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Binary Independence Model
Retrieval Model R = 〈D,Q, ρ〉 [

::::::::
Generic

:::::::
Model] [

::::::::
Boolean] [

:::::
VSM] [BIM] [BM25] [

:::
LSI] [

::::
ESA] [

:::
LM]

Document representations D.

q T = {t1, . . . , tm} is the set of m index terms (stemmed words).

q d = {d(t1), . . . ,d(tm)} is a set of random variables over d and T .

q d(t) = 1 if t occurs in d, and d(t) = 0 otherwise.

Query representations Q.

q q = {q(t1), . . . ,q(tm)} is a set of random variables over q and T .

q q(t) = 1 if t occurs in d, and q(t) = 0 otherwise.

Relevance function ρ. [
:::::::::::
Probability

::::::::
ranking

::::::::::
principle]

q rel : D ×Q→ {0, 1} indicates the true relevance of d to q for a given user.

q r = rel(d, q) is a random variable indicating user relevance for a given d and q.

q ρ(d, q) = P (r = 1 | d,q), the probability of relevance of d for q for the user.
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Remarks:

q The model is also known as Okapi model (based on the Okapi Information Retrieval System),
City model (based on its origin, the City University, London), or simply as the probabilistic
model.

q The joint probability space (Ω,P(Ω), P ) underlying the binary independence model is given
by the sample space Ω = {0, 1} × P(T ), where P(T ) denotes the set of all binary document
vectors over the set of terms T .

IR:III-46 Retrieval Models © HAGEN/POTTHAST/STEIN 2023



Binary Independence Model
Relevance Function ρ: Derivation

Let r = rel(d, q) denote the true (binary) relevance, and let d,q represent
document d and query q:

P (r = 1 | d,q)
rank
=

P (r = 1 | d,q)

P (r = 0 | d,q)
(1)

=
P (d | r = 1,q) P (r = 1 | q)

P (d | r = 0,q) P (r = 0 | q)
(2)

rank
=

P (d | r = 1,q)

P (d | r = 0,q)
(3)

(1) Rank-preserving replacement of P (A) by the odds
P (A)

P (A)
in favor of event A.

(2) Application of Bayes’ rule. The common denominator P (d | q) is canceled.

(3) Rank-preserving omission of
P (r = 1 | q)

P (r = 0 | q)
; it does not depend on d.
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Binary Independence Model
Relevance Function ρ: Derivation

Let d(t) denote if t occurs in d.

P (d | r = 1,q)

P (d | r = 0,q)
=

∏
t∈T

P (d(t) | r = 1,q)

P (d(t) | r = 0,q)
(4)

=
∏
t∈d

P (d(t) = 1 | r = 1,q)

P (d(t) = 1 | r = 0,q)

∏
t/∈d

P (d(t) = 0 | r = 1,q)

P (d(t) = 0 | r = 0,q)
(5)

=
∏
t∈d

pt
st

∏
t/∈d

1− pt
1− st

(6)

(4) Assuming independence between terms.

(5) Separation of the the two possible cases for d(t),
where t ∈ d means t ∈ T : d(t) = 1 and t /∈ d means t ∈ T : d(t) = 0.

(6) Abbreviation: pt = P (d(t) = 1 | r = 1,q) and st = P (d(t) = 1 | r = 0,q).
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Binary Independence Model
Relevance Function ρ: Derivation

∏
t∈d

pt
st

∏
t/∈d

1− pt
1− st

rank
=

∏
t∈q:
t∈d

pt
st

∏
t∈q:
t/∈d

1− pt
1− st

(7)

=
∏
t∈q:
t∈d

pt
st

∏
t∈q:
t/∈d

1− pt
1− st

(8)

rank
= (9)

(7) Assumption: pt=st for t /∈ q, i.e., non-query terms are equally likely in relevant
and non-relevant documents. Rank-preserving omission of these factors.

(8) Addition of all missing query terms to the right product and division by the
added factors to fulfill the equation.

(9) Rank-preserving omission of the right product; it does not depend on d.

IR:III-53 Retrieval Models © HAGEN/POTTHAST/STEIN 2023



Binary Independence Model
Relevance Function ρ: Derivation

∏
t∈d

pt
st

∏
t/∈d

1− pt
1− st

rank
=

∏
t∈q:
t∈d

pt
st

∏
t∈q:
t/∈d

1− pt
1− st

(7)

=
∏
t∈q:
t∈d

pt
st

∏
t∈q:
t/∈d

1− pt
1− st

(8)

rank
= (9)

(7) Assumption: pt=st for t /∈ q, i.e., non-query terms are equally likely in relevant
and non-relevant documents. Rank-preserving omission of these factors.

(8) Addition of all missing query terms to the right product and division by the
added factors to fulfill the equation.

(9) Rank-preserving omission of the right product; it does not depend on d.

IR:III-54 Retrieval Models © HAGEN/POTTHAST/STEIN 2023



Binary Independence Model
Relevance Function ρ: Derivation

∏
t∈d

pt
st

∏
t/∈d

1− pt
1− st

rank
=

∏
t∈q:
t∈d

pt
st

∏
t∈q:
t/∈d

1− pt
1− st

(7)

=
∏
t∈q:
t∈d

pt
st

∏
t∈q

1− pt
1− st

/
∏
t∈q:
t∈d

1− pt
1− st

(8)

rank
= (9)

(7) Assumption: pt=st for t /∈ q, i.e., non-query terms are equally likely in relevant
and non-relevant documents. Rank-preserving omission of these factors.

(8) Addition of all missing query terms to the right product and division by the
added factors to fulfill the equation.

(9) Rank-preserving omission of the right product; it does not depend on d.

IR:III-55 Retrieval Models © HAGEN/POTTHAST/STEIN 2023



Binary Independence Model
Relevance Function ρ: Derivation

∏
t∈d

pt
st

∏
t/∈d

1− pt
1− st

rank
=

∏
t∈q:
t∈d

pt
st

∏
t∈q:
t/∈d

1− pt
1− st

(7)

=
∏
t∈q:
t∈d

pt
st

∏
t∈q

1− pt
1− st

∏
t∈q:
t∈d

1− st
1− pt

(8)

rank
= (9)

(7) Assumption: pt=st for t /∈ q, i.e., non-query terms are equally likely in relevant
and non-relevant documents. Rank-preserving omission of these factors.

(8) Addition of all missing query terms to the right product and division by the
added factors to fulfill the equation.

(9) Rank-preserving omission of the right product; it does not depend on d.

IR:III-56 Retrieval Models © HAGEN/POTTHAST/STEIN 2023



Binary Independence Model
Relevance Function ρ: Derivation
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Binary Independence Model
Relevance Function ρ: Derivation
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∏
t∈q:
t∈d
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Binary Independence Model
Relevance Function ρ: Derivation

∏
t∈d

pt
st

∏
t/∈d

1− pt
1− st

rank
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pt
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∏
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∏
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∏
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∏
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(9) Rank-preserving omission of the right product; it does not depend on d.
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Binary Independence Model
Relevance Function ρ: Derivation

∏
t∈q:
t∈d

pt(1− st)
st(1− pt)

rank
= log

∏
t∈q:
t∈d

pt(1− st)
st(1− pt)

(10)

=
∑
t∈q:
t∈d

log
pt(1− st)
st(1− pt)︸ ︷︷ ︸
:= ωRSJ

(10) Rank-preserving logarithmization to allow for computations that do not
underflow common floating point number formats.
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Binary Independence Model
Relevance Function ρ: Derivation

∏
t∈q:
t∈d

pt(1− st)
st(1− pt)

rank
= log

∏
t∈q:
t∈d

pt(1− st)
st(1− pt)

(10)

=
∑
t∈q:
t∈d

log
pt(1− st)
st(1− pt)︸ ︷︷ ︸
:= ωRSJ

(10) Rank-preserving logarithmization to allow for computations that do not
underflow common floating point number formats.

In effect, we accumulate for each term t ∈ q the log odds ratio of the odds in favor
and the odds against t occurring in d if the document d is (non-)relevant to query q.

This ratio tells us how much more likely it is that t occurs in d if d is relevant to q.

RSJ ∼ Robertson Spärck-Jones
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Binary Independence Model
Relevance Function ρ: Estimation

Let D denote the document collection and Dt the subset containing term t.

∑
t∈q:
t∈d

log
pt(1− st)
st(1− pt)

rank
=

∑
t∈q:
t∈d

log
1− st
st

(11)

rank
=

∑
t∈q:
t∈d

log
|D| − |Dt| + 0.5

|Dt| + 0.5
(12)

(11) Assumption that a term t ∈ q is equally likely to be present or absent in a
random relevant document: pt = 0.5. This cancels pt and 1− pt.

(12) Maximum likelihood estimation of st = P (d(t) = 1 | r = 0,q):

st =
|Dt| + 0.5

|D| + 1.0
,

where adding 0.5 (1.0) is used for smoothing (avoiding zeros). Assumption
that |D| represents the set of non-relevant documents.
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Binary Independence Model
Relevance Function ρ: Estimation

Let D denote the document collection and Dt the subset containing term t.

∑
t∈q:
t∈d

log
pt(1− st)
st(1− pt)
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=

∑
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1− st
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(11)

rank
=

∑
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t∈d

log
|D| − |Dt| + 0.5

|Dt| + 0.5
(12)

(11) Assumption that a term t ∈ q is equally likely to be present or absent in a
random relevant document: pt = 0.5. This cancels pt and 1− pt.

(12) Maximum likelihood estimation of st = P (d(t) = 1 | r = 0,q):

st =
|Dt| + 0.5

|D| + 1.0
,

where adding 0.5 (1.0) is used for smoothing (avoiding zeros). Assumption
that |D| represents the set of non-relevant documents.
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Remarks:

q Adding 0.5 (1.0) in this way is a simple form of smoothing. For trials with categorical
outcomes (such as noting the presence or absence of a term), one way to estimate the
probability of an event from data is simply to count the number of times an event occurred
divided by the total number of trials. This relative is referred to as the relative frequency of
the event. Estimating the probability as the relative frequency is the maximum likelihood
estimate (or MLE), maximum because this value makes the observed data maximally likely.
However, if we simply use the MLE, then the probability given to events we happened to see
is usually too high, whereas other events may be completely unseen and giving them as a
probability estimate their relative frequency of 0 is both an underestimate and normally
breaks our models; anything multiplied by 0 is 0.
Simultaneously decreasing the estimated probability of seen events and increasing the
probability of unseen events is referred to as smoothing. One simple way of smoothing is to
add a number α (β) to each of the observed counts (totals). These pseudocounts correspond
to the use of a uniform distribution over the vocabulary as a Bayesian prior. We initially
assume a uniform distribution over events, where the size of α denotes the strength of our
belief in uniformity, and we then update the probability based on observed events. Because
our belief in uniformity is weak, we use α = 0.5, β = 1.0. This is a form of maximum a
posteriori (MAP) estimation, where we choose the most likely point value for probabilities
based on the prior and the observed evidence. [Manning/Raghavan/Schütze 2008]
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Binary Independence Model
Relevance Function ρ: Example

q = (a c h)

Term t a b c d e f g h

|Dt| 2 6 2 3 3 1 3 1

st 0.4 0.9 0.4 0.5 0.5 0.2 0.5 0.2

D = { d1 = (a b c b d),

d2 = (b e f b),

d3 = (b g c d),

d4 = (b d e),

d5 = (a b e g),

d6 = (b g h) }

ρ(di ,q) = log
1− 0.4

0.4︸ ︷︷ ︸
t = a

+ log
1− 0.4

0.4︸ ︷︷ ︸
t = c

+ log
1− 0.2

0.2︸ ︷︷ ︸
t = h

= log 1.5 + log 1.5 + log 4

= 0.1761 + 0.1761 + 0.6021

= 0.9543

Document ρ(di,q)

d1

d2

d3

d4

d5

d6

IR:III-65 Retrieval Models © HAGEN/POTTHAST/STEIN 2023



Binary Independence Model
Relevance Function ρ: Example

q = (a c h)

Term t a b c d e f g h

|Dt| 2 6 2 3 3 1 3 1

st 0.4 0.9 0.4 0.5 0.5 0.2 0.5 0.2

D = { d1 = (a b c b d),

d2 = (b e f b),

d3 = (b g c d),

d4 = (b d e),

d5 = (a b e g),

d6 = (b g h) }

ρ(d1,q) = log
1− 0.4

0.4︸ ︷︷ ︸
t = a

+ log
1− 0.4

0.4︸ ︷︷ ︸
t = c

+ log
1− 0.2

0.2︸ ︷︷ ︸
t = h

= log 1.5 + log 1.5 + log 4

= 0.1761 + 0.1761 + 0.6021

= 0.3522

Document ρ(di,q)

d1 0.3522

d2

d3

d4

d5

d6
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Binary Independence Model
Relevance Function ρ: Example

q = (a c h)

Term t a b c d e f g h

|Dt| 2 6 2 3 3 1 3 1

st 0.4 0.9 0.4 0.5 0.5 0.2 0.5 0.2

D = { d1 = (a b c b d),

d2 = (b e f b),

d3 = (b g c d),

d4 = (b d e),

d5 = (a b e g),

d6 = (b g h) }

ρ(d2,q) = log
1− 0.4

0.4︸ ︷︷ ︸
t = a

+ log
1− 0.4

0.4︸ ︷︷ ︸
t = c

+ log
1− 0.2

0.2︸ ︷︷ ︸
t = h

= log 1.5 + log 1.5 + log 4

= 0.1761 + 0.1761 + 0.6021

= 0

Document ρ(di,q)

d1 0.3522

d2 0

d3

d4

d5

d6
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Binary Independence Model
Relevance Function ρ: Example

q = (a c h)

Term t a b c d e f g h

|Dt| 2 6 2 3 3 1 3 1

st 0.4 0.9 0.4 0.5 0.5 0.2 0.5 0.2

D = { d1 = (a b c b d),

d2 = (b e f b),

d3 = (b g c d),

d4 = (b d e),

d5 = (a b e g),

d6 = (b g h) }

ρ(d3,q) = log
1− 0.4

0.4︸ ︷︷ ︸
t = a

+ log
1− 0.4

0.4︸ ︷︷ ︸
t = c

+ log
1− 0.2

0.2︸ ︷︷ ︸
t = h

= log 1.5 + log 1.5 + log 4

= 0.1761 + 0.1761 + 0.6021

= 0.1761

Document ρ(di,q)

d1 0.3522

d2 0

d3 0.1761

d4

d5

d6
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Binary Independence Model
Relevance Function ρ: Example

q = (a c h)

Term t a b c d e f g h

|Dt| 2 6 2 3 3 1 3 1

st 0.4 0.9 0.4 0.5 0.5 0.2 0.5 0.2

D = { d1 = (a b c b d),

d2 = (b e f b),

d3 = (b g c d),

d4 = (b d e),

d5 = (a b e g),

d6 = (b g h) }

ρ(d6,q) = log
1− 0.4

0.4︸ ︷︷ ︸
t = a

+ log
1− 0.4

0.4︸ ︷︷ ︸
t = c

+ log
1− 0.2

0.2︸ ︷︷ ︸
t = h

= log 1.5 + log 1.5 + log 4

= 0.1761 + 0.1761 + 0.6021

= 0.6021

Document ρ(di,q)

d1 0.3522

d2 0

d3 0.1761

d4 0

d5 0.1761

d6 0.6021
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Binary Independence Model
Relevance Function ρ: Example

q = (a c h)

Term t a b c d e f g h

|Dt| 2 6 2 3 3 1 3 1

st 0.4 0.9 0.4 0.5 0.5 0.2 0.5 0.2

D = { d1 = (a b c b d),

d2 = (b e f b),

d3 = (b g c d),

d4 = (b d e),

d5 = (a b e g),

d6 = (b g h) }

ρ(d6,q) = log
1− 0.4

0.4︸ ︷︷ ︸
t = a

+ log
1− 0.4

0.4︸ ︷︷ ︸
t = c

+ log
1− 0.2

0.2︸ ︷︷ ︸
t = h

= log 1.5 + log 1.5 + log 4

= 0.1761 + 0.1761 + 0.6021

= 0.6021

Ranking ρ(di,q)

d6 0.6021

d1 0.3522

d3 0.1761

d5 0.1761

d2 0

d4 0

IR:III-70 Retrieval Models © HAGEN/POTTHAST/STEIN 2023



Binary Independence Model
Relevance Function ρ: Example

q = (a c h)

Term t a b c d e f g h

|Dt| 2 6 2 3 3 1 3 1

st 0.4 0.9 0.4 0.5 0.5 0.2 0.5 0.2

D = { d1 = (a b c b d),

d2 = (b e f b),

d3 = (b g c d),

d4 = (b d e),

d5 = (a b e g),

d6 = (b g h) }

ρ(d6,q) = log
1− 0.4

0.4︸ ︷︷ ︸
t = a

+ log
1− 0.4

0.4︸ ︷︷ ︸
t = c

+ log
1− 0.2

0.2︸ ︷︷ ︸
t = h

= log 1.5 + log 1.5 + log 4

= 0.1761 + 0.1761 + 0.6021

= 0.6021

Ranking ρ(di,q)

d6 0.6021

d1 0.3522

d3 0.1761

d5 0.1761

d2 0

d4 0

Why is d6 the most relevant document?
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Binary Independence Model
Relevance Function ρ: Summary [

:::::::
Inverse

::::::::::::
Document

::::::::::::
Frequency]

ρ(d,q) = P (r = 1 | d,q) ∝
∑
t∈q:
t∈d

log
|D| − |Dt| + 0.5

|Dt| + 0.5︸ ︷︷ ︸
:= ωBIM ≈ idf (t,D)

Assumptions:

1. Binary relevance of a document d to a query q, independent of all other
documents.

2. Boolean representations d,q of document d and query q.

3. Independence of word occurrence in documents.

4. Terms not in query q are equally likely to occur in relevant and non-relevant
documents.

5. Terms in q are equally likely to occur or not to occur in a relevant document d.

6. The set of non-relevant documents is represented by the entire collection.
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Remarks:

q It is a personal observation that almost every mathematically inclined graduate student in
Information Retrieval attempts to formulate some sort of a non-independent model of IR
within the first two to three years of his or her studies. The vast majority of these attempts
yield no improvements and remain unpublished. [...] It is natural to wonder why this is the
case – the classical model contains an obviously incorrect assumption about the language,
and yet most attempts to relax that assumption produce no consistent improvements
whatsoever.
Contrary to popular belief, word independence is not a necessary assumption in the classical
probabilistic model of IR. A necessary and sufficient condition is proportional
interdependence [...]: on average, all the words in a given document have about as much
interdependence under the relevant class as they do under the non-relevant class. [...] the
only requirement is that whatever disbalance exists be constant across all documents. If
there is anything wrong with the classical model, it is not independence but the assumptions
made in the estimation process. [Lavrenko 2009]
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Binary Independence Model
Query Refinement: Relevance Feedback

Let R denote a result set for q, where R+ and R− are subsets of relevant and
non-relevant results from relevance feedback, and Rt the subset containing term t.

∑
t∈q:
t∈d

log
pt(1− st)
st(1− pt)

rank
=

∑
t∈q:
t∈d

log
(|R+

t | + 0.5)(|R−| − |R−t | + 0.5)

(|R−t | + 0.5)(|R+| − |R+
t | + 0.5)

(13)

(13) Assumption that partial knowledge of the true relevance function r is at hand:

t ∈ q Relevant Non-relevant Σ

t ∈ d |R+
t | |R−t | |Rt|

t /∈ d |R+ −R+
t | |R− −R−t | |R−Rt|

Σ |R+| |R−| |R|

Maximum likelihood estimation of pt = P (d(t) = 1 | r = 1,q) and
st = P (d(t) = 1 | r = 0,q) with smoothing:

pt =
|R+

t | + 0.5

|R+| + 1.0
; st =

|R−t | + 0.5

|R−| + 1.0
.
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Binary Independence Model
Query Refinement: Relevance Feedback Example

q = (b g h)

Term t a b c d e f g h

|R+
t | 1 2 1 1 1 1 0 0

|R−t | 1 3 1 2 2 0 2 0

pt 0.5 0.8 0.5 0.5 0.5 0.5 0.2 0.2
st 0.4 0.9 0.4 0.6 0.6 0.1 0.6 0.1

R = R+ ∪R−

R+ = { d1 = (a b c b d),

d2 = (b e f b) }

R− = { d3 = (b g c d),

d4 = (b d e),

d5 = (a b e g) }

d6 = (b g h)

ρ(d6,q) = log
0.8 · (1− 0.9)

0.9 · (1− 0.8)︸ ︷︷ ︸
t = b

+ log
0.2 · (1− 0.6)

0.6 · (1− 0.2)︸ ︷︷ ︸
t = g

+ log
0.2 · (1− 0.1)

0.1 · (1− 0.2)︸ ︷︷ ︸
t = h

= log 0.44 + log 0.17 + log 2.25

= −0.3522 + −0.7722 + 0.3522

= −0.7722
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Binary Independence Model
Query Refinement: Relevance Feedback

Initialization of pt = 0.5 and st as in the absence of relevance feedback. Updating of
pt based only on a given R may be unreliable, especially when |R| is small. A better
update formula for pt is as follows:

p′t =
|R+

t | + αpt
|R+| + α

,

where α adjusts the contribution of the previous feedback cycle (e.g., α = |R|).
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Binary Independence Model
Query Refinement: Relevance Feedback

Initialization of pt = 0.5 and st as in the absence of relevance feedback. Updating of
pt based only on a given R may be unreliable, especially when |R| is small. A better
update formula for pt is as follows:

p′t =
|R+

t | + αpt
|R+| + α

,

where α adjusts the contribution of the previous feedback cycle (e.g., α = |R|).

New terms may be added to query q from relevant documents in R+. A term
weighting scheme ω′(t) ranks terms, determining those that will maximally increase
the difference in average score between relevant and non-relevant documents:

ω′(t) = (P (d(t) = 1 | r = 1)− P (d(t) = 1 | r = 0)) ω(t) (1)

≈ P (d(t) = 1 | r = 1) ω(t) (2)

≈ |R
+
t |

|R+|
ω(t) (3)

rank
= |R+

t | log
pt(1− st)
st(1− pt)

(4)

IR:III-77 Retrieval Models © HAGEN/POTTHAST/STEIN 2023



Remarks:

q Assumptions [Robertson 2009]:

(1) Difference in average term weights between relevant and non-relevant documents.
(2) Omission of the second probability, which is usually much smaller than the first.
(3) Maximum likelihood estimation of the first probability as proportion of relevant

documents |R+
t | containing term t among all relevant documents |R+|.

(4) Multiplication by |R+|, which is a constant for a given query q’s result set R, and using
ωRSJ.

q The top-k terms are added to q; say, k = 10.
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Binary Independence Model
Discussion

Advantages:

q grounded in probabilistic theory

q performs well given some relevance feedback

q supplies theoretical justification of inverse document frequency

Disadvantages:

q in the absence of relevance feedback, only about 50% recall compared to a
tf · idf -based vector space model

q does not exploit term frequencies

q assumptions and rank-preserving simplifications do not generalize to retrieval
scenarios other than ad hoc retrieval
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Okapi BM25
Retrieval Model R = 〈D,Q, ρ〉 [

::::::::
Generic

:::::::
Model] [

::::::::
Boolean] [

:::::
VSM] [BIM] [BM25] [

:::
LSI] [

::::
ESA] [

:::
LM]

Document representations D.

q T = {t1, . . . , tm} is the set of m index terms (word stems, without stop words).

q T is interpreted as set of dimensions of an m-dimensional vector space.

q ω : D× T → R is a term weighting function, quantifying term importance.

q d = (w1, . . . , wm)T , where wi = ω(d, ti) is the term weight of the i-th term in T .

Query representations Q.

q q = (w1, . . . , wm)T , where wi = ω(q, ti) is the term weight of the i-th term in T .

Relevance function ρ.

q ρ(d, q) =
∑

t∈q ωBM25(t,d, D) is the sum of BM25 term weights in q given d.
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Okapi BM25
Background

Empirical evidence suggests that term frequency is an important factor in
determining the relevance of a document.

Relaxation of BIM to term frequencies within the
::::::::::::::::
2-Poisson

::::::::::
model:

q Change of the joint sample space to Ω = {0, 1}×N|T |, where N|T | denotes the
set of document vectors with term frequency weights over the set of terms T .

q Starting point is the RSJ weight of the binary independence model:

P (r = 1 | d,q) ∝ ωRSJ = log
pt(1− st)
st(1− pt)

q Estimation of pt = P (d(t) = tf (t,d) | r = 1,q) as mixture of two Poisson
distributions, distinguishing “elite” terms that occur unusually frequently from
others. An elite term t encodes whether d is about the concept underlying t.

q Problems: Poisson distribution is a poor fit; too many parameters

q Approach: empirical approximation of the term weight ωRSJ

q Resulted in the successful term weighting scheme Okapi BM25.
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Remarks:

q “Okapi” is the name of a retrieval system developed at City University London. “BM” stands
for Best Match, and the number 25 refers to the best-performing variant tried. Other variants
include BM0, BM1, BM11, and BM15. Here is an overview of all variants.

q We assume that each document is generated by filling a certain number of word-positions
(fixed length) from a vocabulary of words. Furthermore, we assume a simple multinomial
distribution over words, so that for each position each word has a fixed (small) probability of
being chosen, independent of what other words have been chosen for other positions. Then
it follows that the distribution of tfs [term frequencies] for a given word is binomial, which
approximates to a Poisson under these conditions.
The eliteness model can be seen as a simple topical model which causes variation in the
unigram distributions. The author is assumed first to choose which topics to cover, i.e., which
terms to treat as elite and which not. This defines specific probabilities for the unigram
model, and the author then fills the word-positions according to this chosen model.
This generative version of the 2-Poisson model (that is, a model for how documents are
generated) ties it very closely with the

::::::::::::
language

::::::::::
models.

The model depends fairly crucially on the notion that all documents are of the same (fixed)
length. [Robertson 2009]
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Okapi BM25
Term Weighting

ωBM25(t, d,D) = ωdtf(t, d) · ωqtf(t, q) · ωBIM(t,D)

ωdtf(t, d) =
(k1 + 1) · tf (t, d)

k1((1− b) + b· |d||d|avg
) + tf (t, d)

ωqtf(t, q) =
(k2 + 1) · tf (t, q)

k2 + tf (t, q)

ωBIM(t,D) = log
|D| − df (t,D)

df (t,D)
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Okapi BM25
Term Weighting

ωBM25(t, d,D) = ωdtf(t, d) · ωqtf(t, q) · ωBIM(t,D)

ωdtf(t, d) =
(k1 + 1) · tf (t, d)

k1((1− b) + b· |d||d|avg
) + tf (t, d)

ωqtf(t, q) =
(k2 + 1) · tf (t, q)

k2 + tf (t, q)

ωBIM(t,D) = log
|D| − df (t,D)

df (t,D)
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Okapi BM25
Term Weighting

ωBM25(t, d,D) = ωdtf(t, d) · ωqtf(t, q) · ωBIM(t,D)

ωdtf(t, d) =
(k1 + 1) · tf (t, d)

k1((1− b) + b· |d||d|avg
) + tf (t, d)

ωqtf(t, q) =
(k2 + 1) · tf (t, q)

k2 + tf (t, q)

ωBIM(t,D) = log
|D| − df (t,D)

df (t,D)
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Okapi BM25
Term Weighting

ωBM25(t, d,D) = ωdtf(t, d) · ωqtf(t, q) · ωBIM(t,D)

ωdtf(t, d) =
(k1 + 1) · tf (t, d)

k1((1− b) + b· |d||d|avg
) + tf (t, d)

ωqtf(t, q) =
(k2 + 1) · tf (t, q)

k2 + tf (t, q)

ωBIM(t,D) = log
|D| − df (t,D)

df (t,D)

Saturation:

q The eliteness of a term does not grow linearly with its frequency. This is
represented by the cumulative distribution function of a Poisson distribution.

q Normalizing term frequency by k1 + tf (t, d) yields a similar function for k1 > 0.

q Multiplying by (k1 + 1) ensures that the weights are ≥ 1.
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Okapi BM25
Term Weighting

ωBM25(t, d,D) = ωdtf(t, d) · ωqtf(t, q) · ωBIM(t,D)

ωdtf(t, d) =
(k1 + 1) · tf (t, d)

k1((1− b) + b· |d||d|avg
) + tf (t, d)

ωqtf(t, q) =
(k2 + 1) · tf (t, q)

k2 + tf (t, q)

ωBIM(t,D) = log
|D| − df (t,D)

df (t,D)

Document length:

q Normalization by the average document length |d|avg ensures independence
of datasets and implementation details.

q Why authors increase document length: verbosity or scope. The former
suggests normalization, the latter not: choose 0 ≤ b ≤ 1 for a mixture.
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Okapi BM25
Term Weighting

ωBM25(t, d,D) = ωdtf(t, d) · ωqtf(t, q) · ωBIM(t,D)

ωdtf(t, d) =
(k1 + 1) · tf (t, d)

k1((1− b) + b· |d||d|avg
) + tf (t, d)

ωqtf(t, q) =
(k2 + 1) · tf (t, q)

k2 + tf (t, q)

ωBIM(t,D) = log
|D| − df (t,D)

df (t,D)

Term frequency weighting for query:

q Like document term frequency weighting.

q Length normalization can be omitted if queries are generally short.

q Useful for query by example scenarios.
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Okapi BM25
Term Weighting

ωBM25(t, d,D) = ωdtf(t, d) · ωqtf(t, q) · ωBIM(t,D)

ωdtf(t, d) =
(k1 + 1) · tf (t, d)

k1((1− b) + b· |d||d|avg
) + tf (t, d)

ωqtf(t, q) =
(k2 + 1) · tf (t, q)

k2 + tf (t, q)

ωBIM(t,D) = log
|D| − df (t,D)

df (t,D)

Parameters:

q k1 must be optimized against D; k1 = 1.2 is a good value to start with.

q k2 must be optimized against Q; in practice 0 ≤ k2 ≤ 1000, the shorter the
queries, the less sensitive the overall weight is to k2.

q b must be optimized against D; b = 0.75 is a good value to start with.
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Okapi BM25
Term Weighting

ωBM25(t, d,D) = ωdtf(t, d) · ωqtf(t, q) · ωBIM(t,D)

ωdtf(t, d) =
(k1 + 1) · tf (t, d)

k1((1− b) + b· |d||d|avg
) + tf (t, d)

ωqtf(t, q) =
(k2 + 1) · tf (t, q)

k2 + tf (t, q)

ωBIM(t,D) = log
|D| − df (t,D)

df (t,D)

Extension: BM25F (simple)

If documents have fields of varying importance, they can be weighted as follows:

tf ′(t, d) =
∑
s∈d

ks · tf (t, s); |d|′ =
∑
s∈d

ks
∑
t∈s

tf (t, s), |d|′avg =
1

|D|
∑
d∈D

|d|′ ,

where each s denotes a field of document d, and ks the field-specific weight.
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Okapi BM25
Term Weighting

ωBM25(t, d,D) = ωdtf(t, d) · ωqtf(t, q) · ωBIM(t,D)

ωdtf(t, d) =
(k1 + 1) · tf (t, d)

k1((1− b) + b· |d||d|avg
) + tf (t, d)

ωqtf(t, q) =
(k2 + 1) · tf (t, q)

k2 + tf (t, q)

ωBIM(t,D) = log
|D| − df (t,D)

df (t,D)

Relevance Function ρ

ρ(d,q) =
∑
t∈q

ωBM25(t, d,D) ,

where D is the document collection indexed.
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Okapi BM25
Discussion

Advantages:

q Very good retrieval performance

q Well tunable to different retrieval scenarios

q Most terms can be precomputed at indexing time

Disadvantages:

q Departure from a rigorous theoretical probabilistic foundation
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