
Chapter T:IV (continued)

IV. Data Processing Stack
q MapReduce
q Hadoop
q Docker

Logo credits: docker.com

T:IV-1 Docker © Bevendorff/Kiesel 2023

https://www.docker.com/

Docker
Basics

Fundamentally, Docker is

q a specification for layered operating system images,

q a container runtime.

T:IV-2 Docker © Bevendorff/Kiesel 2023

Docker
Basics

Fundamentally, Docker is

q a specification for layered operating system images,

q a container runtime.

Historically, both were proprietary technologies developed by Docker, Inc. Yet, to
foster standardization, they were donated to the Open Container Initiative (OCI), a
Linux Foundation project, in 2019.

Today, Docker is primarily an implementation of the OCI platform, but for the sake of
simplicity, we will use both synonymously.

T:IV-3 Docker © Bevendorff/Kiesel 2023

https://opencontainers.org/

Docker
Container Virtualization

Containers are a lightweight, OS-level virtualization method for running multiple
userspace instances under the same host kernel.

Contrary to “full” virtualization, no hardware is abstracted. This makes containers
comparably lightweight and about as fast as the host system.

Hence containers serve as a suitable solution for

q sandboxing individual applications or services with different levels of access
to resources of the host,

q namespacing deployments for running them in parallel without conflicts with
each other or the host.

T:IV-4 Docker © Bevendorff/Kiesel 2023

Docker
Container Virtualization

Hypervisor

Host Operating System

Physical Hardware

Guest OS

Virtual Hardware

Libraries

Application

Guest OS

Libraries

Application

Container Runtime

Host Operating System

Physical Hardware

Libraries Libraries

Virtual Machines Docker

Application Application

q The Docker container runtime runs as a daemon on the host system.

q Containers load an image containing a root file system.

q The kernel is shared between host and container, removing the need for full virtualization.

T:IV-5 Docker © Bevendorff/Kiesel 2023

Docker
Docker Images

Layer 2

Layer 1

Dockerfile

FROM ...

RUN ...

RUN ...

COPY ...

Layer 0

Layer 3

Base Layer

Top Layer

q Docker containers are created from pre-compiled images.

q Images are built from Dockerfile recipes and have multiple layers.

q Images can use other images as base layer.

q Layers allow reuse of identical image parts and efficient build caching.

q Layers are not free and their size and number should be kept to a minimum.

q At runtime, a copy-on-write layer is added on top to allow in-memory modifications.

T:IV-6 Docker © Bevendorff/Kiesel 2023

Docker
Docker Images (continued)

q Ready-to-use images can be loaded from [Docker Hub].

Docker pulls images automatically from Docker Hub first time they are started.

q A number of “official” OSS images are maintained by Docker, Inc. [Docker Hub]

q Application authors can build their own image with a custom Dockerfile.

T:IV-7 Docker © Bevendorff/Kiesel 2023

https://hub.docker.com/
https://hub.docker.com/search/?q=&type=image&image_filter=official

Docker
Running Containers

Start a container: [Docs]

$ docker run [--rm] [-ti] [--name CONT_NAME] \
[-v HOST_PATH:CONT_PATH ...] \
[-p [HOST_IFACE:]HOST_PORT:CONT_PORT ...] \

IMG_NAME[:TAG] [CMD]

-t and -i required for an interactive shell, --rm removes the container after use

-v mounts host paths into container, -p forwards host ports to container

Execute a command inside an already running container: [Docs]

$ docker exec [-ti] CONT_NAME CMD

T:IV-8 Docker © Bevendorff/Kiesel 2023

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/commandline/exec/

Docker
Stopping Containers

Stop a container gracefully (SIGTERM): [Docs]

$ docker stop [-t TIMEOUT] CONT_NAME

Brutally murder it (SIGKILL): [Docs]

$ docker kill [-s SIGNAL] CONT_NAME

-s also allows sending other signals such as SIGHUP

T:IV-9 Docker © Bevendorff/Kiesel 2023

https://docs.docker.com/engine/reference/commandline/stop/
https://docs.docker.com/engine/reference/commandline/kill/

Docker
Building and Pulling Images

Build an image from a Dockerfile: [Docs]

$ docker build [--no-cache] [-t IMG_NAME[:TAG]] PATH

PATH is the directory containing the Dockerfile (usually just .)

Pull or update an image explicitly: [Docs]

$ docker pull IMG_NAME[:TAG]

The suffix TAG designates the image version and defaults to latest.

T:IV-10 Docker © Bevendorff/Kiesel 2023

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/pull/

Docker
Building and Pulling Images (continued)

In the following, we will use two images built from these Dockerfile snippets:

q Image my-image:

FROM alpine

CMD ["sh", "-c", "echo Hello World!"]

q Image my-server-image:

FROM httpd:2.4

RUN echo "Hello World" > /usr/local/apache2/htdocs/index.html

CMD ["httpd-foreground"]

T:IV-11 Docker © Bevendorff/Kiesel 2023

Docker
Exercise: Running Containers

q Build and run my-image:

$ docker build -t my-image my-image-src-dir
$ docker run --rm my-image
Hello World!

q Build and run my-server-image (stop the container with CTRL+C):

$ docker build -t my-server-image my-server-image-src-dir
$ docker run --rm --name my-server-container \

-p 8001:80 my-server-image

Test: http://localhost:8001/

q Run the same image, but serving your current directory:

$ docker run --rm --name my-server-container \

-v "$PWD":/usr/local/apache2/htdocs/ \

-p 8001:80 my-server-image

(sudo is required if your user is not part of the docker group)

T:IV-12 Docker © Bevendorff/Kiesel 2023

http://localhost:8001/

Docker
Exercise: Containers are Persistent

q Run the server image in the background:

$ docker run -d --name my-server-container \
-p 8001:80 my-server-image

Test: http://localhost:8001/

Show running containers: $ docker ps

q Connect to the container and change the file contents:

$ docker exec -it my-server-container bash

echo "Hello Docker" > htdocs/index.html

exit

Test again: http://localhost:8001/

q Stop, restart, kill, and delete the container:

$ docker stop my-server-container

$ docker start my-server-container

$ docker kill my-server-container

$ docker rm my-server-container

T:IV-13 Docker © Bevendorff/Kiesel 2023

http://localhost:8001/
http://localhost:8001/

Docker
Exercise: Working with Docker Hub

If an image should be run that is not available locally, it is fetched from an online
registry. The default registry is Docker Hub, yet there are many others. [webis repository]

q Authenticate with Docker Hub:

$ docker login
Username: yourusername
Password: yourpassword

q Update image name and push it to your Docker Hub namespace:

$ docker tag my-image yourusername/my-image:1.0

$ docker push yourusername/my-image:1.0

T:IV-14 Docker © Bevendorff/Kiesel 2023

https://hub.docker.com/
https://hub.docker.com/u/webis

Docker
Introduction

A Dockerfile is a sequential recipe for building an image. [Docs]

The most important commands are:

q FROM define the base image (e.g., ubuntu:18.04, alpine:3.10)

q RUN run a shell command (e.g., install packages)

q ENV set environment variables

q COPY copy files from the build context into the image

q ADD same as COPY, but also supports URLs (avoid if possible)

q WORKDIR default working directory inside the container

q ENTRYPOINT executable to run as PID 1 inside the container

q CMD command passed to ENTRYPOINT (if none given to docker run)

T:IV-15 Docker © Bevendorff/Kiesel 2023

https://docs.docker.com/engine/reference/builder/

Docker
Introduction (continued)

q Dockerfile best practices have been devised to ensure images are. . .

– . . . as reusable as possible

– . . . as lightweight as possible

– . . . as secure as possible

q In the following, the three most important ones are listed. [Docs]

T:IV-16 Docker © Bevendorff/Kiesel 2023

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Docker
BP I: Reduce Image Size

Use the correct base image. Ubuntu is convenient, but not the smallest.

Common options are:

q ubuntu:20.04|focal (∼72 MB)

q centos:8 (∼230 MB)

q debian:11|bullseye (∼125 MB)

q alpine:3|3.15 (∼5 MB)

More specialized images are available also (e.g., openjdk, python).

T:IV-17 Docker © Bevendorff/Kiesel 2023

Docker
BP I: Reduce Image Size (continued)

RUN, COPY, ADD all create new layers.

q Use them sparingly

q Combine shell commands

T:IV-18 Docker © Bevendorff/Kiesel 2023

Docker
BP I: Reduce Image Size (continued)

RUN, COPY, ADD all create new layers.

q Use them sparingly

q Combine shell commands

Example:

RUN apt-get update \
&& apt-get install -y \

build-essential \
curl \
gosu

T:IV-19 Docker © Bevendorff/Kiesel 2023

Docker
BP I: Reduce Image Size (continued)

Clean up as many files as you can, but make sure you do it on the same layer.

q Clean up temporary build files and package manager caches

q Use --no-install-recommends for installation via apt-get

q Run apt-get autoremove (if needed)

q Use .dockerignore to exclude unwanted files from COPY and ADD [Docs]

T:IV-20 Docker © Bevendorff/Kiesel 2023

https://docs.docker.com/engine/reference/builder/#dockerignore-file

Docker
BP I: Reduce Image Size (continued)

Clean up as many files as you can, but make sure you do it on the same layer.

q Clean up temporary build files and package manager caches

q Use --no-install-recommends for installation via apt-get

q Run apt-get autoremove (if needed)

q Use .dockerignore to exclude unwanted files from COPY and ADD [Docs]

Example:

RUN apt-get update \
&& apt-get install -y --no-install-recommends \

build-essential \
curl \
gosu

&& apt-get autoremove

&& rm -rf /var/lib/apt/lists/*

T:IV-21 Docker © Bevendorff/Kiesel 2023

https://docs.docker.com/engine/reference/builder/#dockerignore-file

Docker
BP II: Write Proper Entrypoints

Custom ENTRYPOINT scripts let you run your app with lowest possible privileges.

q Use gosu or su-exec for dropping privileges

q Do not use su, do not use sudo [Here’s why]

T:IV-22 Docker © Bevendorff/Kiesel 2023

https://github.com/tianon/gosu
https://github.com/ncopa/su-exec
https://ruderich.org/simon/notes/su-sudo-from-root-tty-hijacking

Docker
BP II: Write Proper Entrypoints

Custom ENTRYPOINT scripts let you run your app with lowest possible privileges.

q Use gosu or su-exec for dropping privileges

q Do not use su, do not use sudo [Here’s why]

docker-entrypoint.sh:

#!/bin/sh

set -e # Fail if subcommand errors

if ["$1" = "postgres"]; then # Check if CMD is postgres

exec gosu postgres "$@" # Exec CMD as postgres user

fi

exec "$@" # Exec all other CMDs as root

T:IV-23 Docker © Bevendorff/Kiesel 2023

https://github.com/tianon/gosu
https://github.com/ncopa/su-exec
https://ruderich.org/simon/notes/su-sudo-from-root-tty-hijacking

Docker
BP II: Write Proper Entrypoints

Custom ENTRYPOINT scripts let you run your app with lowest possible privileges.

q Use gosu or su-exec for dropping privileges

q Do not use su, do not use sudo [Here’s why]

docker-entrypoint.sh:

#!/bin/sh

set -e # Fail if subcommand errors

if ["$1" = "postgres"]; then # Check if CMD is postgres

exec gosu postgres "$@" # Exec CMD as postgres user

fi

exec "$@" # Exec all other CMDs as root

T:IV-24 Docker © Bevendorff/Kiesel 2023

https://github.com/tianon/gosu
https://github.com/ncopa/su-exec
https://ruderich.org/simon/notes/su-sudo-from-root-tty-hijacking

Docker
BP II: Write Proper Entrypoints

Custom ENTRYPOINT scripts let you run your app with lowest possible privileges.

q Use gosu or su-exec for dropping privileges

q Do not use su, do not use sudo [Here’s why]

docker-entrypoint.sh:

#!/bin/sh

set -e # Fail if subcommand errors

if ["$1" = "postgres"]; then # Check if CMD is postgres

exec gosu postgres "$@" # Exec CMD as postgres user

fi

exec "$@" # Exec all other CMDs as root

Dockerfile:

COPY ./docker-entrypoint.sh /

ENTRYPOINT ["/docker-entrypoint.sh"]

CMD ["postgres"]

T:IV-25 Docker © Bevendorff/Kiesel 2023

https://github.com/tianon/gosu
https://github.com/ncopa/su-exec
https://ruderich.org/simon/notes/su-sudo-from-root-tty-hijacking

Docker
BP II: Write Proper Entrypoints (continued)

Avoid the shell form of ENTRYPOINT and CMD.

Both are possible:

ENTRYPOINT ["/docker-entrypoint.sh"]

ENTRYPOINT "/docker-entrypoint.sh"

Avoid the second form:

q The value of CMD will be ignored

q Your entrypoint will be wrapped in a /bin/sh call and will not be PID 1

q Your entrypoint will not receive UNIX signals from docker stop

T:IV-26 Docker © Bevendorff/Kiesel 2023

Docker
BP III: Leverage Build Cache

Building images takes time. Leverage the build cache by. . .

q . . . using the most specific base image that makes sense

q . . . ordering commands from least to most frequently updated

Putting COPY or ADD last avoids many accidental rebuilds.

Make sure each layer is consistent in itself.

(e.g., always run apt-get update on same layer as package installations)

T:IV-27 Docker © Bevendorff/Kiesel 2023

Docker
Useful Debugging Guidelines

If a Dockerfile is not working as expected, consider the following steps:

q Re-run build with --no-cache. If that helps, your layers are inconsistent.

q Check execution rights of all script files (particularly docker-entrypoint.sh).

q Prefix RUN commands with set -x to print commands after shell expansion:

RUN set -x \
&& apt-get update ...

q When combining shell commands, it is easy to forget \ or &&.

q Make sure you have no silent shell command failures. set -e may help.

q Check if all needed packages are installed.

--no-install-recommends or autoremove can be surprising at times.

q Ensure that all commands run non-interactively (e.g., use -y for all apt-get commands).

T:IV-28 Docker © Bevendorff/Kiesel 2023

Docker
References

q Official Docker Documentation
https://docs.docker.com/

q Open Container Initiative
https://opencontainers.org/

q Getting Started Guide
https://docs.docker.com/get-started/

q Dockerfile Reference
https://docs.docker.com/engine/reference/builder/

q Dockerfile Best Practices
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

q Docker Hub Browser
https://hub.docker.com/search?q=&type=image

q Docker Hub Browser: “Official” Images
https://hub.docker.com/search?q=&type=image&image_filter=official

T:IV-29 Docker © Bevendorff/Kiesel 2023

https://docs.docker.com/
https://opencontainers.org/
https://docs.docker.com/get-started/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://hub.docker.com/search?q=&type=image
https://hub.docker.com/search?q=&type=image&image_filter=official

