Chapter IR:V

V. Evaluation

- □ Laboratory Experiments
- □ Measuring Performance
- Set Retrieval Effectiveness
- Ranked Retrieval Effectiveness
- User Models
- □ Training and Testing
- □ Logging

Statistical Hypothesis Testing

Claim:

 System 1 is better than System 2 because it achieves an nDCG of 0.61, 0.13 more than System 2.

What would you reply to this claim?

Statistical Hypothesis Testing

Claim:

 System 1 is better than System 2 because it achieves an nDCG of 0.61, 0.13 more than System 2.

Supporting data:

	nD	CG	Mean
	Topic 1	Topic 2	
System 1	0.78	0.44	0.61
System 2	0.52	0.44	0.48
Difference	+0.26	± 0.00	+0.13

What would you reply to this data?

Statistical Hypothesis Testing

Claim:

 System 1 is better than System 2 because it achieves an nDCG of 0.61, 0.13 more than System 2.

Supporting data:

	nD	CG	Mean
	Topic 1	Topic 2	
System 1	0.78	0.44	0.61
System 2	0.52	0.44	0.48
Difference	+0.26	±0.00	+0.13

Rebuttal:

- □ That was just luck.
- □ With more topics, the gains and losses may even out.
- → Although better on a specific topic, System 1 is not really shown more effective than System 2.

Statistical Hypothesis Testing

			nD	CG			Mean
	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	
System 1	0.78	0.44	0.54	0.62	0.45	0.22	0.51
System 2	0.52	0.44	0.55	0.32	0.12	0.13	0.35
Difference	+0.26	± 0.00	-0.01	+0.30	+0.33	+0.09	+0.16

Given these results, determine whether they have been obtained by chance.

Statistical Hypothesis Testing

			nD	CG			Mean
	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	
System 1	0.78	0.44	0.54	0.62	0.45	0.22	0.51
System 2	0.52	0.44	0.55	0.32	0.12	0.13	0.35
Difference	+0.26	±0.00	-0.01	+0.30	+0.33	+0.09	+0.16

Given these results, determine whether they have been obtained by chance.

Null hypothesis:

- The nDCG values of both systems are drawn from the same underlying probability distribution.
- □ The differences observed arise from the natural variation of that distribution.
- → The differences are randomly distributed.

Employ a test statistic to compute the probability p of observing the differences if the null hypothesis were true. If the p value is small, the null hypothesis may be false.

Typically, p < 0.05 suffices to claim that the differences are statistically significant.

Statistical Hypothesis Testing

			nD	CG			Mean
	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	
System 1	0.78	0.44	0.54	0.62	0.45	0.22	0.51
System 2	0.52	0.44	0.55	0.32	0.12	0.13	0.35
Difference	+0.26	± 0.00	-0.01	+0.30	+0.33	+0.09	+0.16

Given these results, determine whether they have been obtained by chance.

Illustration:

Remarks:

□ Rejecting the null hypothesis based on a small *p* value does not necessarily mean we can accept the opposing hypothesis as true.

Statistical Hypothesis Testing: Sign Test

			nD	CG			Mean
	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	
System 1	0.78	0.44	0.54	0.62	0.45	0.22	0.51
System 2	0.52	0.44	0.55	0.32	0.12	0.13	0.35
Difference	+0.26	±0.00	-0.01	+0.30	+0.33	+0.09	+0.16
Sign	+	=	_	+	+	+	n/a

Statistical Hypothesis Testing: Sign Test

			nD	CG			Mean
	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	
System 1	0.78	0.44	0.54	0.62	0.45	0.22	0.51
System 2	0.52	0.44	0.55	0.32	0.12	0.13	0.35
Difference	+0.26	±0.00	-0.01	+0.30	+0.33	+0.09	+0.16
Sign	+	=	_	+	+	+	n/a

Procedure:

- \Box Sign + denotes System 1 > System 2, the opposite, and = a tie.
- **\Box** Test statistic: number *m* of + signs.

Null hypothesis:

□ Disregarding =, the probability of + and - is equal: P(+) = P(-) = 0.5.

Assumptions:

- □ The topics are independent of each other.
- □ The differences are drawn from the same distribution.
- □ The individual scores for each topic can be meaningfully compared.

Statistical Hypothesis Testing: Sign Test

			nD	CG			Mean
	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	
System 1	0.78	0.44	0.54	0.62	0.45	0.22	0.51
System 2	0.52	0.44	0.55	0.32	0.12	0.13	0.35
Difference	+0.26	±0.00	-0.01	+0.30	+0.33	+0.09	+0.16
Sign	+	=	_	+	+	+	n/a

If the null hypothesis were true, what is the probability of observing at least m = 4 times + out of n = 5 experiments?

If P(+) = P(-) = 0.5 holds, the test statistic is B(n; 0.5; k)-distributed (binomially):

$$p = P('+' \ge m) = \sum_{k=m}^{n} \frac{n!}{k!(n-k)!} \cdot P(+)^k \cdot P(-)^{n-k} \qquad \underset{n=5}{\overset{m=4}{\leadsto}} \qquad \frac{5+1}{32} = 0.1875$$

Conclusions:

- \Box The differences of Systems 1 and 2 are not statistically significant as p > 0.05.
- □ We cannot reject the null hypothesis.
- □ Under the sign test, Systems 1 and 2 must be presumed equally effective.

IR:V-110 Evaluation

Remarks:

u With P(+) = P(-) = 0.5, we have

$$\sum_{k=m}^{n} \frac{n!}{k!(n-k)!} \cdot P(+)^{k} \cdot P(-)^{n-k} = \sum_{k=m}^{n} \frac{n!}{k!(n-k)!} \cdot P(+)^{n-k}$$

and with m = 4 and n = 5 this yields

$$\sum_{k=4}^{5} \frac{n!}{k!(n-k)!} \cdot P(+)^{n} = \frac{5!}{4!(5-4)!} \cdot (0.5)^{5} + \frac{5!}{5!(5-5)!} \cdot (0.5)^{5} = 5 \cdot \frac{1}{32} + 1 \cdot \frac{1}{32} = \frac{5+1}{32} + \frac{5+1}{32}$$

Statistical Hypothesis Testing: Student's t-test

			Mean	s				
	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6		
System 1	0.78	0.44	0.54	0.62	0.45	0.22	0.51	0.19
System 2	0.52	0.44	0.55	0.32	0.12	0.13	0.35	0.19
Difference	+0.26	± 0.00	-0.01	+0.30	+0.33	+0.09	+0.16	0.15

Procedure:

- □ Compute the score differences of the scores of Systems 1 and 2.
- □ Test statistic: $t = (\bar{d} \mu_0)/(s_d/\sqrt{n})$ for *n* topics, where \bar{d} denotes the average difference between Systems 1 and 2, μ_0 the expected difference, and s_d the observed standard deviation.

Null hypothesis:

 \Box The average difference \bar{d} is at most μ_0 .

Assumptions:

- □ The topics are independent of each other.
- □ The differences are approximately normally distributed.

Statistical Hypothesis Testing: Student's t-test

			Mean	s				
	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6		
System 1	0.78	0.44	0.54	0.62	0.45	0.22	0.51	0.19
System 2	0.52	0.44	0.55	0.32	0.12	0.13	0.35	0.19
Difference	+0.26	±0.00	-0.01	+0.30	+0.33	+0.09	+0.16	0.15

If the null hypothesis were true, what is the probability of observing $\bar{d} = 0.16$ and $s_d = 0.15$ for n = 6 at an expected $\mu_0 = 0$?

The test statistic is *t*-distributed with n - 1 degrees of freedom:

$$t = \frac{0.16 - 0}{0.15/\sqrt{6}} = 2.613 \quad \rightsquigarrow \quad t(0.975; n - 1) < 1 - p < t(0.99; n - 1)$$

t-distribution table [Wikipedia]:

\overline{n}	0.75	0.80	0.85	0.90	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
:											
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959

IR:V-113 Evaluation

Statistical Hypothesis Testing: Student's t-test

			Mean	s				
	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6		
System 1	0.78	0.44	0.54	0.62	0.45	0.22	0.51	0.19
System 2	0.52	0.44	0.55	0.32	0.12	0.13	0.35	0.19
Difference	+0.26	± 0.00	-0.01	+0.30	+0.33	+0.09	+0.16	0.15

If the null hypothesis were true, what is the probability of observing $\bar{d} = 0.16$ and $s_d = 0.15$ for n = 6 at an expected $\mu_0 = 0$?

The test statistic is *t*-distributed:

$$t = \frac{0.16 - 0}{0.15/\sqrt{6}} = 2.613 \quad \rightsquigarrow \quad p = 0.025 \,,$$

where p has been computed precisely using an implementation of the t-distribution.

Conclusions:

- $\hfill\square$ The differences of Systems 1 and 2 are statistically significant as p < 0.05.
- □ We can reject the null hypothesis.
- Under the Student's t-test, System 1 may be better than System 2.

Statistical Hypothesis Testing: Power Analysis and Effect Size

Power Analysis [Wikipedia] [G*Power]

- □ Estimation of the probability of rejecting the null hypothesis of a binary hypothesis test.
- □ Applied before conducting an experiment to determine the sample size (number of topics).
- □ Hypothesis tests with "more power" have a higher likelihood of rejecting the null hypothesis given the alternative hypothesis is true.
- □ The sign test has less power than the t-test.

Effect Size Estimation [Wikipedia]

- Quantification of the magnitude of a phenomenon (e.g., an observed significance)
- □ Effect size does not directly determine significance, nor vice versa.
- Sufficiently large sample sizes will always yield statistical significance unless the population effect size is exactly zero.
- □ An effect size score shows how "substantive" a statistically significant result is.
- □ About 50 to 100 different measures of effect size are known: For the Student's t-test, Cohen's *d* is a well-known effect size estimator.

Remarks:

 \Box For the example above, Cohen's d = 0.84.

Common interpretation:

Effect size	d
Very small	0.01
Small	0.20
Medium	0.50
Large	0.80
Very large	1.20
Huge	2.00

Hyperparameter Optimization

Retrieval systems possess many parameters, many of which affect retrieval effectiveness. Examples: algorithm parameters, alternative algorithms for a subtask, weights of document fields.

In IR, hyperparameter optimization often boils down to trial and error:

□ Grid search.

Systematic trials of all parameter combinations from pre-specified value ranges and steps for each parameter.

□ Random search.

Selection of a random subset of all parameter combinations of pre-specified value ranges and steps for each parameter.

Ideally, parameters are optimized based on a 3-way split of the available data into subsets used for training, validation, and test.

Training data are used to fine-tune learning algorithms. Validation data are used to repeatedly check a retrieval system's performance trajectory during optimization. Test data are used once at the end as a final check.