# Chapter ML:VI

#### VI. Decision Trees

- Decision Trees Basics
- □ Impurity Functions
- Decision Tree Algorithms
- Decision Tree Pruning

ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:

- $\Box$  X is a multiset of feature vectors.
- $\Box$  *C* is a set of classes.

 $\square D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C \text{ is a multiset of examples.}$ 

Learning task:

 $\Box$  Fit *D* using a decision tree *T*.

ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:

- $\Box$  X is a multiset of feature vectors.
- $\Box$  C is a set of classes.

 $\square D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C \text{ is a multiset of examples.}$ 

Learning task:

 $\Box$  Fit *D* using a decision tree *T*.

Characteristics of the ID3 algorithm:

1. Each <u>splitting</u> is based on one nominal feature and considers its complete domain. Splitting based on feature *A* with domain  $dom(A) = \{a_1, \ldots, a_m\}$ :

 $X = \{\mathbf{x} \in X : \mathbf{x}|_A = a_1\} \cup \ldots \cup \{\mathbf{x} \in X : \mathbf{x}|_A = a_m\}$ 

2. Splitting criterion is information gain.

ID3 Algorithm (continued) [Mitchell 1997 version] [algorithm template]

#### ID3(D, Features)

- 1. Create a node t for the tree.
- 2. Label t with the most common class in D.
- 3. If all examples in D have the same class, return the single-node tree t.
- 4. If Features is empty, return the single-node tree t.

ID3 Algorithm (continued) [Mitchell 1997 version] [algorithm template]

#### ID3(D, Features)

- 1. Create a node t for the tree.
- 2. Label t with the most common class in D.
- 3. If all examples in D have the same class, return the single-node tree t.
- 4. If Features is empty, return the single-node tree t.

#### Otherwise:

- Let A\* be the feature from Features that best classifies examples in D.
   Assign t the decision feature A\*.
- 6. For each possible value "a" in dom(A\*) do:
  - $\Box$  Add a new tree branch below t, corresponding to the test A<sup>\*</sup> = "a".
  - $\Box$  Let D<sub>a</sub> be the subset of D that has value "a" for A<sup>\*</sup>.
  - $\Box$  If  $D_a$  is empty:

Then add a leaf node with the label of the most common class in D. Else add the subtree  $ID3(D_a, Features \setminus \{A^*\})$ .

7. Return t.

ID3 Algorithm (continued) [algorithm template]

ID3(D, Features)

- 1. t = createNode()
- 2. label(t) = mostCommonClass(D)
- 3. IF  $\forall (\mathbf{x}, c) \in D : c = label(t)$  THEN return(t) ENDIF // D is pure.
- 4. IF *Features* =  $\emptyset$  THEN *return*(t) ENDIF // We are running out of features.

5.

6.

ID3 Algorithm (continued) [algorithm template]

*ID3*(*D*, *Features*)

- 1. t = createNode()
- 2. label(t) = mostCommonClass(D)
- 3. IF  $\forall (\mathbf{x}, c) \in D : c = label(t)$  THEN return(t) ENDIF // D is pure.
- 4. IF *Features* =  $\emptyset$  THEN *return*(t) ENDIF // We are running out of features.
- 5.  $A^* = \operatorname{argmax}_{A \in \mathit{Features}}(\mathit{informationGain}(D, A))$

6.

ID3 Algorithm (continued) [algorithm template]

ID3(D, Features)

- 1. t = createNode()
- 2. label(t) = mostCommonClass(D)
- 3. IF  $\forall (\mathbf{x}, c) \in D : c = label(t)$  THEN return(t) ENDIF // D is pure.
- 4. IF *Features* =  $\emptyset$  THEN *return*(t) ENDIF // We are running out of features.
- 5.  $A^* = \operatorname{argmax}_{A \in \mathit{Features}}(\mathit{informationGain}(D, A))$
- 6. Foreach  $a \in \operatorname{dom}(A^*)$  do

 $D_a = \{(\mathbf{x}, c) \in D : \mathbf{x}|_{A^*} = a\}$ If  $D_a = \emptyset$  then

ELSE createEdge $(t, a, ID3(D_a, Features \setminus \{A^*\}))$ ENDIF

#### ENDDO

7. return(t)

ID3 Algorithm (continued) [algorithm template]

ID3(D,Features)

- 1. t = createNode()
- 2. label(t) = mostCommonClass(D)
- 3. IF  $\forall (\mathbf{x}, c) \in D : c = label(t)$  THEN return(t) ENDIF // D is pure.
- 4. IF  $Features = \emptyset$  THEN return(t) ENDIF // We are running out of features.
- 5.  $A^* = \operatorname{argmax}_{A \in \mathit{Features}}(\mathit{informationGain}(D, A))$
- 6. Foreach  $a \in \operatorname{dom}(A^*)$  do

$$\begin{split} D_a &= \{(\mathbf{x},c) \in D : \mathbf{x}|_{A^*} = a\} \\ \text{IF } D_a &= \emptyset \text{ THEN } // \text{ We are running out of data.} \\ t' &= \textit{createNode}() \\ \textit{label}(t') &= \textit{label}(t) \end{split}$$

createEdge(t, a, t')

ELSE

```
createEdge(t, a, ID3(D_a, Features \setminus \{A^*\}))
ENDIF
```

ENDDO

7. return(t)

#### Remarks:

- □ Step 3 of of the ID3 algorithm checks the purity of *D* and, given this case, assigns the unique class to the respective node.
- □ The ID3 (Iterative Dichotomiser 3) was published by Ross Quinlan in 1986.

ID3 Algorithm: Example

Example set D for mushrooms, drawn from a set of feature vectors X over the three dimensions color, size, and points:

|   | Color | Size  | Points | Edibility |
|---|-------|-------|--------|-----------|
| 1 | red   | small | yes    | toxic     |
| 2 | brown | small | no     | edible    |
| 3 | brown | large | yes    | edible    |
| 4 | green | small | no     | edible    |
| 5 | red   | large | no     | edible    |



ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature "color" :

|              |   |       | toxic | edible |                  |                    |                          |
|--------------|---|-------|-------|--------|------------------|--------------------|--------------------------|
|              | _ | red   | 1     | 1      | D    - 2         | D  = 2             | D  = 1                   |
| $D _{color}$ | = | brown | 0     | 2      | $ D_{red}  = 2,$ | $ D_{brown}  = 2,$ | $ D_{\text{green}}  = 1$ |
|              |   | green | 0     | 1      |                  |                    |                          |

ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature "color" :

|              |   |       | toxic | edible |        |                  |                    |                          |
|--------------|---|-------|-------|--------|--------|------------------|--------------------|--------------------------|
|              | _ | red   | 1     | 1      |        | D    - 2         | D  = 2             | $ \mathcal{D}  = 1$      |
| $D _{color}$ | = | brown | 0     | 2      | $\sim$ | $ D_{red}  = 2,$ | $ D_{brown}  = 2,$ | $ D_{\text{green}}  = 1$ |
|              |   | green | 0     | 1      |        |                  |                    |                          |

Estimated prior probabilities:

$$\hat{P}(\textit{Color}=\textit{red}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{brown}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{green}) = \frac{1}{5} = 0.2$$

ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature "color" :

|              |   |       | toxic | edible |                            |                    |                 |
|--------------|---|-------|-------|--------|----------------------------|--------------------|-----------------|
| , ות         | _ | red   | 1     | 1      | D    - 2                   | D  = 2             | –   _           |
| $D _{color}$ | = | brown | 0     | 2      | $ \mathcal{D}_{red}  = 2,$ | $ D_{brown}  = 2,$ | $ D_{green}  -$ |
|              |   | green | 0     | 1      |                            |                    |                 |

Estimated prior probabilities:

$$\hat{P}(\textit{Color}=\textit{red}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{brown}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{green}) = \frac{1}{5} = 0.2$$

#### Conditional entropy:

$$\begin{aligned} H(\mathcal{A} \mid \mathcal{B}_1) &= H( \{A_1, A_2\} \mid \{B_{1,1}, B_{1,2}, B_{1,3}\} ) \\ &= H( \{C = \mathsf{toxic}, C = \mathsf{edible}\} \mid \{Color = \mathsf{red}, Color = \mathsf{brown}, Color = \mathsf{green}\} ) \\ &= -(0.4 \cdot (\frac{1}{2} \cdot \log_2 \frac{1}{2} + \frac{1}{2} \cdot \log_2 \frac{1}{2}) + 0.4 \cdot (\frac{0}{2} \cdot \log_2 \frac{0}{2} + \frac{2}{2} \cdot \log_2 \frac{2}{2}) + 0.2 \cdot (\frac{0}{1} \cdot \log_2 \frac{0}{1} + \frac{1}{1} \cdot \log_2 \frac{1}{1})) = 0.4 \end{aligned}$$

ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a <u>splitting</u> with regard to the feature "color" :

|              |   |       | toxic | edible |        |                  |                    |                 |
|--------------|---|-------|-------|--------|--------|------------------|--------------------|-----------------|
| , ות         | _ | red   | 1     | 1      |        | D    - 2         | D  = 2             |                 |
| $D _{color}$ | = | brown | 0     | 2      | $\sim$ | $ D_{red}  = 2,$ | $ D_{brown}  = 2,$ | $ D_{green} $ - |
|              |   | green | 0     | 1      |        |                  |                    |                 |

Estimated prior probabilities:

$$\hat{P}(\textit{Color}=\textit{red}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{brown}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{green}) = \frac{1}{5} = 0.2$$

#### Conditional entropy:

$$\begin{aligned} H(\mathcal{A} \mid \mathcal{B}_1) &= H(\{A_1, A_2\} \mid \{B_{1,1}, B_{1,2}, B_{1,3}\}) \\ &= H(\{C = \mathsf{toxic}, C = \mathsf{edible}\} \mid \{Color = \mathsf{red}, Color = \mathsf{brown}, Color = \mathsf{green}\}) \\ &= -(0.4 \cdot (\frac{1}{2} \cdot \log_2 \frac{1}{2} + \frac{1}{2} \cdot \log_2 \frac{1}{2}) + 0.4 \cdot (\frac{0}{2} \cdot \log_2 \frac{0}{2} + \frac{2}{2} \cdot \log_2 \frac{2}{2}) + 0.2 \cdot (\frac{0}{1} \cdot \log_2 \frac{0}{1} + \frac{1}{1} \cdot \log_2 \frac{1}{1})) = 0.4 \end{aligned}$$

 $H(\mathcal{A} | \mathcal{B}_2) = H( \{ C = \text{toxic}, C = \text{edible} \} | \{ Size = \text{small}, Size = \text{large} \} ) = \dots \approx 0.55$  $H(\mathcal{A} | \mathcal{B}_3) = H( \{ C = \text{toxic}, C = \text{edible} \} | \{ Points = \text{yes}, Points = \text{no} \} ) = \dots = 0.4$ 

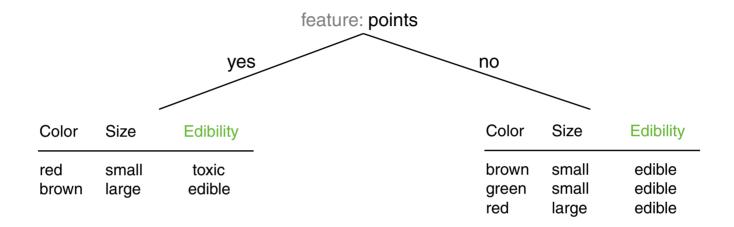
ML:VI-95 Decision Trees

Remarks:

- □ The smaller H(A | B) is, the larger becomes the information gain. Hence, the difference H(A) H(A | B) needs not to be computed since H(A) is constant within each recursion step.
- □ In the example, the information gain in the first recursion step becomes maximum for the features "color" and "points".
- □ Notation. When used in the role of a random variable (here: in the argument of a probability *P*), features are written in italics and capitalized.
- □ Notation. The probabilities, denoted as  $P(\cdot)$ , are unknown and estimated by the relative frequencies, denoted as  $\hat{P}(\cdot)$ .

ID3 Algorithm: Example (continued)

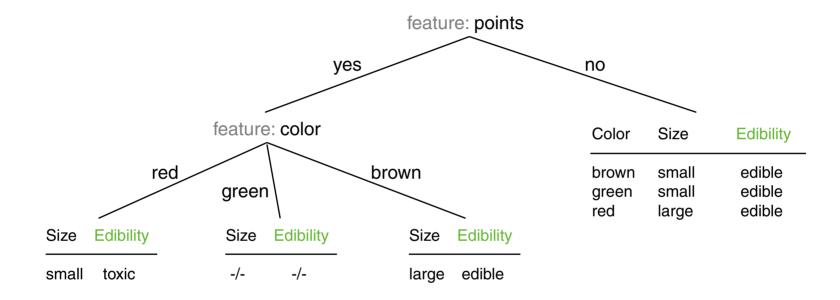
Decision tree before the first recursion step:



Choosing the feature "points" in Step 5 of the ID3 algorithm.

ID3 Algorithm: Example (continued)

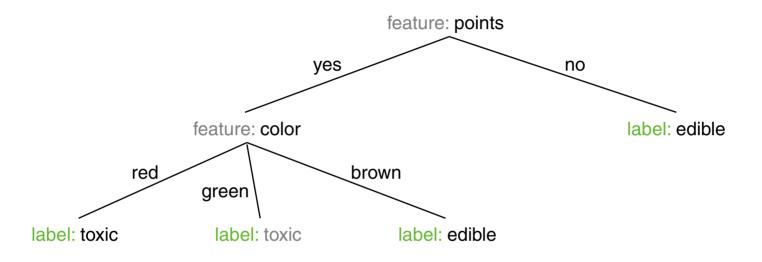
Decision tree before the second recursion step:



Choosing the feature "color" in Step 5 of the ID3 algorithm.

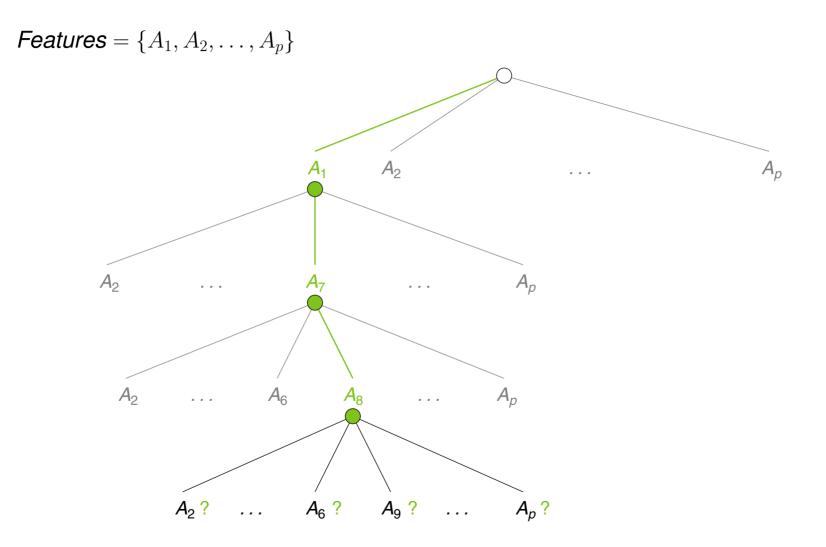
ID3 Algorithm: Example (continued)

Final decision tree after second recursion step:



Break of a tie: choosing the class "toxic" for  $D_{\text{green}}$  in Step 6 of the ID3 algorithm.

ID3 Algorithm: Search Space



Remarks (search space versus hypothesis space):

- The underlying search space of an algorithm that samples without replacement a single feature in each step (= monothetic splitting) consists of all permutations of the features in the feature set. In particular, if the number of features (= dimensionality of a feature vector x) is p, then the search space contains p! elements.
- □ The set of possible decision trees over *D* forms the hypothesis space *H*. The maximum size of *H*, i.e., the maximum number of decision trees for a data set *D* in a binary classification setting, is  $2^{|D|}$ : If the feature vectors are pairwise distinct, every subset of *D* can form a class while the complement of the subset will form the other class. The set of possible subsets of *D* is  $\mathcal{P}(D)$ , where  $|\mathcal{P}(D)| = 2^{|D|}$ .
- □ Observe that either  $p! < 2^{|D|}$  or  $p! > 2^{|D|}$  can hold. I.e., the search space due to feature ordering can be smaller or larger than its underlying hypothesis space. The former characterizes the typical situation; also note that both the search space and the hypothesis space grow exponentially in the number of features and examples respectively.
- The difference between search space size and hypothesis space size results from Step 6 of the ID3 algorithm: the same feature selection order will lead to different decision trees when given different data sets. However, since the splitting operation in Step 6 is deterministic it has no effect on the search space.
- □ The runtime of the ID3 algorithm is in  $O(p^2 \cdot n)$ , i.e., significantly below p! since only a small part of the search space is explored. At each split, the algorithm greedily (in fact, irrevocably) selects the most informative feature by applying information gain as a heuristic for feature selection.

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.
- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.
  - → The target concept is a member of the hypothesis space.
- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
  - ➔ no backtracking takes place
  - → the decision tree is a result of *local optimization*

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.
  - → The target concept is a member of the hypothesis space.
- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
  - ➔ no backtracking takes place
  - → the decision tree is a result of *local optimization*

Where the inductive bias of the ID3 algorithm becomes manifest:

- 1. Small decision trees are preferred.
- 2. Highly discriminative features tend to be closer to the root.

#### Is this justified?

Remarks (inductive bias):

- □ The inductive bias of the ID3 algorithm is of a different kind than the inductive bias of the candidate elimination algorithm:
  - 1. The underlying hypothesis space H of the candidate elimination algorithm is incomplete. H corresponds to a coarsened view onto the space of all hypotheses since H contains only conjunctions of feature-value pairs as hypotheses.

However, this restricted hypothesis space is searched completely by the candidate elimination algorithm. Keyword: restriction bias

2. The underlying hypothesis space H of the ID3 algorithm is complete since it contains all decision trees that can be constructed over D.

However, this complete hypothesis space is searched incompletely, but following a preference. Keyword: preference bias or search bias

□ The inductive bias of the ID3 algorithm renders the algorithm robust wrt. noise.

CART Algorithm [Breiman 1984] [ID3 Algorithm]

Setting:

- X is a multiset of feature vectors. No restrictions are presumed for the features' measurement scales.
- $\Box$  *C* is a set of classes.
- $\square D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C \text{ is a multiset of examples.}$

Learning task:

 $\Box$  Fit *D* using a decision tree *T*.

CART Algorithm [Breiman 1984] [ID3 Algorithm]

Setting:

- X is a multiset of feature vectors. No restrictions are presumed for the features' measurement scales.
- $\Box$  *C* is a set of classes.
- $\square D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C \text{ is a multiset of examples.}$

Learning task:

 $\Box$  Fit *D* using a decision tree *T*.

Characteristics of the CART algorithm:

- 1. Each splitting is binary and considers one feature at a time.
- 2. Splitting criterion is the information gain or the Gini index.

CART Algorithm (continued)

Let *A* be a feature with domain dom(A). Apply (probably multiple times) the respective rule to induce a finite number of binary <u>splittings</u> of *X* :

- R1: If A is nominal, choose  $B \subset \operatorname{dom}(A)$  such that  $0 < |B| \le |\operatorname{dom}(A) \setminus B|$ .
- R2: If A is ordinal, choose  $a \in dom(A)$  such that  $x_{\min} < a < x_{\max}$ , where  $x_{\min}$ ,  $x_{\max}$  are the minimum and maximum values of feature A in D.
- R3: If *A* is numeric, choose  $a \in dom(A)$  such that  $a = 0.5 \cdot (x_{l_1} + x_{l_2})$ , where  $x_{l_1}$ ,  $x_{l_2}$  are consecutive elements in the ordered value list of feature *A* in *D*.

CART Algorithm (continued)

Let *A* be a feature with domain dom(A). Apply (probably multiple times) the respective rule to induce a finite number of binary <u>splittings</u> of *X* :

- R1: If A is nominal, choose  $B \subset \operatorname{dom}(A)$  such that  $0 < |B| \le |\operatorname{dom}(A) \setminus B|$ .
- R2: If A is ordinal, choose  $a \in dom(A)$  such that  $x_{\min} < a < x_{\max}$ , where  $x_{\min}$ ,  $x_{\max}$  are the minimum and maximum values of feature A in D.
- R3: If *A* is numeric, choose  $a \in dom(A)$  such that  $a = 0.5 \cdot (x_{l_1} + x_{l_2})$ , where  $x_{l_1}$ ,  $x_{l_2}$  are consecutive elements in the ordered value list of feature *A* in *D*.

Adapt Step 5 and 6 to turn the ID3 algorithm into the CART algorithm:

→ 5. For all  $A \in Features$ : Generate with the above rules all splittings of D(t). Choose a splitting that maximizes the impurity reduction  $\Delta \iota$ :

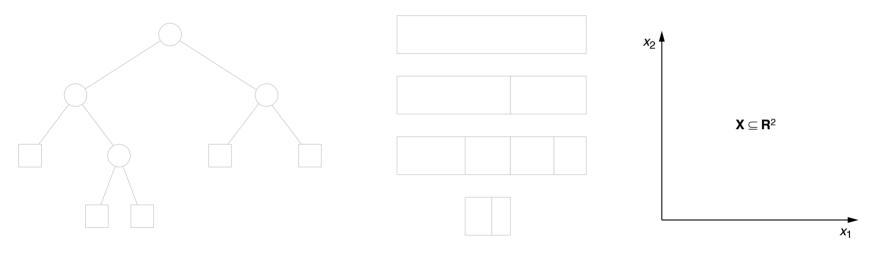
 $\underline{\Delta \iota} \left( D(t), \ \left\{ D(t_L), D(t_R) \right\} \right) \ = \ \iota(D(t)) - \frac{|D(t_L)|}{|D|} \cdot \iota(D(t_L)) - \frac{|D(t_R)|}{|D|} \cdot \iota(D(t_R))$ 

 $\rightarrow$  6. Recursively call CART to process  $D(t_L)$  and  $D(t_R)$ .

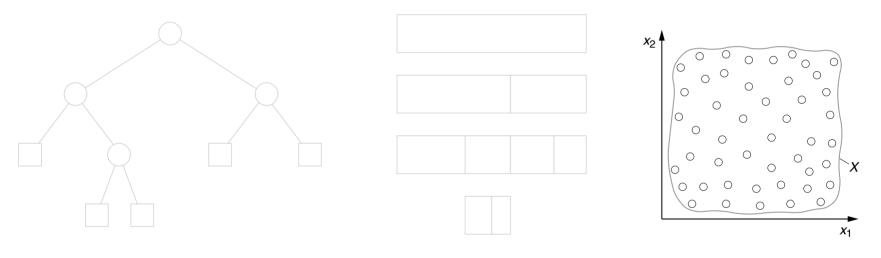
#### Remarks:

- $\Box$   $t_L$  and  $t_R$  denote the left and right successor of t in the decision tree. These nodes are returned by the calls of the CART algorithm and connected to t via *createEdge*().
- □ Since the CART algorithm creates binary splittings only, the feature  $A^*$  chosen in Step 5 can be chosen again later on. Hence, a call of CART to process  $D(t_L)$  (or  $D(t_R)$ ) in Step 6 passes the complete set of features as second parameter (and not: *Features*\{ $A^*$ }).

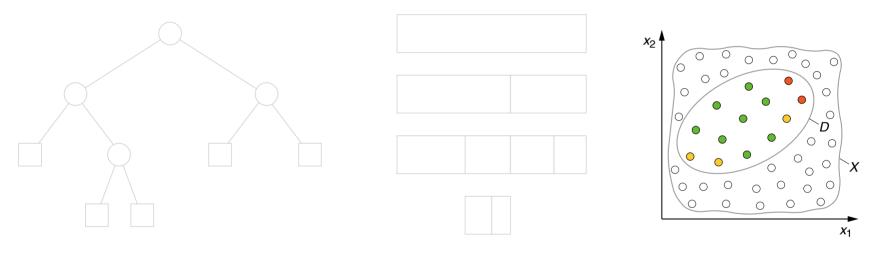
CART Algorithm (continued)



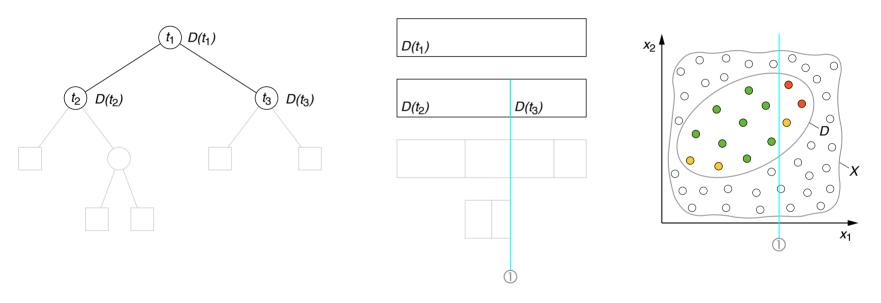
CART Algorithm (continued)



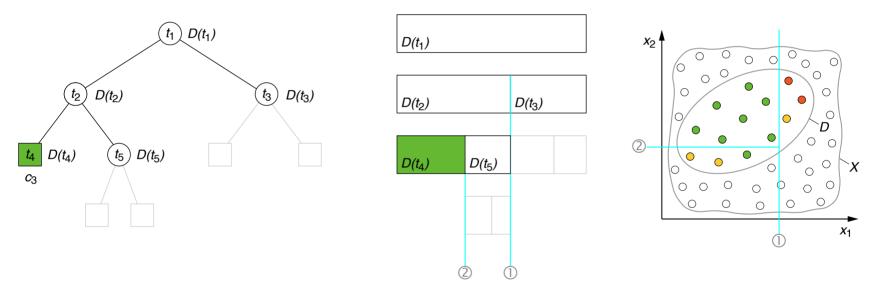
CART Algorithm (continued)



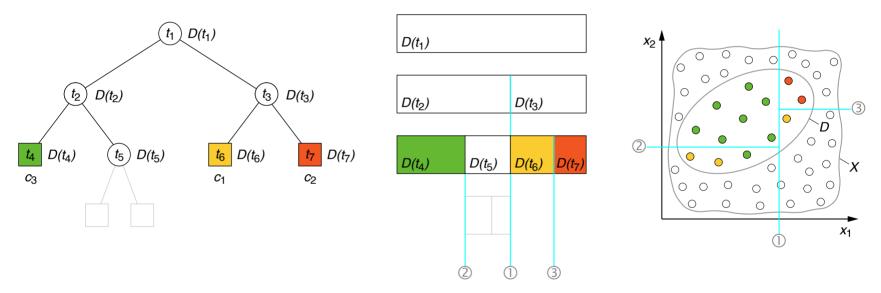
CART Algorithm (continued)



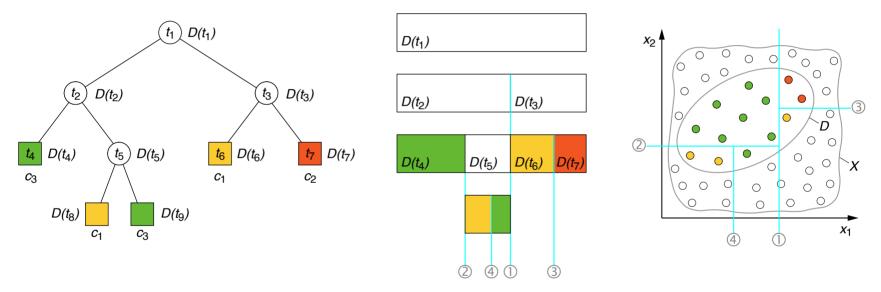
CART Algorithm (continued)



CART Algorithm (continued)

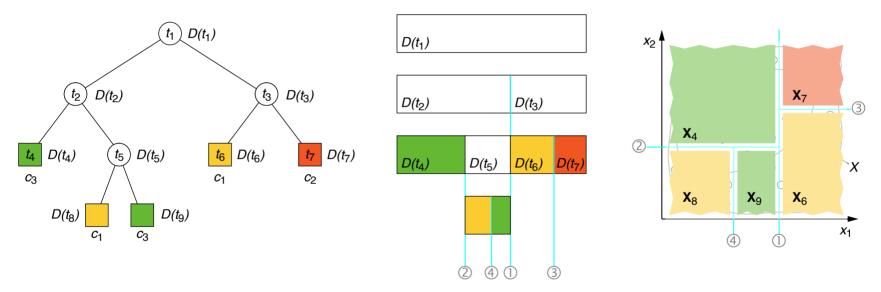


CART Algorithm (continued)



CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X corresponds to a two-dimensional plane such as the  $\mathbb{R}^2$ :



By the sequence of (here: four) splittings of D the feature space  $\mathbf{X}$  is cut into rectangular areas that are parallel to the two axes. Keyword: guillotine cuts