Chapter ML:VII

VII. Bayesian Learning

- □ Approaches to Probability
- Conditional Probability
- □ Bayes Classifier
- Exploitation of Data
- □ Frequentist versus Subjectivist

Data Events

Data from a "predictor-response" setting:

 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ (regression) $D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$ (classification)

- D is the result of n <u>i.i.d.</u> trials. I.e., n objects are sampled independently and from the same probability distribution. All objects are characterized by a "response" variable that is either quantitative (a number y) or categorical (a class label c), and by p "predictors" (a feature vector x).
- □ $p(\mathbf{x}_i, c_i), p(\mathbf{x}_i, c_i) := P(\mathbf{X}_i = \mathbf{x}_i, \mathbf{C}_i = c_i)$, is the probability of the joint event $\{\mathbf{X}_i = \mathbf{x}_i, \mathbf{C}_i = c_i\}$, i.e., (1) to get the vector \mathbf{x}_i , and, (2) that the respective object belongs to class c_i . The $p(\mathbf{x}_i, y_i)$ are defined analogously.
- □ The Y_i , C_i , and X_i are i.i.d. (multivariate) random variables. Typically, the Y_i are of continuous type, the C_i of discrete type, and the variables of the random vector X_i , $X_i := (X_{1,i}, ..., X_{p,i})^T$, of continuous type.

Exploitation of Data Data Events

Data from a "predictor-response" setting:

 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ (regression) $D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$ (classification)

- D is the result of n <u>i.i.d.</u> trials. I.e., n objects are sampled independently and from the same probability distribution. All objects are characterized by a "response" variable that is either quantitative (a number y) or categorical (a class label c), and by p "predictors" (a feature vector x).
- □ $p(\mathbf{x}_i, c_i), p(\mathbf{x}_i, c_i) := P(\mathbf{X}_i = \mathbf{x}_i, C_i = c_i)$, is the probability of the joint event $\{\mathbf{X}_i = \mathbf{x}_i, C_i = c_i\}$, i.e., (1) to get the vector \mathbf{x}_i , and, (2) that the respective object belongs to class c_i . The $p(\mathbf{x}_i, y_i)$ are defined analogously.
- □ The Y_i , C_i , and X_i are i.i.d. (multivariate) random variables. Typically, the Y_i are of continuous type, the C_i of discrete type, and the variables of the random vector X_i , $X_i := (X_{1,i}, ..., X_{p,i})^T$, of continuous type.

Data Events (continued)

Data from an "outcome-only" setting:

 $D = \{y_1, \dots, y_n\}$ (quantitative) $D = \{c_1, \dots, c_n\}$ (categorical)

- D is the result of n <u>i.i.d.</u> trials. I.e., n outcomes are sampled independently and from the same probability distribution. All outcomes are characterized by either a number y or a class label c.
- □ $p(y_i), p(y_i) := P(Y_i = y_i)$, is the probability of the event $Y_i = y_i$. $p(c_i), p(c_i) := P(C_i = c_i)$, is the probability of the event $C_i = c_i$.
- □ The Y_i , and C_i are i.i.d. random variables. Typically, the Y_i are of continuous type and the C_i of discrete type.

Data Events (continued)

Data from an "outcome-only" setting:

 $D = \{y_1, \dots, y_n\}$ (quantitative) $D = \{c_1, \dots, c_n\}$ (categorical)

- D is the result of n <u>i.i.d.</u> trials. I.e., n outcomes are sampled independently and from the same probability distribution. All outcomes are characterized by either a number y or a class label c.
- □ The Y_i , and C_i are i.i.d. random variables. Typically, the Y_i are of continuous type and the C_i of discrete type.

Remarks (predictor-response setting):

- □ The following remarks on the predictor-response setting are detailed for a categorical response variable *c*; they apply to a quantitative response variable *y* as well.
- **D** By experiment design, the *n* joint events, $\{X_1 = x_1, C_1 = c_1\}, \ldots, \{X_n = x_n, C_n = c_n\}$, generating the data *D* are mutually independent:

$$p(D) = p\left(\{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}\right) = \prod_{i=1,\dots,n} p(\mathbf{x}_i, c_i)$$
$$\stackrel{(1)}{=} \prod_{i=1,\dots,n} \left(p(c_i \mid \mathbf{x}_i) \cdot p(\mathbf{x}_i) \right)$$
$$= \prod_{i=1,\dots,n} p(\mathbf{x}_i) \cdot \prod_{i=1,\dots,n} p(c_i \mid \mathbf{x}_i)$$

(1) Usually *not* independent are any two events $\mathbf{X}_i = \mathbf{x}_i$ and $C_i = c_i$, i = 1, ..., n: $p(\mathbf{x}_i, c_i) \neq p(\mathbf{x}_i) \cdot p(c_i)$

For maximizing p(D), see the maximum likelihood derivation of the logistic loss $L_{\sigma}(\mathbf{w})$.

□ By experiment design, the probabilities, $p(\mathbf{x}_i)$, i = 1, ..., n, are independent, i.e., the probability of the joint event { $\mathbf{X}_1 = \mathbf{x}_1, ..., \mathbf{X}_n = \mathbf{x}_n$ } is equal to the product of the singleton events: $p(\mathbf{x}_1, ..., \mathbf{x}_n) = \prod_{i=1,...,n} p(\mathbf{x}_i)$.

A consistent and unbiased estimate for $p(\mathbf{x})$ is $\hat{p}(\mathbf{x}) = |\{(\mathbf{x}, \cdot) \in D\}| \cdot \frac{1}{|D|}$.

□ By experiment design, the conditional probabilities, $p(c_i | \mathbf{x}_i)$, i = 1, ..., n, are *invariant under covariate shift*, i.e., invariant under a change of $p(\mathbf{x}_i)$. That is, the classification procedure, "determination of c_i given some \mathbf{x}_i ", always runs the same way, regardless of how often \mathbf{x}_i is encountered.

Remarks: (continued)

□ The invariance of $p(c_i | \mathbf{x}_i)$ under a covariate shift can also be understood as the fact that any two events $\mathbf{X}_i = \mathbf{x}_i$ and $(C_i = c_i | \mathbf{X}_i = \mathbf{x}_i)$, i = 1, ..., n are independent:

"
$$p(\mathbf{x}, (c \mid \mathbf{x}))$$
" = $p(\mathbf{x}) \cdot p(c \mid \mathbf{x}) = p(\mathbf{x}, c)$

However, this interpretation is problematic since standard probability theory does not allow a conditional event being combined with other events. See section Probability Basics of this part, conditional event algebra, and Lewis's triviality result for details.

- □ Within an outcome-only setting such as "flipping a coin", the object features (coin diameter, coin age, etc.) are not used as predictors. I.e., one does not model the relationship between a response variable and predictors x but models (the probability of) a sequence of outcomes $D = \{y_1, \ldots, y_n\}$ or $D = \{c_1, \ldots, c_n\}$.
- □ The type of setting, be it predictor-response or outcome-only, is independent of data exploitation aspects such as
 - discriminative versus generative,
 - non-probabilistic versus probabilistic,
 - maximum likelihood versus Bayes, or
 - frequentist versus subjectivist.

Data Set Illustration

D in a predictor-response setting:

D in an outcome-only setting:

Data Set Illustration

D in a predictor-response setting:

D in an outcome-only setting:

Possible hypotheses (learned classifiers w_i / distribution parameters θ_i):

Data Set Illustration

D in a predictor-response setting:

D in an outcome-only setting:

Possible hypotheses (learned classifiers w_i / distribution parameters θ_i):

Remarks:

- The illustration shows the distribution of the observations *D*: combinations of feature vectors and classes in the predictor-response setting (left), and classes in the outcome-only setting (right). The tiles correspond to absolute frequencies, relative frequencies, or probabilities. The tile shading indicates the magnitude.
- □ In a predictor-response setting, a hypothesis usually corresponds to a weight vector \mathbf{w} ; in an outcome-only setting, a hypothesis usually corresponds to the distribution paramter(s) θ .
- \Box From the same dataset *D* different hypotheses can be derived or "learned".
 - Different estimations for w in the predictor-response setting result from different model function types, different loss definitions, or different regularization constraints.
 - Moreover, in both settings, different estimations for w or θ can result from different (subjective) prior probabilities, knowledge regarding the (non)reliability of the data D, or desired properties regarding the minimization of false positives or false negatives.

Typical Learning Settings

$$D = \{(\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{n}, y_{n})\}, D = \{(\mathbf{x}_{1}, c_{1}), \dots, (\mathbf{x}_{n}, c_{n})\}$$

$$(1) \quad \text{RSS}(\mathbf{w}): \sum_{(\mathbf{x}, y) \in D} (y - \mathbf{w}^{T} \mathbf{x})^{2} \qquad \begin{array}{c} \text{RSS for } D \in \mathbf{u} \\ \text{Least squar} \end{array}$$

$$(2) \quad p(D; \mathbf{w}): \prod_{(\mathbf{x}, c) \in D} p(c \mid \mathbf{x}; \mathbf{w}) \qquad \begin{array}{c} \text{Probability } c \\ \text{by } \mathbf{w}. \text{ Maxir} \\ \mathbf{w}_{ML} = \text{argm} \end{array}$$

$$(3) \quad L(\mathbf{w}): \sum_{(\mathbf{x}, c) \in D} l_{\sigma}(c, \sigma(\mathbf{w}^{T} \mathbf{x})) \qquad \begin{array}{c} \text{Loss for } D \in \mathbf{u} \\ \text{Minimum log} \\ \hat{\mathbf{w}} = \text{argmin} \end{array}$$

$$(4) \quad p(c \mid \mathbf{x}): \qquad \begin{array}{c} \underline{p(\mathbf{x} \mid c) \cdot p(c)} \\ p(\mathbf{x}) \end{array}$$

RSS for *D* under a linear model, parameterized by \mathbf{w} . Least squares estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} \operatorname{RSS}(\mathbf{w})$

Probability of D under a logistic model, parameterized by w. Maximum likelihood estimate: $w_{ML} = argmax_{w \in \mathbb{R}^{p+1}} p(D; w)$

Loss for *D* under a logistic model, parameterized by \mathbf{w} . Minimum loss (= maximum likelihood) estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

Probability of *c* given **x** via Bayes's rule. Maximum a posteriori class for **x** : $c_{MAP} = \operatorname{argmax}_{c \in \{\oplus, \ominus\}} p(c \mid \mathbf{x})$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

(5) $p(D; \theta) :$ $\binom{n}{k} \cdot \theta^k \cdot (1 - \theta)^n$
(6) $p(\theta \mid D) :$ $\frac{p(D \mid \theta) \cdot p(\theta)}{p(D)}$

Probability of *D* under the binomial distribution, parameterized by θ . Maximum likelihood estimate: $\theta_{ML} = \operatorname{argmax}_{\theta \in [0;1]} p(D; \theta)$

Typical Learning Settings

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\}$$
(1) RSS(w):
$$\sum_{(\mathbf{x}, y) \in D} (y - \mathbf{w}^T \mathbf{x})^2$$
RSS for D
Least square probability

)
$$p(D; \mathbf{w})$$
: $\prod_{(\mathbf{x}, c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$

3)
$$L(\mathbf{w})$$
:
(\mathbf{x},c) $\in D$ $l_{\sigma}(c,\sigma(\mathbf{w}^T\mathbf{x}$
4) $p(c \mid \mathbf{x})$:
 $\frac{p(\mathbf{x} \mid c) \cdot p(c)}{r(c)}$

RSS for *D* under a linear model, parameterized by w. Least squares estimate: $\hat{w} = \operatorname{argmin}_{w \in \mathbb{R}^{p+1}} \operatorname{RSS}(w)$

}

Probability of D under a logistic model, parameterized by \mathbf{w} . Maximum likelihood estimate: $\mathbf{w}_{\mathsf{ML}} = \operatorname{argmax}_{\mathbf{w} \in \mathbf{R}^{p+1}} p(D; \mathbf{w})$

Loss for *D* under a logistic model, parameterized by w. Minimum loss (= maximum likelihood) estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

Probability of *c* given **x** via Bayes's rule. Maximum a posteriori class for **x** : $c_{MAP} = \operatorname{argmax}_{c \in \{\oplus, \ominus\}} p(c \mid \mathbf{x})$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

(5) $p(D; \theta) :$ $\binom{n}{k} \cdot \theta^k \cdot (1 - \theta)^n$
(6) $p(\theta \mid D) :$ $\frac{p(D \mid \theta) \cdot p(\theta)}{r(D)}$

Probability of *D* under the binomial distribution, parameterized by θ . Maximum likelihood estimate: $\theta_{ML} = \operatorname{argmax}_{\theta \in [0;1]} p(D; \theta)$

Probability of θ given D via Bayes's rule. Maximum a posteriori hypothesis: $\theta_{MAP} = \operatorname{argmax}_{\theta \in \{\theta_1, \theta_2\}} p(\theta \mid D)$

ML:VII-112 Bayesian Learning

© STEIN/VÖLSKE 2024

Typical Learning Settings

$$D = \{(\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{n}, y_{n})\}, D = \{(\mathbf{x}_{1}, c_{1}), \dots, (\mathbf{x}_{n}, c_{n})\}$$

$$(1) RSS(\mathbf{w}): \sum_{(\mathbf{x}, y) \in D} (y - \mathbf{w}^{T} \mathbf{x})^{2} \qquad \begin{array}{l} RSS \text{ for } D \mathbf{u} \\ \text{Least squar} \end{array}$$

$$(2) p(D; \mathbf{w}): \prod_{(\mathbf{x}, c) \in D} p(c \mid \mathbf{x}; \mathbf{w}) \qquad \begin{array}{l} Probability \mathbf{c} \\ \text{by } \mathbf{w}. \text{ Maxir} \\ \mathbf{w}_{ML} = \operatorname{argm} \end{array}$$

$$(3) L(\mathbf{w}): \sum_{(\mathbf{x}, c) \in D} l_{\sigma}(c, \sigma(\mathbf{w}^{T} \mathbf{x})) \qquad \begin{array}{l} \text{Loss for } D \mathbf{u} \\ \text{Minimum log} \\ \hat{\mathbf{w}} = \operatorname{argmin} \end{array}$$

$$(4) p(c \mid \mathbf{x}): \qquad \begin{array}{l} \frac{p(\mathbf{x} \mid c) \cdot p(c)}{p(\mathbf{x})} \qquad \begin{array}{l} Probability \mathbf{c} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x$$

RSS for *D* under a linear model, parameterized by \mathbf{w} . Least squares estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} \operatorname{RSS}(\mathbf{w})$

Probability of *D* under a logistic model, parameterized by w. Maximum likelihood estimate: $w_{ML} = argmax_{w \in \mathbf{R}^{p+1}} p(D; w)$

Loss for *D* under a logistic model, parameterized by w. Minimum loss (= maximum likelihood) estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

Probability of *c* given **x** via Bayes's rule. Maximum a posteriori class for **x** : $c_{MAP} = \operatorname{argmax}_{c \in \{\oplus, \ominus\}} p(c \mid \mathbf{x})$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$
(5) $p(D; \theta)$:

$$\binom{n}{k} \cdot \theta^k \cdot (1 - \theta)^{n-1}$$
(6) $p(\theta \mid D)$:

$$\frac{p(D \mid \theta) \cdot p(\theta)}{p(D)}$$

Probability of *D* under the binomial distribution, parameterized by θ . Maximum likelihood estimate: $\theta_{ML} = \operatorname{argmax}_{\theta \in [0;1]} p(D; \theta)$

Probability of θ given D via Bayes's rule. Maximum a posteriori hypothesis: $\theta_{MAP} = \operatorname{argmax}_{\theta \in \{\theta_1, \theta_2\}} p(\theta \mid D)$

ML:VII-113 Bayesian Learning

Typical Learning Settings

$$D = \{(\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{n}, y_{n})\}, D = \{(\mathbf{x}_{1}, c_{1}), \dots, (\mathbf{x}_{n}, c_{n})\}$$

$$(1) \quad \mathsf{RSS}(\mathbf{w}): \qquad \sum_{(\mathbf{x}, y) \in D} (y - \mathbf{w}^{T} \mathbf{x})^{2} \qquad \begin{array}{l} \mathsf{RSS} \text{ for } D \ \mathsf{u} \\ \mathsf{Least squar} \end{array}$$

$$(2) \quad p(D; \mathbf{w}): \qquad \prod_{(\mathbf{x}, c) \in D} p(c \mid \mathbf{x}; \mathbf{w}) \qquad \begin{array}{l} \mathsf{Probability } c \\ \mathsf{by } w. \ \mathsf{Maxir} \\ \mathsf{w}_{\mathsf{ML}} = \operatorname{argm} \end{array}$$

$$(3) \quad L(\mathbf{w}): \qquad \sum_{(\mathbf{x}, c) \in D} l_{\sigma}(c, \sigma(\mathbf{w}^{T} \mathbf{x})) \qquad \begin{array}{l} \mathsf{Loss for } D \ \mathsf{u} \\ \mathsf{Minimum loss} \\ \hat{\mathbf{w}} = \operatorname{argmin} \end{array}$$

$$(4) \quad p(c \mid \mathbf{x}): \qquad \frac{p(\mathbf{x} \mid c) \cdot p(c)}{p(\mathbf{x})} \qquad \begin{array}{l} \mathsf{Probability } c \\ \mathsf{minimum loss} \\ \mathsf{q} \\ \mathsf{a posteriori} \end{array}$$

RSS for *D* under a linear model, parameterized by w.
Least squares estimate:
$$\hat{w} = \operatorname{argmin}_{w \in \mathbb{R}^{p+1}} \operatorname{RSS}(w)$$

Probability of *D* under a logistic model, parameterized by w. Maximum likelihood estimate: $w_{ML} = argmax_{w \in \mathbf{R}^{p+1}} p(D; \mathbf{w})$

Loss for *D* under a logistic model, parameterized by w. Minimum loss (= maximum likelihood) estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

Probability of *c* given **x** via Bayes's rule. Maximum a posteriori class for **x** : $c_{MAP} = \operatorname{argmax}_{c \in \{\oplus, \ominus\}} p(c \mid \mathbf{x})$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$
(5) $p(D; \theta)$: $\binom{n}{k} \cdot \theta^k \cdot (1 - \theta)^k$
(6) $p(\theta \mid D)$: $\frac{p(D \mid \theta) \cdot p(\theta)}{p(D)}$

Probability of *D* under the binomial distribution, parameterized by θ . Maximum likelihood estimate: $\theta_{ML} = \operatorname{argmax}_{\theta \in [0:1]} p(D; \theta)$

Typical Learning Settings

$$D = \{(\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{n}, y_{n})\}, D = \{(\mathbf{x}_{1}, c_{1}), \dots, (\mathbf{x}_{n}, y_{n})\}, D = \{(\mathbf{x}_{1}, c_{1}),$$

p(c)

(4)
$$p(c \mid \mathbf{x})$$
: $\frac{p(\mathbf{x} \mid c) \cdot p(\mathbf{x} \mid c)}{p(\mathbf{x})}$

RSS for *D* under a linear model, parameterized by w. Least squares estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} \operatorname{RSS}(\mathbf{w})$

 (\mathbf{x}_n, c_n)

Probability of *D* under a logistic model, parameterized by w. Maximum likelihood estimate: $w_{ML} = argmax_{w \in \mathbf{R}^{p+1}} p(D; \mathbf{w})$

Loss for *D* under a logistic model, parameterized by w. Minimum loss (= maximum likelihood) estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

Probability of c given \mathbf{x} via Bayes's rule. Maximum a posteriori class for \mathbf{x} : $c_{MAP} = \operatorname{argmax}_{c \in \{\oplus, \ominus\}} p(c \mid \mathbf{x})$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$
(5) $p(D; \theta)$: $\binom{n}{k} \cdot \theta^k \cdot (1 - \theta)^n$
(6) $p(\theta \mid D)$: $\frac{p(D \mid \theta) \cdot p(\theta)}{(D)}$

Probability of *D* under the binomial distribution, parameterized by θ . Maximum likelihood estimate: $\theta_{ML} = \operatorname{argmax}_{\theta \in [0;1]} p(D; \theta)$

Typical Learning Settings

$$D = \{(\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{n}, y_{n})\}, D = \{(\mathbf{x}_{1}, c_{1}), \dots, (\mathbf{x}_{n}, c_{n})\}$$
(1) RSS(w):
$$\sum_{(\mathbf{x}, y) \in D} (y - \mathbf{w}^{T} \mathbf{x})^{2}$$
RSS for D using the set of the set

(3)
$$L(\mathbf{w})$$
: $\sum_{(\mathbf{x},c)\in D} l_{\sigma}(c,\sigma(\mathbf{w}^T\mathbf{x}))$

(4)
$$p(c \mid \mathbf{x})$$
: $\frac{p(\mathbf{x} \mid c) \cdot p(c)}{p(\mathbf{x})}$

RSS for *D* under a linear model, parameterized by w.
Least squares estimate:
$$\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} \operatorname{RSS}(\mathbf{w})$$

Probability of *D* under a logistic model, parameterized by w. Maximum likelihood estimate: $w_{ML} = argmax_{w \in \mathbf{R}^{p+1}} p(D; \mathbf{w})$

Loss for *D* under a logistic model, parameterized by w. Minimum loss (= maximum likelihood) estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

Probability of c given \mathbf{x} via Bayes's rule. Maximum a posteriori class for \mathbf{x} : $c_{MAP} = \operatorname{argmax}_{c \in \{\oplus, \ominus\}} p(c \mid \mathbf{x})$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$
(5)
$$p(D; \theta): \binom{n}{k} \cdot \theta^k \cdot (1 - \theta)^{n-k}$$

Probability of *D* under the binomial distribution, parameterized by θ . Maximum likelihood estimate: $\theta_{ML} = \operatorname{argmax}_{\theta \in [0;1]} p(D; \theta)$

Typical Learning Settings

$$D = \{(\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{n}, y_{n})\}, D = \{(\mathbf{x}_{1}, c_{1}), \dots, (\mathbf{x}_{n}, c_{n})\}$$
(1) RSS(w):
$$\sum_{(\mathbf{x}, y) \in D} (y - \mathbf{w}^{T} \mathbf{x})^{2}$$
RSS for D use the east square the east

 $\frac{p(\mathbf{x} \mid c) \cdot p(c)}{p(\mathbf{x})}$

RSS for *D* under a linear model, parameterized by w.
Least squares estimate:
$$\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} \operatorname{RSS}(\mathbf{w})$$

Probability of *D* under a logistic model, parameterized by w. Maximum likelihood estimate: $w_{ML} = argmax_{w \in \mathbf{R}^{p+1}} p(D; \mathbf{w})$

Loss for *D* under a logistic model, parameterized by w. Minimum loss (= maximum likelihood) estimate: $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathbf{R}^{p+1}} L(\mathbf{w})$

Probability of c given \mathbf{x} via Bayes's rule. Maximum a posteriori class for \mathbf{x} : $c_{MAP} = \operatorname{argmax}_{c \in \{\oplus, \ominus\}} p(c \mid \mathbf{x})$

$$D = \{y_1, \dots, y_n\}, D = \{c_1, \dots, c_n\}$$

(5) $p(D; \theta):$ $\binom{n}{k} \cdot \theta^k \cdot (1 - \theta)^{n-k}$

(6)
$$p(\theta \mid D)$$
: $\frac{p(D \mid \theta) \cdot p(\theta)}{p(D)}$

Probability of *D* under the binomial distribution, parameterized by θ . Maximum likelihood estimate: $\theta_{ML} = \operatorname{argmax}_{\theta \in [0;1]} p(D; \theta)$

Probability of θ given D via Bayes's rule. Maximum a posteriori hypothesis: $\theta_{MAP} = \operatorname{argmax}_{\theta \in \{\theta_1, \theta_2\}} p(\theta \mid D)$

ML:VII-117 Bayesian Learning

(4) $p(c | \mathbf{x})$:

Remarks (predictor-response vs. outcome-only setting) :

(1),..., (4) Predictor-response setting, $\mathbf{x} \to y$ or $\mathbf{x} \to c$. The relation between \mathbf{x} and y or c is captured by a model function $y(\mathbf{x})$. The data D is exploited to fit $y(\mathbf{x})$, which in turn means to determine a parameter w or parameter vector \mathbf{w} for $y(\mathbf{x})$. Modeling and predicting a quantitative response variable y is a regression task; modeling and predicting a categorical response variable c is a classification task.

An example for a categorical predictor-response setting is the classification of an email as spam ($c = \oplus$) or ham ($c = \ominus$), given a vector x of linguistic features for that email.

(5), (6) Outcome-only setting, y_1, \ldots, y_n or c_1, \ldots, c_n . Modeling a sole outcome variable means to fit the data D using a suited distribution function, which in turn means to determine the distribution parameter θ or distribution parameters θ . Again, one can distinguish between different measurement scales, such as quantitative (y) or categorical (c).

An example for a categorical outcome-only setting is a coin flip experiment where one has to fit the observations (number of heads and tails) under the binomial distribution, which in turn means to determine the distribution parameter θ .

(1),..., (6) Depending on the experiment setting, i.e., fitting of a model function vs. fitting of a distribution, either the symbol w (or w), or the symbol θ (or θ) may be used to denote the parameter (or parameter vector).

Remarks (discriminative vs. generative approach) :

(1), (2), (3) Discriminative approach to classification. Exploit the data to determine a decision boundary. Typically, "discriminative" implies "frequentist".

The optimization (argmin, argmax) considers $p(\mathbf{x})$, the distribution of the independent variables \mathbf{x} , implicitly via the multiplicity of \mathbf{x} in the data D. Recall that D is a multiset of examples.

- (2), (3), (5) Maximum likelihood (ML) principle to parameter estimation.
 - (2) Recall the identities from the maximum likelihood derivation of the logistic loss $L_{\sigma}(\mathbf{w})$:

$$p(D; \mathbf{w}) = \prod_{(\mathbf{x}, c) \in D} p(\mathbf{x}, c; \mathbf{w}), \quad \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\operatorname{argmax}} p(D; \mathbf{w}) = \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\operatorname{argmax}} \prod_{(\mathbf{x}, c) \in D} p(c \mid \mathbf{x}; \mathbf{w})$$

- (1), (2) If the data comes from an exponential family and mild conditions are satisfied, least-squares estimates and maximum-likelihood estimates are identical.
- (2), (3) Probabilistic model. The conditional class probability function (CCPF), $p(c | \mathbf{x})$, is estimated for all feature vectors (= at all quantiles). The model is not generative since the distribution of the independent variable, $p(\mathbf{x})$, is not modeled (but of course exploited implicitly via D).

Maximizing the probability under a logistic model is equivalent to minimizing the logistic loss L_{σ} . Hence, $\mathbf{w}_{ML} = \hat{\mathbf{w}}$.

Remarks (discriminative vs. generative approach) : (continued)

- (4) Generative approach to classification. Exploit the data D (here: estimate $p(\mathbf{x} | c)$ and p(c) for all \mathbf{x} and c) to provide a model for the joint probability distribution, $p(\mathbf{x}, c)$, from which D is sampled.
- (5) Generative approach. Assuming the conditions of the binomial data model, exploit the data D (here: estimate the parameter θ) to provide a model for the binomial probability distribution, p(c), from which D is sampled.
- (6) Generative or discriminative approach. $p(\theta \mid D)$ can be estimated by either providing (\rightarrow generative) or by *not* providing (\rightarrow discriminative) a model for the probability distribution from which *D* is sampled.

Remarks (MLE principle vs. Bayesian framework):

(1), (2), (3) w (as well as θ) is not the realization of a random variable—which would come along with

(5) a distribution—but an *exogenous parameter*, which is varied in order to find the maximum probability $p(D; \mathbf{w})$ (or $p(D; \theta)$ or the minimum loss $L(\mathbf{w})$.

The fact that w (or θ) is an exogenous parameter and not a realization of a random variable is reflected by the notation, which uses a »;« instead of a »|« in the argument of p().

(4) Application of Bayes's rule, presupposing that one can estimate the likelihoods $p(\mathbf{x} | \cdot)$ ($p(x_j | \cdot)$) in case of Naive Bayes) at higher fidelity than the conditional class probabilities, $p(\cdot | \mathbf{x})$, from the data.

Under the Naive Bayes Assumption, $p(\mathbf{x} \mid c)$ is modeled as $\prod_{j=1}^{p} p(x_j \mid c)$.

(4), (6) Likelihoods, $p(\mathbf{x} | \cdot)$, $p(D | \cdot)$, are computed for events under alternative classes c or parameters θ . The settings differ in that an event in (4) is about a single feature vector \mathbf{x} , while an event in (6) is about a sequence D. (4) may (but not need to) apply the Naive Bayes assumption to compute the likelihood $p(\mathbf{x} | c)$, which is a common approximation for a nominal feature space and if data are sparse. For (6), if the data originate from a coin flip experiment, the likelihood $p(D | \theta)$ is computed via the binomial distribution. If the prior probabilities, p(c) or $p(\theta)$, are estimated also from D, we follow the frequentist paradigm; if the priors rely on subjective assessments we follow the subjectivist paradigm. If we assume uniform priors, i.e., the p(c) or the $p(\theta)$ are equally probable, MAP estimates

and ML estimates are equal since $p(c | \mathbf{x}) \propto p(\mathbf{x} | c)$ or $p(\theta | D) \propto p(D | \theta)$, where » $\propto \ll$ means "is proportional to".

Learning Approaches Overview

Learning Approaches Overview

discriminative : Determine a boundary to split $D. \rightarrow No$ model for the distribution of D. generative : Provide a model for the probability distribution from which D is sampled.

Learning Approaches Overview

non-probabilistic : Threshold some model function (typically at zero). \rightarrow Classification, Labeling probabilistic : Estimate $p(c \mid \mathbf{x})$ at all quantiles. \rightarrow Class probability estimation, CCPF

Learning Approaches Overview

frequentist: Consider a unique mechanism that generated the data D. subjectivist: Specify beliefs for alternative mechanisms one of which generated D. Remarks:

- □ We call a data exploitation approach "generative" if it provides us with a model for the probability distribution from which *D* is sampled. With such a model we are able to generate arbitrary samples from the population where *D* is sampled from.
- □ The overview does not show all but common combinations. In particular:
 - Typically, "discriminative" implies "frequentist". The inverse does not apply: consider a Bayes classifier with priors estimated from the data (which is frequency-based and generative).
 - Typically, "generative" implies "probabilistic". The inverse does not apply: logistic regression provides a probabilistic model to classification.
- Discriminative approaches are further distinguished as "non-probabilistic" or "probabilistic".
- Generative approaches are further distinguished as "frequentist" or "subjectivist".