III. Retrieval Models

- Overview of Retrieval Models
- Boolean Retrieval
- Vector Space Model
- Binary Independence Model
- Okapi BM25
- Divergence From Randomness
- Latent Semantic Indexing
- Explicit Semantic Analysis
- Language Models

- Combining Evidence
- Learning to Rank
Boolean Retrieval

Retrieval Model \(\mathcal{R} = \langle D, Q, \rho \rangle \) [Generic Model] [Boolean] [VSM] [BIM] [BM25] [LSI] [ESA] [LM]

Document representations \(D \).

- \(T = \{ t_1, \ldots, t_m \} \) is the set of \(m \) index terms (lemmatized or stemmed words).
- \(T \) are the atoms of a logical formula for \(d \) with operators \(\land, \lor, \neg \), and brackets.
- \(d = (\land_{t \in d} t) \land (\neg (\land_{t \notin d} t)) \), where \(I_d(t) = 1 \) if \(t \) occurs in \(d \), and \(I_d(t) = 0 \) otherwise.

Query representations \(Q \).

- \(q \) is a logical formula over \(T \).

Relevance function \(\rho \).

- \(\rho(d, q) = I(d \rightarrow q) \), where \(\rightarrow \) is the logical implication.
- \(\rho(d, q) = 1 \) indicates relevance of \(d \) to \(q \), and \(\rho(d, q) = 0 \) otherwise.
- \(R_q \subseteq D \) is the set of documents \(d \in D \) relevant to \(q \), i.e., with \(\rho(d, q) = 1 \).
- \(\rho'(d, q) = P(I(d \rightarrow q) = 1) = P(d \rightarrow q) = P(q | d) \) relaxes relevance scoring.
Boolean Retrieval

Retrieval Model $\mathcal{R} = \langle D, Q, \rho \rangle$ [Generic Model] [Boolean] [VSM] [BIM] [BM25] [LSI] [ESA] [LM]

Document representations D.
- $T = \{t_1, \ldots, t_m\}$ is the set of m index terms (lemmatized or stemmed words).
- T are the atoms of a logical formula for d with operators \land, \lor, \neg, and brackets.
- $d = (\land_{t \in d} t) \land \neg(\land_{t \notin d} t)$, where $I_d(t) = 1$ if t occurs in d, and $I_d(t) = 0$ otherwise.

Query representations Q.
- q is a logical formula over T.

Relevance function ρ.
- $\rho(d,q) = I(d \rightarrow q)$, where \rightarrow is the logical implication.
- $\rho(d,q) = 1$ indicates relevance of d to q, and $\rho(d,q) = 0$ otherwise.
- $R_q \subseteq D$ is the set of documents $d \in D$ relevant to q, i.e., with $\rho(d,q) = 1$.
- $\rho'(d,q) = P(I(d \rightarrow q) = 1) = P(d \rightarrow q) = P(q \mid d)$ relaxes relevance scoring.
Remarks:

- $\mathcal{I} : T \rightarrow \{0, 1\}$ and $\mathcal{I} : \{\alpha \mid \alpha \text{ is a logical formula over } T\} \rightarrow \{0, 1\}$ is the evaluation or interpretation function that assigns truth values to the atoms T as well as to propositional formulas over them.
What query is illustrated?
What query is illustrated?

\[q = t_1 \land (t_2 \lor \neg t_3) \equiv (t_1 \land \neg t_2 \land \neg t_3) \lor (t_1 \land t_2 \land \neg t_3) \lor (t_1 \land t_2 \land t_3) \]
Boolean Retrieval

Example

Document representation:

\[d = \text{chrysler} \land \text{deal} \land \text{usa} \]
\[\land \text{china} \land \neg \text{cat} \land \text{sales} \]
\[\land \neg \text{dog} \land \ldots \]

Query representation:

\[q = \text{usa} \land (\text{dog} \lor \neg \text{cat}) \]

\[\equiv (\text{usa} \land \text{dog}) \lor (\text{usa} \land \neg \text{cat}) \]

\[\equiv (\text{usa} \land \neg \text{dog} \land \neg \text{cat}) \lor \]
\[(\text{usa} \land \text{dog} \land \neg \text{cat}) \lor \]
\[(\text{usa} \land \text{dog} \land \text{cat}) \]

Relevance function:

\[\rho(d, q) = \mathcal{I}(d \rightarrow q) = 1, \text{ since } \mathcal{I}_d(\text{usa}) = 1, \mathcal{I}_d(\text{dog}) = 0, \text{ and } \mathcal{I}_d(\text{cat}) = 0. \]
Remarks:

- The symbol “≡” denotes “is logically equivalent with”.
- What does logical equivalence mean?
- A Boolean query in disjunctive normal form can be answered straightforward using an inverted index in parallel for each conjunction.
- A Boolean query in canonical disjunctive normal form will retrieve each document only once.
Boolean Retrieval
Query Refinement: “Searching by Numbers”

Best practice in Boolean retrieval: (re)formulate queries until the number of documents retrieved is manageable. Example: pages about President Lincoln.

1. lincoln
 Results: many pages about cars, places, people

2. president ∧ lincoln
 A result: “Ford Motor Company today announced that Darryl Hazel will succeed Brian Kelley as president of Lincoln Mercury.”

3. president ∧ lincoln ∧ ¬automobile ∧ ¬car
 Not a result: “President Lincoln’s body departs Washington in a nine-car funeral train.”

4. president ∧ lincoln ∧ ¬automobile ∧ biography ∧ life ∧ birthplace ∧ gettysburg
 Results: ∅

5. president ∧ lincoln ∧ ¬automobile ∧ (biography ∨ life ∨ birthplace ∨ gettysburg)
 A result: “President’s Day – Holiday activities – crafts, mazes, word searches, . . . ’The Life of Washington’ Read the entire book online! Abraham Lincoln Research Site”
Boolean Retrieval

Discussion

Advantages:

- Precision: in principle, any subset of documents from a collection can be designated by a Boolean query
- as in data retrieval, other fields are possible (e.g., date, document type, etc.)
- simple, efficient implementation

Disadvantages:

- retrieval effectiveness depends entirely on the user
- cumbersome query formulation (e.g., expertise required)
- no possibility to weight query terms
- no ranking; binary relevance scoring is too restrictive for most practical purposes (exceptions: medical retrieval, patent retrieval, eDiscovery (law))
- the size of the result set is difficult to be controlled
Vector Space Model

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ [Generic Model] [Boolean] [VSM] [BIM] [BM25] [LSI] [ESA] [LM]

Document representations \mathbf{D}.

- $T = \{t_1, \ldots, t_m\}$ is the set of m index terms (word stems, without stop words).
- T is interpreted as set of dimensions of an m-dimensional vector space.
- $\omega : \mathbf{D} \times T \rightarrow \mathbb{R}$ is a term weighting function, quantifying term importance.
- $d = (w_1, \ldots, w_m)^T$, where $w_i = \omega(d, t_i)$ is the term weight of the i-th term in T.

Query representations \mathbf{Q}.

- $q = (w_1, \ldots, w_m)^T$, where $w_i = \omega(q, t_i)$ is the term weight of the i-th term in T.

Relevance function ρ.

- Distance and similarity functions φ serve as relevance functions.
- $\rho(d, q) = \varphi(d, q) = d^T q$, the scalar product of vectors d and q.
- Normalizing d and q calculates cosine similarity.
Vector Space Model

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$

Document representations \mathbf{D}.

- $T = \{t_1, \ldots, t_m\}$ is the set of m index terms (word stems, without stop words).
- T is interpreted as set of dimensions of an m-dimensional vector space.
- $\omega : \mathbf{D} \times T \to \mathbb{R}$ is a term weighting function, quantifying term importance.
- $\mathbf{d} = (w_1, \ldots, w_m)^T$, where $w_i = \omega(d, t_i)$ is the term weight of the i-th term in T.

Query representations \mathbf{Q}.

- $\mathbf{q} = (w_1, \ldots, w_m)^T$, where $w_i = \omega(q, t_i)$ is the term weight of the i-th term in T.

Relevance function ρ.

- Distance and similarity functions φ serve as relevance functions.
- $\rho(d, q) = \varphi(d, q) = \mathbf{d}^T \mathbf{q}$, the scalar product of vectors \mathbf{d} and \mathbf{q}.
- Normalizing \mathbf{d} and \mathbf{q} calculates cosine similarity.
Vector Space Model

Relevance Function ρ: Cosine Similarity
Vector Space Model
Relevance Function \(\rho \): Cosine Similarity

The scalar product \(a^T b \) between two \(m \)-dimensional vectors \(a \) and \(b \), where \(\varphi \) denotes the angle between them, is defined as follows:

\[
a^T b = ||a|| \cdot ||b|| \cdot \cos(\varphi)
\]

\[
\Leftrightarrow \cos(\varphi) = \frac{a^T b}{||a|| \cdot ||b||},
\]

where \(||x|| \) denotes the \textbf{L2 norm} of vector \(x \):

\[
||x|| = \left(\sum_{i=1}^{n} x_i^2 \right)^{1/2}
\]

Let \(\rho(q, d) = \cos(\varphi) \) be the relevance function of the vector space model.
Vector Space Model

Example

\[\mathbf{d} = \begin{pmatrix} \text{chrysler} & w_1 \\ \text{usa} & w_2 \\ \text{cat} & w_3 \\ \text{dog} & w_4 \\ \text{mouse} & w_5 \end{pmatrix} = \begin{pmatrix} \text{chrysler} & 1 \\ \text{usa} & 4 \\ \text{cat} & 3 \\ \text{dog} & 7 \\ \text{mouse} & 5 \end{pmatrix} \]

\[\mathbf{d}' = \begin{pmatrix} \text{chrysler} & 0.05 \\ \text{usa} & 0.2 \\ \text{cat} & 0.15 \\ \text{dog} & 0.35 \\ \text{mouse} & 0.25 \end{pmatrix}, \quad \mathbf{q}' = \begin{pmatrix} \text{chrysler} & 0.2 \\ \text{usa} & 0.2 \\ \text{cat} & 0.2 \\ \text{dog} & 0.2 \\ \text{elephant} & 0.2 \end{pmatrix} \]
Vector Space Model

Example

\[
d = \begin{pmatrix}
 \text{chrysler} & w_1 \\
 \text{usa} & w_2 \\
 \text{cat} & w_3 \\
 \text{dog} & w_4 \\
 \text{mouse} & w_5
\end{pmatrix}
= \begin{pmatrix}
 \text{chrysler} & 1 \\
 \text{usa} & 4 \\
 \text{cat} & 3 \\
 \text{dog} & 7 \\
 \text{mouse} & 5
\end{pmatrix}
\]

\[
d' = \begin{pmatrix}
 \text{chrysler} & 0.05 \\
 \text{usa} & 0.2 \\
 \text{cat} & 0.15 \\
 \text{dog} & 0.35 \\
 \text{mouse} & 0.25
\end{pmatrix}, \quad q' = \begin{pmatrix}
 \text{chrysler} & 0.2 \\
 \text{usa} & 0.2 \\
 \text{cat} & 0.2 \\
 \text{dog} & 0.2 \\
 \text{elephant} & 0.2
\end{pmatrix}
\]
Vector Space Model

Example

\[d = \begin{pmatrix}
 \text{chrysler} & w_1 \\
 \text{usa} & w_2 \\
 \text{cat} & w_3 \\
 \text{dog} & w_4 \\
 \text{mouse} & w_5 \\
\end{pmatrix} = \begin{pmatrix}
 \text{chrysler} & 1 \\
 \text{usa} & 4 \\
 \text{cat} & 3 \\
 \text{dog} & 7 \\
 \text{mouse} & 5 \\
\end{pmatrix} \]

\[d' = \begin{pmatrix}
 \text{chrysler} & 0.05 \\
 \text{usa} & 0.2 \\
 \text{cat} & 0.15 \\
 \text{dog} & 0.35 \\
 \text{mouse} & 0.25 \\
 \text{elephant} & 0.0 \\
\end{pmatrix}, \quad q' = \begin{pmatrix}
 \text{chrysler} & 0.2 \\
 \text{usa} & 0.2 \\
 \text{cat} & 0.2 \\
 \text{dog} & 0.2 \\
 \text{mouse} & 0.0 \\
 \text{elephant} & 0.2 \\
\end{pmatrix} \]

The angle \(\varphi \) between \(d' \) and \(q' \) is about \(48^\circ \), \(\cos(\varphi) \approx 0.67 \).

The weights in \(d' \) and \(q' \) denote the relative term frequency \(w'_i = \frac{w_i}{\sum_{j=1}^{5} w_j} \). Dimensions are aligned with zero padding. The product \(d'^T q' = 0.15 \), the norms \(||d'|| = 0.5 \) and \(||q'|| = 0.447 \).
Vector Space Model
Term Weighting: $tf \cdot idf$ [BIM Relevance Function]

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- $tf(t, d)$ denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t’s importance does not increase linearly: the raw frequency must be normalized.

- $df(t, D)$ denotes the document frequency of term t in document collection D. It counts the number of documents that contain t at least once.

- $idf(t, D)$ denotes the inverse document frequency:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency.

A term weight ω for term t in document $d \in D$ is computed as follows:

$$\omega(t) = tf(t, d) \cdot idf(t, D).$$
Vector Space Model
Term Weighting: $tf \cdot idf$ [BIM Relevance Function]

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- $tf(t, d)$ denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t’s importance does not increase linearly: the raw frequency must be normalized.

- $df(t, D)$ denotes the document frequency of term t in document collection D. It counts the number of documents that contain t at least once.

- $idf(t, D)$ denotes the inverse document frequency:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency.

A term weight ω for term t in document $d \in D$ is computed as follows:

$$\omega(t) = tf(t, d) \cdot idf(t, D).$$
Vector Space Model

Term Weighting: $tf \cdot idf$ [BIM Relevance Function]

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- $tf(t, d)$ denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t’s importance does not increase linearly: the raw frequency must be normalized.

- $df(t, D)$ denotes the document frequency of term t in document collection D. It counts the number of documents that contain t at least once.

- $idf(t, D)$ denotes the inverse document frequency:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency.

A term weight ω for term t in document $d \in D$ is computed as follows:

$$\omega(t) = tf(t, d) \cdot idf(t, D).$$
Vector Space Model

Term Weighting: \(tf \cdot idf \) [BIM Relevance Function]

To compute the weight \(w \) for a term \(t \) from document \(d \) under the vector space model, the most commonly employed term weighting scheme \(\omega(t) \) is \(tf \cdot idf \):

- \(tf(t, d) \) denotes the **normalized term frequency** of term \(t \) in document \(d \).

 The basic idea is that the importance of term \(t \) is proportional to its frequency in document \(d \). However, \(t \)'s importance does not increase linearly: the raw frequency must be normalized.

- \(df(t, D) \) denotes the **document frequency** of term \(t \) in document collection \(D \).

 It counts the number of documents that contain \(t \) at least once.

- \(idf(t, D) \) denotes the **inverse document frequency**:

\[
idf(t, D) = \log \frac{|D|}{df(t, D)}
\]

 The importance of term \(t \) in general is inversely proportional to its document frequency.

A term weight \(\omega \) for term \(t \) in document \(d \in D \) is computed as follows:

\[
\omega(t) = tf(t, d) \cdot idf(t, D).
\]
Vector Space Model

Term Weighting: $tf \cdot idf$

Plot of the function $idf(t, D) = \log \frac{|D|}{df(t, D)}$ for $|D| = 100$.

![Graph of $idf(t, D)$ vs. $df(t, D)$]
Remarks:

- Term frequency weighting was invented by Hans Peter Luhn: “There is also the probability that the more frequently a notion and combination of notions occur, the more importance the author attaches to them as reflecting the essence of his overall idea.”

 [Luhn 1957]

- The importance of a term \(t \) for a document \(d \) is not linearly correlated with its frequency. Several normalization factors have been proposed [Wikipedia]:

 - \(\frac{tf(t,d)}{|d|} \)
 - \(1 + \log(tf(t,d)) \) for \(tf(t,d) > 0 \)
 - \(k + (1 - k) \frac{tf(t,d)}{\max_{t' \in d}(tf(t',d))} \), where \(k \) serves as smoothing term; typically \(k = 0.4 \)

- Inverse document frequency weighting was invented by Karen Spärck Jones: “it seems we should treat matches on non-frequent terms as more valuable than ones on frequent terms, without disregarding the latter altogether. The natural solution is to correlate a term’s matching value with its collection frequency.”

 [Spärck Jones 1972]

- Spärck Jones gives little theoretical justification for her intuition. Given the success of \(idf \) in practice, over the decades, numerous attempts at a theoretical justification have been made. A comprehensive overview has been compiled by Robertson 2004.

- For example, interpreting the term \(\frac{|D|}{df(t,D)} \) as inverse of the probability \(P_{df}(t) = \frac{df(t,D)}{|D|} \) of \(t \) occurring in a random document in \(D \) yields \(idf(t,D) = \log \frac{|D|}{df(t,D)} = -\log P_{df}(t) \). Logarithms fit relevance functions \(\rho \) since both are additive, yielding the interpretation: “The less likely (on a random basis) it is that a given combination of terms occurs, the more likely it is that a document containing this combination is relevant to the question.”

 [Robertson 1972]
Vector Space Model
Query Refinement: Relevance Feedback

Given a result set R for a query q, and subsets $R^+ \subseteq R$ and $R^- \subseteq R$ of relevant and non-relevant documents, where $R^+ \cap R^- = \emptyset$, the query representation q can be refined with the document representations R using Rocchio’s update formula:

$$q' = \alpha \cdot q + \beta \cdot \frac{1}{|R^+|} \sum_{d^+ \in R^+} d^+ - \gamma \cdot \frac{1}{|R^-|} \sum_{d^- \in R^-} d^-,$$

where α, β, and γ adjust the impact of original query and (non-)relevant documents.
Vector Space Model

Query Refinement: Relevance Feedback

Given a result set R for a query q, and subsets $R^+ \subseteq R$ and $R^- \subseteq R$ of relevant and non-relevant documents, where $R^+ \cap R^- = \emptyset$, the query representation q can be refined with the document representations R using Rocchio’s update formula:

$$q' = \alpha \cdot q + \beta \cdot \frac{1}{|R^+|} \sum_{d^+ \in R^+} d^+ - \gamma \cdot \frac{1}{|R^-|} \sum_{d^- \in R^-} d^-,$$

where α, β, and γ adjust the impact of original query and (non-)relevant documents.

Observations:

- Terms not in query q may get added; often a limit is imposed (say, 50).
- Terms may accrue negative weight; such weights are set to 0.
- Moves the query vector closer to the centroid of relevant documents.
- Works well if relevant documents cluster; less suited for multi-faceted topics.

Relevance feedback can be obtained directly from the user, indirectly through user interaction, or automatically assuming the top-retrieved documents as relevant.
Vector Space Model

Discussion

Advantages:

- Improved retrieval performance compared to Boolean retrieval
- Partial query matching: not all query terms need to be present in a document for it to be retrieved
- The relevance function ρ defines a ranking among the retrieved documents with respect to their computed similarity to the query

Disadvantages:

- Index terms are assumed to occur independent of one another