Chapter ML:VI

VI. Decision Trees

- Decision Trees Basics
- □ Impurity Functions
- Decision Tree Algorithms
- Decision Tree Pruning

ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:

- \Box X is a multiset of feature vectors.
- \Box *C* is a set of classes.

 $\square D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C \text{ is a multiset of examples.}$

Learning task:

 \Box Fit *D* using a decision tree *T*.

ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:

- \Box X is a multiset of feature vectors.
- \Box C is a set of classes.

 $\square D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C \text{ is a multiset of examples.}$

Learning task:

 \Box Fit *D* using a decision tree *T*.

Characteristics of the ID3 algorithm:

1. Each <u>splitting</u> is based on one nominal feature and considers its complete domain. Splitting based on feature *A* with domain $dom(A) = \{a_1, \ldots, a_m\}$:

 $X = \{\mathbf{x} \in X : \mathbf{x}|_A = a_1\} \cup \ldots \cup \{\mathbf{x} \in X : \mathbf{x}|_A = a_m\}$

2. Splitting criterion is information gain.

ID3 Algorithm (continued) [Mitchell 1997 version] [algorithm template]

ID3(D, Features)

- 1. Create a node t for the tree.
- 2. Label t with the most common class in D.
- 3. If all examples in D have the same class, return the single-node tree t.
- 4. If Features is empty, return the single-node tree t.

ID3 Algorithm (continued) [Mitchell 1997 version] [algorithm template]

ID3(D, Features)

- 1. Create a node t for the tree.
- 2. Label t with the most common class in D.
- 3. If all examples in D have the same class, return the single-node tree t.
- 4. If Features is empty, return the single-node tree t.

Otherwise:

- Let A* be the feature from Features that best classifies examples in D.
 Assign t the decision feature A*.
- 6. For each possible value "a" in dom(A*) do:
 - \Box Add a new tree branch below t, corresponding to the test A^{*} = "a".
 - \Box Let D_a be the subset of D that has value "a" for A^{*}.
 - \Box If D_a is empty:

Then add a leaf node with the label of the most common class in D. Else add the subtree $ID3(D_a, Features \setminus \{A^*\})$.

7. Return t.

ID3 Algorithm (continued) [algorithm template]

ID3(D, Features)

- 1. t = createNode()
- 2. label(t) = mostCommonClass(D)
- 3. IF $\forall (\mathbf{x}, c) \in D : c = label(t)$ THEN return(t) ENDIF // D is pure.
- 4. IF *Features* = \emptyset THEN *return*(t) ENDIF // We are running out of features.

5.

6.

ID3 Algorithm (continued) [algorithm template]

ID3(*D*, *Features*)

- 1. t = createNode()
- 2. label(t) = mostCommonClass(D)
- 3. IF $\forall (\mathbf{x}, c) \in D : c = label(t)$ THEN return(t) ENDIF // D is pure.
- 4. IF *Features* = \emptyset THEN *return*(t) ENDIF // We are running out of features.
- 5. $A^* = \operatorname{argmax}_{A \in \mathit{Features}}(\mathit{informationGain}(D, A))$

6.

ID3 Algorithm (continued) [algorithm template]

ID3(D, Features)

- 1. t = createNode()
- 2. label(t) = mostCommonClass(D)
- 3. IF $\forall (\mathbf{x}, c) \in D : c = label(t)$ THEN return(t) ENDIF // D is pure.
- 4. IF *Features* = \emptyset THEN *return*(t) ENDIF // We are running out of features.
- 5. $A^* = \operatorname{argmax}_{A \in \mathit{Features}}(\mathit{informationGain}(D, A))$
- 6. Foreach $a \in \operatorname{dom}(A^*)$ do

 $D_a = \{(\mathbf{x}, c) \in D : \mathbf{x}|_{A^*} = a\}$ If $D_a = \emptyset$ then

ELSE createEdge $(t, a, ID3(D_a, Features \setminus \{A^*\}))$ ENDIF

ENDDO

7. return(t)

ID3 Algorithm (continued) [algorithm template]

ID3(D,Features)

- 1. t = createNode()
- 2. label(t) = mostCommonClass(D)
- 3. IF $\forall (\mathbf{x}, c) \in D : c = label(t)$ THEN return(t) ENDIF // D is pure.
- 4. IF $Features = \emptyset$ THEN return(t) ENDIF // We are running out of features.
- 5. $A^* = \operatorname{argmax}_{A \in \mathit{Features}}(\mathit{informationGain}(D, A))$
- 6. Foreach $a \in \operatorname{dom}(A^*)$ do

$$\begin{split} D_a &= \{(\mathbf{x},c) \in D : \mathbf{x}|_{A^*} = a\} \\ \text{IF } D_a &= \emptyset \text{ THEN } // \text{ We are running out of data.} \\ t' &= \textit{createNode}() \\ \textit{label}(t') &= \textit{label}(t) \end{split}$$

createEdge(t, a, t')

ELSE

```
createEdge(t, a, ID3(D_a, Features \setminus \{A^*\}))
ENDIF
```

ENDDO

7. return(t)

Remarks:

- □ Step 3 of of the ID3 algorithm checks the purity of *D* and, given this case, assigns the unique class to the respective node.
- □ The ID3 (Iterative Dichotomiser 3) was published by Ross Quinlan in 1986.

ID3 Algorithm: Example

Example set D for mushrooms, drawn from a set of feature vectors X over the three dimensions color, size, and points:

	Color	Size	Points	Edibility
1	red	small	yes	toxic
2	brown	small	no	edible
3	brown	large	yes	edible
4	green	small	no	edible
5	red	large	no	edible

ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature "color" :

			toxic	edible			
	_	red	1	1	D - 2	D = 2	D = 1
$D _{color}$	=	brown	0	2	$ D_{red} = 2,$	$ D_{brown} = 2,$	$ D_{\text{green}} = 1$
		green	0	1			

ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature "color" :

			toxic	edible				
	_	red	1	1		D - 2	D = 2	$ \mathcal{D} = 1$
$D _{color}$	=	brown	0	2	\sim	$ D_{red} = 2,$	$ D_{brown} = 2,$	$ D_{\text{green}} = 1$
		green	0	1				

Estimated prior probabilities:

$$\hat{P}(\textit{Color}=\textit{red}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{brown}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{green}) = \frac{1}{5} = 0.2$$

ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature "color" :

			toxic	edible			
, ות	_	red	1	1	D - 2	D = 2	– _
$D _{color}$	=	brown	0	2	$ \mathcal{D}_{red} = 2,$	$ D_{brown} = 2,$	$ D_{green} -$
		green	0	1			

Estimated prior probabilities:

$$\hat{P}(\textit{Color}=\textit{red}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{brown}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{green}) = \frac{1}{5} = 0.2$$

Conditional entropy:

$$\begin{aligned} H(\mathcal{A} \mid \mathcal{B}_1) &= H(\{A_1, A_2\} \mid \{B_{1,1}, B_{1,2}, B_{1,3}\}) \\ &= H(\{C = \mathsf{toxic}, C = \mathsf{edible}\} \mid \{Color = \mathsf{red}, Color = \mathsf{brown}, Color = \mathsf{green}\}) \\ &= -(0.4 \cdot (\frac{1}{2} \cdot \log_2 \frac{1}{2} + \frac{1}{2} \cdot \log_2 \frac{1}{2}) + 0.4 \cdot (\frac{0}{2} \cdot \log_2 \frac{0}{2} + \frac{2}{2} \cdot \log_2 \frac{2}{2}) + 0.2 \cdot (\frac{0}{1} \cdot \log_2 \frac{0}{1} + \frac{1}{1} \cdot \log_2 \frac{1}{1})) = 0.4 \end{aligned}$$

ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a <u>splitting</u> with regard to the feature "color" :

			toxic	edible				
, ות	_	red	1	1		D - 2	D = 2	
$D _{color}$	=	brown	0	2	\sim	$ D_{red} = 2,$	$ D_{brown} = 2,$	$ D_{green} $ -
		green	0	1				

Estimated prior probabilities:

$$\hat{P}(\textit{Color}=\textit{red}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{brown}) = \frac{2}{5} = 0.4, \quad \hat{P}(\textit{Color}=\textit{green}) = \frac{1}{5} = 0.2$$

Conditional entropy:

$$\begin{aligned} H(\mathcal{A} \mid \mathcal{B}_1) &= H(\{A_1, A_2\} \mid \{B_{1,1}, B_{1,2}, B_{1,3}\}) \\ &= H(\{C = \mathsf{toxic}, C = \mathsf{edible}\} \mid \{Color = \mathsf{red}, Color = \mathsf{brown}, Color = \mathsf{green}\}) \\ &= -(0.4 \cdot (\frac{1}{2} \cdot \log_2 \frac{1}{2} + \frac{1}{2} \cdot \log_2 \frac{1}{2}) + 0.4 \cdot (\frac{0}{2} \cdot \log_2 \frac{0}{2} + \frac{2}{2} \cdot \log_2 \frac{2}{2}) + 0.2 \cdot (\frac{0}{1} \cdot \log_2 \frac{0}{1} + \frac{1}{1} \cdot \log_2 \frac{1}{1})) = 0.4 \end{aligned}$$

 $H(\mathcal{A} | \mathcal{B}_2) = H(\{ C = \text{toxic}, C = \text{edible} \} | \{ Size = \text{small}, Size = \text{large} \}) = \dots \approx 0.55$ $H(\mathcal{A} | \mathcal{B}_3) = H(\{ C = \text{toxic}, C = \text{edible} \} | \{ Points = \text{yes}, Points = \text{no} \}) = \dots = 0.4$

ML:VI-95 Decision Trees

Remarks:

- □ The smaller H(A | B) is, the larger becomes the information gain. Hence, the difference H(A) H(A | B) needs not to be computed since H(A) is constant within each recursion step.
- □ In the example, the information gain in the first recursion step becomes maximum for the features "color" and "points".
- □ Notation. When used in the role of a random variable (here: in the argument of a probability *P*), features are written in italics and capitalized.
- □ Notation. The probabilities, denoted as $P(\cdot)$, are unknown and estimated by the relative frequencies, denoted as $\hat{P}(\cdot)$.

ID3 Algorithm: Example (continued)

Decision tree before the first recursion step:

Choosing the feature "points" in Step 5 of the ID3 algorithm.

ID3 Algorithm: Example (continued)

Decision tree before the second recursion step:

Choosing the feature "color" in Step 5 of the ID3 algorithm.

ID3 Algorithm: Example (continued)

Final decision tree after second recursion step:

Break of a tie: choosing the class "toxic" for D_{green} in Step 6 of the ID3 algorithm.

ID3 Algorithm: Search Space

Remarks (search space versus hypothesis space):

- The underlying search space of an algorithm that samples without replacement a single feature in each step (= monothetic splitting) consists of all permutations of the features in the feature set. In particular, if the number of features (= dimensionality of a feature vector x) is p, then the search space contains p! elements.
- □ The set of possible decision trees over *D* forms the hypothesis space *H*. The maximum size of *H*, i.e., the maximum number of decision trees for a data set *D* in a binary classification setting, is $2^{|D|}$: If the feature vectors are pairwise distinct, every subset of *D* can form a class while the complement of the subset will form the other class. The set of possible subsets of *D* is $\mathcal{P}(D)$, where $|\mathcal{P}(D)| = 2^{|D|}$.
- □ Observe that either $p! < 2^{|D|}$ or $p! > 2^{|D|}$ can hold. I.e., the search space due to feature ordering can be smaller or larger than its underlying hypothesis space. The former characterizes the typical situation; also note that both the search space and the hypothesis space grow exponentially in the number of features and examples respectively.
- The difference between search space size and hypothesis space size results from Step 6 of the ID3 algorithm: the same feature selection order will lead to different decision trees when given different data sets. However, since the splitting operation in Step 6 is deterministic it has no effect on the search space.
- □ The runtime of the ID3 algorithm is in $O(p^2 \cdot n)$, i.e., significantly below p! since only a small part of the search space is explored. At each split, the algorithm greedily (in fact, irrevocably) selects the most informative feature by applying information gain as a heuristic for feature selection.

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.
- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.
 - → The target concept is a member of the hypothesis space.
- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
 - ➔ no backtracking takes place
 - → the decision tree is a result of *local optimization*

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.
 - → The target concept is a member of the hypothesis space.
- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
 - ➔ no backtracking takes place
 - → the decision tree is a result of *local optimization*

Where the inductive bias of the ID3 algorithm becomes manifest:

- 1. Small decision trees are preferred.
- 2. Highly discriminative features tend to be closer to the root.

Is this justified?

Remarks (inductive bias):

- □ The inductive bias of the ID3 algorithm is of a different kind than the inductive bias of the candidate elimination algorithm:
 - 1. The underlying hypothesis space H of the candidate elimination algorithm is incomplete. H corresponds to a coarsened view onto the space of all hypotheses since H contains only conjunctions of feature-value pairs as hypotheses.

However, this restricted hypothesis space is searched completely by the candidate elimination algorithm. Keyword: restriction bias

2. The underlying hypothesis space H of the ID3 algorithm is complete since it contains all decision trees that can be constructed over D.

However, this complete hypothesis space is searched incompletely, but following a preference. Keyword: preference bias or search bias

□ The inductive bias of the ID3 algorithm renders the algorithm robust wrt. noise.

CART Algorithm [Breiman 1984] [ID3 Algorithm]

Setting:

- X is a multiset of feature vectors. No restrictions are presumed for the features' measurement scales.
- \Box *C* is a set of classes.
- $\square D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C \text{ is a multiset of examples.}$

Learning task:

 \Box Fit *D* using a decision tree *T*.

CART Algorithm [Breiman 1984] [ID3 Algorithm]

Setting:

- X is a multiset of feature vectors. No restrictions are presumed for the features' measurement scales.
- \Box *C* is a set of classes.
- $\square D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C \text{ is a multiset of examples.}$

Learning task:

 \Box Fit *D* using a decision tree *T*.

Characteristics of the CART algorithm:

- 1. Each splitting is binary and considers one feature at a time.
- 2. Splitting criterion is the information gain or the Gini index.

CART Algorithm (continued)

Let *A* be a feature with domain dom(A). Apply (probably multiple times) the respective rule to induce a finite number of binary <u>splittings</u> of *X* :

- R1: If A is nominal, choose $B \subset \operatorname{dom}(A)$ such that $0 < |B| \le |\operatorname{dom}(A) \setminus B|$.
- R2: If A is ordinal, choose $a \in dom(A)$ such that $x_{\min} < a < x_{\max}$, where x_{\min} , x_{\max} are the minimum and maximum values of feature A in D.
- R3: If *A* is numeric, choose $a \in dom(A)$ such that $a = 0.5 \cdot (x_{l_1} + x_{l_2})$, where x_{l_1} , x_{l_2} are consecutive elements in the ordered value list of feature *A* in *D*.

CART Algorithm (continued)

Let *A* be a feature with domain dom(A). Apply (probably multiple times) the respective rule to induce a finite number of binary <u>splittings</u> of *X* :

- R1: If A is nominal, choose $B \subset \operatorname{dom}(A)$ such that $0 < |B| \le |\operatorname{dom}(A) \setminus B|$.
- R2: If A is ordinal, choose $a \in dom(A)$ such that $x_{\min} < a < x_{\max}$, where x_{\min} , x_{\max} are the minimum and maximum values of feature A in D.
- R3: If *A* is numeric, choose $a \in dom(A)$ such that $a = 0.5 \cdot (x_{l_1} + x_{l_2})$, where x_{l_1} , x_{l_2} are consecutive elements in the ordered value list of feature *A* in *D*.

Adapt Step 5 and 6 to turn the ID3 algorithm into the CART algorithm:

→ 5. For all $A \in Features$: Generate with the above rules all splittings of D(t). Choose a splitting that maximizes the impurity reduction $\Delta \iota$:

 $\underline{\Delta \iota} \left(D(t), \ \left\{ D(t_L), D(t_R) \right\} \right) \ = \ \iota(D(t)) - \frac{|D(t_L)|}{|D|} \cdot \iota(D(t_L)) - \frac{|D(t_R)|}{|D|} \cdot \iota(D(t_R))$

 \rightarrow 6. Recursively call CART to process $D(t_L)$ and $D(t_R)$.

Remarks:

- \Box t_L and t_R denote the left and right successor of t in the decision tree. These nodes are returned by the calls of the CART algorithm and connected to t via *createEdge*().
- □ Since the CART algorithm creates binary splittings only, the feature A^* chosen in Step 5 can be chosen again later on. Hence, a call of CART to process $D(t_L)$ (or $D(t_R)$) in Step 6 passes the complete set of features as second parameter (and not: *Features*\{ A^* }).

CART Algorithm (continued)

CART Algorithm (continued)

CART Algorithm (continued)

CART Algorithm (continued)

CART Algorithm (continued)

CART Algorithm (continued)

CART Algorithm (continued)

CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X corresponds to a two-dimensional plane such as the \mathbb{R}^2 :

By the sequence of (here: four) splittings of D the feature space \mathbf{X} is cut into rectangular areas that are parallel to the two axes. Keyword: guillotine cuts