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Exploitation of Data
Data Events

Data from a “predictor-response” setting:

D = {(x1, y1), . . . , (xn, yn)} (regression)

D = {(x1, c1), . . . , (xn, cn)} (classification)

q D is the result of n i.i.d. trials. I.e., n objects are sampled independently and
from the same probability distribution. All objects are characterized by a
“response” variable that is either quantitative (a number y) or categorical
(a class label c), and by p “predictors” (a feature vector x).

q p(xi, ci), p(xi, ci) := P (Xi=xi,Ci=ci), is the probability of the joint event
{Xi=xi,Ci=ci}, i.e., (1) to get the vector xi, and, (2) that the respective object
belongs to class ci. The p(xi, yi) are defined analogously.

q The Yi, Ci, and Xi are i.i.d. (multivariate) random variables. Typically, the Yi

are of continuous type, the Ci of discrete type, and the variables of the
random vector Xi, Xi := (X1,i, . . . ,Xp,i)

T , of continuous type.
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Exploitation of Data
Data Events (continued)

Data from an “outcome-only” setting:

D = {y1, . . . , yn} (quantitative)

D = {c1, . . . , cn} (categorical)

q D is the result of n i.i.d. trials. I.e., n outcomes are sampled independently
and from the same probability distribution. All outcomes are characterized by
either a number y or a class label c.

q p(yi), p(yi) := P (Yi=yi), is the probability of the event Yi=yi.
p(ci), p(ci) := P (Ci=ci), is the probability of the event Ci=ci.

q The Yi, and Ci are i.i.d. random variables. Typically, the Yi are of continuous
type and the Ci of discrete type.
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Remarks (predictor-response setting) :

q The following remarks on the predictor-response setting are detailed for a categorical
response variable c; they apply to a quantitative response variable y as well.

q By experiment design, the n joint events, {X1=x1,C1=c1}, . . . , {Xn=xn,Cn=cn}, generating
the data D are mutually independent:

p(D) = p ({(x1, c1), . . . , (xn, cn)}) =
∏

i=1,...,n p(xi, ci)
(1)
=
∏

i=1,...,n

(
p(ci | xi) · p(xi)

)
=
∏

i=1,...,n p(xi) ·
∏

i=1,...,n p(ci | xi)

(1) Usually not independent are any two events Xi=xi and Ci=ci, i = 1, . . . , n :
p(xi, ci) 6= p(xi) · p(ci)

For maximizing p(D), see the maximum likelihood derivation of the
:::::::::
logistic

::::::
loss

:::::::::
Lσ(w).

q By experiment design, the probabilities, p(xi), i = 1, . . . , n, are independent, i.e., the
probability of the joint event {X1=x1, . . . ,Xn=xn} is equal to the product of the singleton
events: p(x1, . . . ,xn) =

∏
i=1,...,n p(xi).

A consistent and unbiased estimate for p(x) is p̂(x) = |{(x, · ) ∈ D}| · 1
|D| .

q By experiment design, the conditional probabilities, p(ci | xi), i = 1, . . . , n, are invariant under
covariate shift, i.e., invariant under a change of p(xi). That is, the classification procedure,
“determination of ci given some xi”, always runs the same way, regardless of how often xi is
encountered.
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Remarks: (continued)

q The invariance of p(ci | xi) under a covariate shift can also be understood as the fact that any
two events Xi=xi and (Ci=ci | Xi=xi), i = 1, . . . , n are independent:

“p(x, (c | x))” = p(x) · p(c | x) = p(x, c)

However, this interpretation is problematic since standard probability theory does not allow a
conditional event being combined with other events. See section

:::::::::::::
Probability

:::::::::
Basics of this

part, conditional event algebra, and Lewis’s triviality result for details.

q Within an outcome-only setting such as “flipping a coin”, the object features (coin diameter,
coin age, etc.) are not used as predictors. I.e., one does not model the relationship between
a response variable and predictors x but models (the probability of) a sequence of outcomes
D = {y1, . . . , yn} or D = {c1, . . . , cn}.

q The type of setting, be it predictor-response or outcome-only, is independent of data
exploitation aspects such as

– discriminative versus generative,
– non-probabilistic versus probabilistic,
– maximum likelihood versus Bayes, or
– frequentist versus subjectivist.
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Exploitation of Data
Data Set Illustration

D in a predictor-response setting: D in an outcome-only setting:
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Exploitation of Data
Data Set Illustration
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Exploitation of Data
Data Set Illustration

D in a predictor-response setting: D in an outcome-only setting:
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Remarks:

q The illustration shows the distribution of the observations D : combinations of feature vectors
and classes in the predictor-response setting (left), and classes in the outcome-only setting
(right). The tiles correspond to absolute frequencies, relative frequencies, or probabilities.
The tile shading indicates the magnitude.

q In a predictor-response setting, a hypothesis usually corresponds to a weight vector w; in an
outcome-only setting, a hypothesis usually corresponds to the distribution paramter(s) θ.

q From the same dataset D different hypotheses can be derived or “learned”.

– Different estimations for w in the predictor-response setting result from different model
function types, different loss definitions, or different regularization constraints.

– Moreover, in both settings, different estimations for w or θ can result from different
(subjective) prior probabilities, knowledge regarding the (non)reliability of the data D, or
desired properties regarding the minimization of false positives or false negatives.
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Exploitation of Data
Typical Learning Settings

D = {(x1, y1), . . . , (xn, yn)}, D = {(x1, c1), . . . , (xn, cn)}

(1) RSS(w) :
∑

(x,y)∈D

(y −wTx)2
RSS for D under a linear model, parameterized by w.
Least squares estimate: ŵ = argminw∈Rp+1 RSS(w)

(2) p(D;w) :
∏

(x,c)∈D

p(c | x;w)

Probability of D under a logistic model, parameterized
by w. Maximum likelihood estimate:
wML = argmaxw∈Rp+1 p(D;w)

(3) L(w) :
∑

(x,c)∈D

lσ(c, σ(w
Tx))

Loss for D under a logistic model, parameterized by w.
Minimum loss (= maximum likelihood) estimate:
ŵ = argminw∈Rp+1 L(w)

(4) p(c | x) :
p(x | c) · p(c)

p(x)

Probability of c given x via Bayes’s rule. Maximum
a posteriori class for x : cMAP = argmaxc∈{⊕,	} p(c | x)

D = {y1, . . . , yn}, D = {c1, . . . , cn}

(5) p(D; θ) :
(
n

k

)
· θk · (1− θ)n−k

Probability of D under the binomial distribution,
parameterized by θ. Maximum likelihood estimate:
θML = argmaxθ∈[0;1] p(D; θ)

(6) p(θ | D) :
p(D | θ) · p(θ)

p(D)

Probability of θ given D via Bayes’s rule. Maximum
a posteriori hypothesis: θMAP = argmaxθ∈{θ1,θ2} p(θ | D)

ML:VII-111 Bayesian Learning © STEIN/VÖLSKE 2024



Exploitation of Data
Typical Learning Settings

D = {(x1, y1), . . . , (xn, yn)}, D = {(x1, c1), . . . , (xn, cn)}

(1) RSS(w) :
∑

(x,y)∈D

(y −wTx)2
RSS for D under a linear model, parameterized by w.
Least squares estimate: ŵ = argminw∈Rp+1 RSS(w)
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Exploitation of Data
Typical Learning Settings
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(2) p(D;w) :
∏

(x,c)∈D

p(c | x;w)

Probability of D under a logistic model, parameterized
by w. Maximum likelihood estimate:
wML = argmaxw∈Rp+1 p(D;w)

(3) L(w) :
∑

(x,c)∈D

lσ(c, σ(w
Tx))

Loss for D under a logistic model, parameterized by w.
Minimum loss (= maximum likelihood) estimate:
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Remarks (predictor-response vs. outcome-only setting) :

(1),. . . , (4) Predictor-response setting, x→ y or x→ c. The relation between x and y or c is captured
by a model function y(x). The data D is exploited to fit y(x), which in turn means to
determine a parameter w or parameter vector w for y(x). Modeling and predicting a
quantitative response variable y is a regression task; modeling and predicting a categorical
response variable c is a classification task.

An example for a categorical predictor-response setting is the classification of an email as
spam (c = ⊕) or ham (c = 	), given a vector x of linguistic features for that email.

(5), (6) Outcome-only setting, y1, . . . , yn or c1, . . . , cn. Modeling a sole outcome variable means to
fit the data D using a suited distribution function, which in turn means to determine the
distribution parameter θ or distribution parameters θ. Again, one can distinguish between
different measurement scales, such as quantitative (y) or categorical (c).

An example for a categorical outcome-only setting is a coin flip experiment where one has
to fit the observations (number of heads and tails) under the binomial distribution, which in
turn means to determine the distribution parameter θ.

(1),. . . , (6) Depending on the experiment setting, i.e., fitting of a model function vs. fitting of a
distribution, either the symbol w (or w), or the symbol θ (or θ) may be used to denote the
parameter (or parameter vector).

ML:VII-118 Bayesian Learning © STEIN/VÖLSKE 2024



Remarks (discriminative vs. generative approach) :

(1), (2), (3) Discriminative approach to classification. Exploit the data to determine a decision
boundary. Typically, “discriminative” implies “frequentist”.

The optimization (argmin, argmax) considers p(x), the distribution of the independent
variables x, implicitly via the multiplicity of x in the data D. Recall that D is a multiset of
examples.

(2), (3), (5) Maximum likelihood (ML) principle to parameter estimation.

(2) Recall the identities from the maximum likelihood derivation of the
:::::::::
logistic

::::::
loss

:::::::::
Lσ(w):

p(D;w) =
∏

(x,c)∈D

p(x, c;w), argmax
w∈Rp+1

p(D;w) = argmax
w∈Rp+1

∏
(x,c)∈D

p(c | x;w)

(1), (2) If the data comes from an exponential family and mild conditions are satisfied,
least-squares estimates and maximum-likelihood estimates are identical.

(2), (3) Probabilistic model. The conditional class probability function (CCPF), p(c | x), is
estimated for all feature vectors (= at all quantiles). The model is not generative since the
distribution of the independent variable, p(x), is not modeled (but of course exploited
implicitly via D).

Maximizing the probability under a logistic model is equivalent to minimizing the logistic
loss Lσ. Hence, wML = ŵ.
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Remarks (discriminative vs. generative approach) : (continued)

(4) Generative approach to classification. Exploit the data D (here: estimate p(x | c) and p(c)
for all x and c) to provide a model for the joint probability distribution, p(x, c), from which D
is sampled.

(5) Generative approach. Assuming the conditions of the binomial data model, exploit the
data D (here: estimate the parameter θ) to provide a model for the binomial probability
distribution, p(c), from which D is sampled.

(6) Generative or discriminative approach. p(θ | D) can be estimated by either providing
(→ generative) or by not providing (→ discriminative) a model for the probability
distribution from which D is sampled.
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Remarks (MLE principle vs. Bayesian framework) :

(1), (2), (3)
(5)

w (as well as θ) is not the realization of a random variable—which would come along with
a distribution—but an exogenous parameter, which is varied in order to find the maximum
probability p(D;w) (or p(D; θ) or the minimum loss L(w).

The fact that w (or θ) is an exogenous parameter and not a realization of a random variable
is reflected by the notation, which uses a »;« instead of a »|« in the argument of p().

(4) Application of Bayes’s rule, presupposing that one can estimate the likelihoods p(x | · )
( p(xj | · ) in case of Naive Bayes) at higher fidelity than the conditional class probabilities,
p( · | x), from the data.

Under the Naive Bayes Assumption, p(x | c) is modeled as
∏p

j=1 p(xj | c).

(4), (6) Likelihoods, p(x | · ), p(D | · ), are computed for events under alternative classes c or
parameters θ. The settings differ in that an event in (4) is about a single feature vector x,
while an event in (6) is about a sequence D. (4) may (but not need to) apply the Naive
Bayes assumption to compute the likelihood p(x | c), which is a common approximation for
a nominal feature space and if data are sparse. For (6), if the data originate from a coin flip
experiment, the likelihood p(D | θ) is computed via the binomial distribution.

If the prior probabilities, p(c) or p(θ), are estimated also from D, we follow the frequentist
paradigm; if the priors rely on subjective assessments we follow the subjectivist paradigm.

If we assume uniform priors, i.e., the p(c) or the p(θ) are equally probable, MAP estimates
and ML estimates are equal since p(c | x) ∝ p(x | c) or p(θ | D) ∝ p(D | θ), where »∝«
means “is proportional to”.
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Exploitation of Data
Learning Approaches Overview

non-probabilistic

probabilistic

frequentist

subjectivist

discriminative
( frequentist)

generative
( probabilistic)

 Support vector machine
(1) Linear regression with least square estimates from D

(2) Logistic regression via p() with ML estimates from D
(3) Logistic regression via L() with ML estimates from D

(4) Bayes with prior probability estimates from D
 (5) Probability model with ML estimate from D

 (6) Bayes with subjective priors
(4) Bayes with subjective priors

 D  = {(x1,y1) , . . . , (xn,yn)} ,  D  = {(x1,c1) , . . . , (xn,cn)}
 D  = {y1, . . . ,yn} ,  D  = {c1, . . . ,cn}

data
exploitation
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Exploitation of Data
Learning Approaches Overview

non-probabilistic

probabilistic

frequentist

subjectivist

discriminative
( frequentist)

generative
( probabilistic)

 Support vector machine
(1) Linear regression with least square estimates from D

(2) Logistic regression via p() with ML estimates from D
(3) Logistic regression via L() with ML estimates from D

(4) Bayes with prior probability estimates from D
 (5) Probability model with ML estimate from D

 (6) Bayes with subjective priors
(4) Bayes with subjective priors

 D  = {(x1,y1) , . . . , (xn,yn)} ,  D  = {(x1,c1) , . . . , (xn,cn)}
 D  = {y1, . . . ,yn} ,  D  = {c1, . . . ,cn}

data
exploitation

discriminative : Determine a boundary to split D. → No model for the distribution of D.
generative : Provide a model for the probability distribution from which D is sampled.
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Exploitation of Data
Learning Approaches Overview

non-probabilistic

probabilistic

frequentist

subjectivist

discriminative
( frequentist)

generative
( probabilistic)

 Support vector machine
(1) Linear regression with least square estimates from D

(2) Logistic regression via p() with ML estimates from D
(3) Logistic regression via L() with ML estimates from D

(4) Bayes with prior probability estimates from D
 (5) Probability model with ML estimate from D

 (6) Bayes with subjective priors
(4) Bayes with subjective priors

 D  = {(x1,y1) , . . . , (xn,yn)} ,  D  = {(x1,c1) , . . . , (xn,cn)}
 D  = {y1, . . . ,yn} ,  D  = {c1, . . . ,cn}

data
exploitation

non-probabilistic : Threshold some model function (typically at zero). → Classification, Labeling
probabilistic : Estimate p(c | x) at all quantiles. → Class probability estimation, CCPF
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Exploitation of Data
Learning Approaches Overview

non-probabilistic

probabilistic

frequentist

subjectivist

discriminative
( frequentist)

generative
( probabilistic)

 Support vector machine
(1) Linear regression with least square estimates from D

(2) Logistic regression via p() with ML estimates from D
(3) Logistic regression via L() with ML estimates from D

(4) Bayes with prior probability estimates from D
 (5) Probability model with ML estimate from D

 (6) Bayes with subjective priors
(4) Bayes with subjective priors

 D  = {(x1,y1) , . . . , (xn,yn)} ,  D  = {(x1,c1) , . . . , (xn,cn)}
 D  = {y1, . . . ,yn} ,  D  = {c1, . . . ,cn}

data
exploitation

frequentist : Consider a unique mechanism that generated the data D.
subjectivist : Specify beliefs for alternative mechanisms one of which generated D.
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Remarks:

q We call a data exploitation approach “generative” if it provides us with a model for the
probability distribution from which D is sampled. With such a model we are able to generate
arbitrary samples from the population where D is sampled from.

q The overview does not show all but common combinations. In particular:

– Typically, “discriminative” implies “frequentist”. The inverse does not apply: consider a
Bayes classifier with priors estimated from the data (which is frequency-based and
generative).

– Typically, “generative” implies “probabilistic”. The inverse does not apply: logistic
regression provides a probabilistic model to classification.

q Discriminative approaches are further distinguished as “non-probabilistic” or “probabilistic”.

q Generative approaches are further distinguished as “frequentist” or “subjectivist”.
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