized smoothing parameters perform
significantly worse than language models with optimized smoothing.

IR:III-185 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Estimation

Taking into account the length of a document d yields an alternative smoothing
method.

P (t | d)′ = (1− λ) · P (t | d) + λ · P (t | D) (9)

λ =
α

|d| + α
(10)

P (t | d)′′ =
tf (t, d) + α · P (t | D)

|d| + α
(11)

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

(10) Dirichlet smoothing: adjust λ with respect to the length of document d. The
longer a document d, the more trustworthy its language model d becomes.

(11) Substitution of λ in P (t |d)′.

IR:III-186 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Estimation

Taking into account the length of a document d yields an alternative smoothing
method.

P (t | d)′ = (1− λ) · P (t | d) + λ · P (t | D) (9)

λ =
α

|d| + α
(10)

P (t | d)′′ =
tf (t, d) + α · P (t | D)

|d| + α
(11)

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

(10) Dirichlet smoothing: adjust λ with respect to the length of document d. The
longer a document d, the more trustworthy its language model d becomes.

(11) Substitution of λ in P (t |d)′.

IR:III-187 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Estimation

Taking into account the length of a document d yields an alternative smoothing
method.

P (t | d)′ = (1− λ) · P (t | d) + λ · P (t | D) (9)

λ =
α

|d| + α
(10)

P (t | d)′′ =
tf (t, d) + α · P (t | D)

|d| + α
(11)

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

(10) Dirichlet smoothing: adjust λ with respect to the length of document d. The
longer a document d, the more trustworthy its language model d becomes.

(11) Substitution of λ in P (t |d)′.

IR:III-188 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Remarks:

q From a Bayesian point of view, this corresponds to the expected value of the posterior
distribution, using a symmetric Dirichlet distribution with parameter α as a prior. [Wikipedia]

q Finding a value for λ that works well in all cases is difficult. A small λ results in less
smoothing and yields a retrieval semantic closer to Boolean AND, whereas a high λ is closer
to Boolean OR and rather ranks documents by the number of matching query terms. The
choice of λ very much depends on what kinds of queries are expected.

q Successful values for short and long queries are λ = 0.1 and λ = 0.7, respectively.
Furthermore, typically 1000 < α < 2000. [plot] [Croft 2015]

q Dirichlet smoothing performs better for keyword queries, Jelinek-Mercer smoothing performs
better for verbose queries. [Schütze 2014]

q In practice, language models are sensitive to smoothing parameters. They should always be
tuned to the retrieval scenario at hand.

IR:III-189 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Additive_smoothing
https://www.wolframalpha.com/input/?i=plot+1000+%2F+(d+%2B+1000)+for+d%3D1+to+1000

Language Models
Relevance Function ρ: Example

Let q = president lincoln and let d1 ∈ D be a document from a collection D.

Assumptions:

q tf (president, d1) = 15 and
∑

d∈D tf (president, d) = 160, 000

q tf (lincoln, d1) = 25 and
∑

d∈D tf (lincoln, d) = 2, 400

q |d1| = 1, 800 and |D| = 500, 000 at |d|avg = 2, 000, yielding 109 terms.
q α = |d|avg = 2, 000

ρ(d1,q) = log
15 + 2000 · (1.6 · 105/109)

1800 + 2000
+ log

25 + 2000 · (2400/109)

1800 + 2000

= log(15.32/3800) + log(25.005/3800)

= −5.51 + −5.02

= −10.53

Logarithmization yields negative relevance scores; recall that only the ranking
among documents is important, not the scores themselves.

IR:III-190 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Example

Let q = president lincoln and let d1 ∈ D be a document from a collection D.

Assumptions:

q tf (president, d1) = 15 and
∑

d∈D tf (president, d) = 160, 000

q tf (lincoln, d1) = 25 and
∑

d∈D tf (lincoln, d) = 2, 400

q |d1| = 1, 800 and |D| = 500, 000 at |d|avg = 2, 000, yielding 109 terms.
q α = |d|avg = 2, 000

D president lincoln LM # BM25 #
d1 15 25 -10.53 1 20.66 1
d2 15 1 -13.75 3 12.74 4
d3 15 0 -19.05 5 5.00 5
d4 1 25 -12.99 2 18.20 2
d5 0 25 -14.40 4 15.66 3

IR:III-191 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Relevance Function ρ: Summary

ρ(d,q) = P (d | q) ∝ P (d) ·
|q|∏
i=1

tf (ti, d) + α ·
∑

d∈D tf (ti,d)∑
d∈D |d|

|d| + α

Assumptions:

1. The user has a mental model of the desired document and generates the
query from that model.

2. The equation represents a probability estimate that the document the user
had in mind was in fact this one.

3. Independence of word occurrence in documents.

4. Terms not in query q are equally likely to occur in relevant and irrelevant
documents.

5. The prior P (d) may be chosen uniform for all documents, or to boost more
important documents.

IR:III-192 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Query Refinement: Relevance Feedback

Given a query q, let R∗ denote the subset of relevant documents from document
collection D. Every d ∈ R∗ and q are samples drawn from their relevance model R∗.

P (d | q)
rank
= − KL(R∗ || d) (1)

=
∑
t∈T

P (t | R∗) logP (t | d) −
∑
t∈T

P (t | R∗) logP (t | R∗) (2)

rank
=

∑
t∈T

P (t | R∗) logP (t | d) (3)

(1) Rank-preserving approximation by measuring the negative statistical
difference between the language model d and that of the set R∗ of relevant
documents to query q using the Kullback–Leibler (KL) divergence measure.

(2) Rearrangement.

(3) Rank-preserving omission of the second sum; it does not depend on d.
IR:III-193 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Query Refinement: Relevance Feedback

Given a query q, let R∗ denote the subset of relevant documents from document
collection D. Every d ∈ R∗ and q are samples drawn from their relevance model R∗.

P (d | q)
rank
= −

∑
t∈T

P (t | R∗) log
P (t | R∗)
P (t | d)

(1)

=
∑
t∈T

P (t | R∗) logP (t | d) −
∑
t∈T

P (t | R∗) logP (t | R∗) (2)

rank
=

∑
t∈T

P (t | R∗) logP (t | d) (3)

(1) Rank-preserving approximation by measuring the negative statistical
difference between the language model d and that of the set R∗ of relevant
documents to query q using the Kullback–Leibler (KL) divergence measure.

(2) Rearrangement.

(3) Rank-preserving omission of the second sum; it does not depend on d.
IR:III-194 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Query Refinement: Relevance Feedback

Given a query q, let R∗ denote the subset of relevant documents from document
collection D. Every d ∈ R∗ and q are samples drawn from their relevance model R∗.

P (d | q)
rank
= −

∑
t∈T

P (t | R∗) log
P (t | R∗)
P (t | d)

(1)

=
∑
t∈T

P (t | R∗) logP (t | d) −
∑
t∈T

P (t | R∗) logP (t | R∗) (2)

rank
=

∑
t∈T

P (t | R∗) logP (t | d) (3)

(1) Rank-preserving approximation by measuring the negative statistical
difference between the language model d and that of the set R∗ of relevant
documents to query q using the Kullback–Leibler (KL) divergence measure.

(2) Rearrangement.

(3) Rank-preserving omission of the second sum; it does not depend on d.
IR:III-195 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Query Refinement: Relevance Feedback

Given a query q, let R∗ denote the subset of relevant documents from document
collection D. Every d ∈ R∗ and q are samples drawn from their relevance model R∗.

P (d | q)
rank
= −

∑
t∈T

P (t | R∗) log
P (t | R∗)
P (t | d)

(1)

=
∑
t∈T

P (t | R∗) logP (t | d) −
∑
t∈T

P (t | R∗) logP (t | R∗) (2)

rank
=

∑
t∈T

P (t | R∗) logP (t | d) (3)

(1) Rank-preserving approximation by measuring the negative statistical
difference between the language model d and that of the set R∗ of relevant
documents to query q using the Kullback–Leibler (KL) divergence measure.

(2) Rearrangement.

(3) Rank-preserving omission of the second sum; it does not depend on d.
IR:III-196 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Remarks:

q The Kullback-Leibler divergence KL(P || Q) (also called relative entropy) is a measure of how
probability distribution Q diverges from an expected probability distribution P . It is a
distribution-wise asymmetric measure. A Kullback-Leibler divergence of 0 indicates that we
can expect similar, if not the same, behavior of two different distributions, while a
Kullback-Leibler divergence of 1 indicates that the two distributions behave in such a different
manner that the expectation given the first distribution approaches zero.
In applications, P typically represents the “true” distribution of data, observations, or a
precisely calculated theoretical distribution, while Q typically represents a theory, model,
description, or approximation of P . [Wikipedia]

q Idea: Estimate P (d | R∗) directly, i.e., the probability that the relevance model generates
document d. This is called the document likelihood model, but it does not work in practice:
the estimates for d heavily depend on its length |d| and are therefore hardly comparable for
documents of different lengths.

q Idea: Simply estimating P (t | R∗) with the maximum likelihood estimate of t occurring in q:

P (t | R∗) =
tf (t, q)

|q|
yields

P (d | q)
rank
=

∑
t∈T

tf (t, q)

|q|
logP (t | d) =

1

|q|
∑
t∈T

logP (t | d)tf (t,q)

which is equivalent to the query likelihood model.

IR:III-197 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Kullback-Leibler_divergence

Language Models
Query Refinement: Relevance Feedback

Since R∗ is unknown at query time, we cannot approximate its language model
directly. But we can exploit that, by definition, q has been sampled from R∗.

P (t | R∗) ≈ P (t | q) = P (t | t1, . . . , t|q|) for ti ∈ q (4)

=
P (t, t1, . . . , t|q|)

P (t1, . . . , t|q|)
(5)

=
P (t, t1, . . . , t|q|)∑
t∈T P (t, t1, . . . , t|q|)

(6)

(4) Approximation as probability of observing term t given query q: sampling the
sequence q = (t1, . . . , t|q|) from R∗, what is the probability of sampling t next?

(5) Definition of conditional probability.

(6) Ensures additivity of the model.
IR:III-198 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

machine-learning/unit-en-probability-basics.pdf#conditional-probability

Language Models
Query Refinement: Relevance Feedback

Since R∗ is unknown at query time, we cannot approximate its language model
directly. But we can exploit that, by definition, q has been sampled from R∗.

P (t | R∗) ≈ P (t | q) = P (t | t1, . . . , t|q|) for ti ∈ q (4)

=
P (t, t1, . . . , t|q|)

P (t1, . . . , t|q|)
(5)

=
P (t, t1, . . . , t|q|)∑
t∈T P (t, t1, . . . , t|q|)

(6)

(4) Approximation as probability of observing term t given query q: sampling the
sequence q = (t1, . . . , t|q|) from R∗, what is the probability of sampling t next?

(5) Definition of
:::::::::::::::::
conditional

::::::::::::::::
probability.

(6) Ensures additivity of the model.
IR:III-199 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

machine-learning/unit-en-probability-basics.pdf#conditional-probability

Language Models
Query Refinement: Relevance Feedback

Since R∗ is unknown at query time, we cannot approximate its language model
directly. But we can exploit that, by definition, q has been sampled from R∗.

P (t | R∗) ≈ P (t | q) = P (t | t1, . . . , t|q|) for ti ∈ q (4)

=
P (t, t1, . . . , t|q|)

P (t1, . . . , t|q|)
(5)

=
P (t, t1, . . . , t|q|)∑
t∈T P (t, t1, . . . , t|q|)

(6)

(4) Approximation as probability of observing term t given query q: sampling the
sequence q = (t1, . . . , t|q|) from R∗, what is the probability of sampling t next?

(5) Definition of
:::::::::::::::::
conditional

::::::::::::::::
probability.

(6) Ensures additivity of the model.
IR:III-200 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

machine-learning/unit-en-probability-basics.pdf#conditional-probability

Language Models
Query Refinement: Relevance Feedback

Let R+ ⊆ R∗ be a set of documents relevant to query q, which have been obtained
via relevance feedback.

P (t, t1, . . . , t|q|) ≈
∑
d∈R+

P (d) · P (t, t1, . . . , t|q| | d) (7)

=
∑
d∈R+

P (d) · P (t | d) ·
|q|∏
i=1

P (ti | d) (8)

(7) Approximation based on the law of
::::::
total

:::::::::::::::::
probability, using the language

models of the individual relevant documents.

(8) Assumption that the query’s terms t1, . . . , t|q| are independent of one
another, as well as from t.

IR:III-201 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

machine-learning/unit-en-probability-basics.pdf#total-probability

Language Models
Query Refinement: Relevance Feedback

Let R+ ⊆ R∗ be a set of documents relevant to query q, which have been obtained
via relevance feedback.

P (t, t1, . . . , t|q|) ≈
∑
d∈R+

P (d) · P (t, t1, . . . , t|q| | d) (7)

=
∑
d∈R+

P (d) · P (t | d) ·
|q|∏
i=1

P (ti | d) (8)

(7) Approximation based on the law of
::::::
total

:::::::::::::::::
probability, using the language

models of the individual relevant documents.

(8) Assumption that the query’s terms t1, . . . , t|q| are independent of one
another, as well as from t.

IR:III-202 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

machine-learning/unit-en-probability-basics.pdf#total-probability

Language Models
Query Refinement: Relevance Feedback

ρ(d,q) = P (d | q) ∝
∑
t∈T

∑
d′∈R+ P (d′) · P (t | d′) ·

∏|q|
i=1 P (ti | d′)∑

t∈T
∑

d′∈R+ P (d′) · P (t | d′) ·
∏|q|

i=1 P (ti | d′)
· logP (t | d)

Retrieval:

1. Given query q, rank the documents in D by their query likelihood score.

2. Use the top-ranked 10–50 documents as pseudo-relevance feedback R+.

3. Compute the relevance model probabilities.

4. Rank documents by their KL divergence score as computed above.

IR:III-203 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

Language Models
Discussion

Advantages:

q Mathematically precise, conceptually simple, computationally tractable, and
intuitively appealing

q Competitive retrieval performance

Disadvantages:

q Requires extensive tuning

q Assumption of equivalence between document and information need
representation is unrealistic

q Difficult to represent the fact that a query is just one of many possible queries
to describe a particular need

IR:III-204 Retrieval Models © HAGEN/POTTHAST/STEIN 2023

