
Chapter ML:VI

VI. Decision Trees
q Decision Trees Basics
q Impurity Functions
q Decision Tree Algorithms
q Decision Tree Pruning

ML:VI-81 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:

q X is a multiset of feature vectors.

q C is a set of classes.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit D using a decision tree T .

ML:VI-82 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:

q X is a multiset of feature vectors.

q C is a set of classes.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit D using a decision tree T .

Characteristics of the ID3 algorithm:

1. Each
::::::::::::
splitting is based on one nominal feature and considers its complete

domain. Splitting based on feature A with domain dom(A) = {a1, . . . , am} :

X = {x ∈ X : x|A = a1} ∪ . . . ∪ {x ∈ X : x|A = am}

2. Splitting criterion is
:::::::::::::::::
information

::::::::
gain.

ML:VI-83 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#definition-splitting
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain

Decision Tree Algorithms
ID3 Algorithm (continued) [Mitchell 1997 version] [

::::::::::
algorithm

:::::::::
template]

ID3(D, Features)

1. Create a node t for the tree.

2. Label t with the
::::::
most

::::::::::::
common

::::::::
class in D.

3. If all examples in D have the same class, return the single-node tree t.

4. If Features is empty, return the single-node tree t.

ML:VI-84 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#dtree-with-training-set

Decision Tree Algorithms
ID3 Algorithm (continued) [Mitchell 1997 version] [

::::::::::
algorithm

:::::::::
template]

ID3(D, Features)

1. Create a node t for the tree.

2. Label t with the
::::::
most

::::::::::::
common

::::::::
class in D.

3. If all examples in D have the same class, return the single-node tree t.

4. If Features is empty, return the single-node tree t.

Otherwise:

5. Let A* be the feature from Features that best classifies examples in D.

Assign t the decision feature A*.

6. For each possible value “a” in dom(A*) do:

q Add a new tree branch below t, corresponding to the test A* = “a”.

q Let Da be the subset of D that has value “a” for A*.

q If Da is empty:
Then add a leaf node with the label of the most common class in D.
Else add the subtree ID3(Da, Features \ {A*}).

7. Return t.

ML:VI-85 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#dtree-with-training-set

Decision Tree Algorithms
ID3 Algorithm (continued) [

::::::::::
algorithm

:::::::::
template]

ID3(D,Features)

1. t = createNode()
2. label(t) = mostCommonClass(D)

3. IF ∀(x, c) ∈ D : c = label(t) THEN return(t) ENDIF // D is pure.

4. IF Features = ∅ THEN return(t) ENDIF // We are running out of features.

5. A∗ = argmaxA∈Features(informationGain(D,A))

6. FOREACH a ∈ dom(A∗) DO

Da = {(x, c) ∈ D : x|A∗ = a}
IF Da = ∅ THEN // We are running out of data.

t′ = createNode()
label(t′) = label(t)
createEdge(t, a, t′)

ELSE
createEdge(t, a, ID3(Da,Features\{A∗}))

ENDIF

ENDDO

7. return(t)

ML:VI-86 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct

Decision Tree Algorithms
ID3 Algorithm (continued) [

::::::::::
algorithm

:::::::::
template]

ID3(D,Features)

1. t = createNode()
2. label(t) = mostCommonClass(D)

3. IF ∀(x, c) ∈ D : c = label(t) THEN return(t) ENDIF // D is pure.

4. IF Features = ∅ THEN return(t) ENDIF // We are running out of features.

5. A∗ = argmaxA∈Features(informationGain(D,A))

6. FOREACH a ∈ dom(A∗) DO

Da = {(x, c) ∈ D : x|A∗ = a}
IF Da = ∅ THEN // We are running out of data.

t′ = createNode()
label(t′) = label(t)
createEdge(t, a, t′)

ELSE
createEdge(t, a, ID3(Da,Features\{A∗}))

ENDIF

ENDDO

7. return(t)

ML:VI-87 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct

Decision Tree Algorithms
ID3 Algorithm (continued) [

::::::::::
algorithm

:::::::::
template]

ID3(D,Features)

1. t = createNode()
2. label(t) = mostCommonClass(D)

3. IF ∀(x, c) ∈ D : c = label(t) THEN return(t) ENDIF // D is pure.

4. IF Features = ∅ THEN return(t) ENDIF // We are running out of features.

5. A∗ = argmaxA∈Features(informationGain(D,A))

6. FOREACH a ∈ dom(A∗) DO

Da = {(x, c) ∈ D : x|A∗ = a}
IF Da = ∅ THEN // We are running out of data.

t′ = createNode()
label(t′) = label(t)
createEdge(t, a, t′)

ELSE
createEdge(t, a, ID3(Da,Features\{A∗}))

ENDIF

ENDDO

7. return(t)

ML:VI-88 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct

Decision Tree Algorithms
ID3 Algorithm (continued) [

::::::::::
algorithm

:::::::::
template]

ID3(D,Features)

1. t = createNode()
2. label(t) = mostCommonClass(D)

3. IF ∀(x, c) ∈ D : c = label(t) THEN return(t) ENDIF // D is pure.

4. IF Features = ∅ THEN return(t) ENDIF // We are running out of features.

5. A∗ = argmaxA∈Features(informationGain(D,A))

6. FOREACH a ∈ dom(A∗) DO

Da = {(x, c) ∈ D : x|A∗ = a}
IF Da = ∅ THEN // We are running out of data.

t′ = createNode()
label(t′) = label(t)
createEdge(t, a, t′)

ELSE
createEdge(t, a, ID3(Da,Features\{A∗}))

ENDIF

ENDDO

7. return(t)

ML:VI-89 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct

Remarks:

q Step 3 of of the ID3 algorithm checks the purity of D and, given this case, assigns the unique
class to the respective node.

q The ID3 (Iterative Dichotomiser 3) was published by Ross Quinlan in 1986.

ML:VI-90 Decision Trees © STEIN/LETTMANN 2024

https://en.wikipedia.org/wiki/Ross_Quinlan

Decision Tree Algorithms
ID3 Algorithm: Example

Example set D for mushrooms, drawn from a set of feature vectors X over the three
dimensions color, size, and points:

Color Size Points Edibility

1 red small yes toxic
2 brown small no edible
3 brown large yes edible
4 green small no edible
5 red large no edible

ML:VI-91 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a
::::::::::::
splitting with regard to the feature “color” :

D|color =

toxic edible
red 1 1
brown 0 2
green 0 1

; |Dred| = 2, |Dbrown| = 2, |Dgreen| = 1

ML:VI-92 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a
::::::::::::
splitting with regard to the feature “color” :

D|color =

toxic edible
red 1 1
brown 0 2
green 0 1

; |Dred| = 2, |Dbrown| = 2, |Dgreen| = 1

Estimated prior probabilities:

P̂ (Color=red) =
2

5
= 0.4, P̂ (Color=brown) =

2

5
= 0.4, P̂ (Color=green) =

1

5
= 0.2

ML:VI-93 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a
::::::::::::
splitting with regard to the feature “color” :

D|color =

toxic edible
red 1 1
brown 0 2
green 0 1

; |Dred| = 2, |Dbrown| = 2, |Dgreen| = 1

Estimated prior probabilities:

P̂ (Color=red) =
2

5
= 0.4, P̂ (Color=brown) =

2

5
= 0.4, P̂ (Color=green) =

1

5
= 0.2

::::::::::::::
Conditional

:::::::::::
entropy:

H(A | B1) = H({A1, A2} | {B1,1, B1,2, B1,3})
= H({C=toxic,C=edible} | {Color=red,Color=brown,Color=green})
= −(0.4·(12 · log2

1
2 +

1
2 · log2

1
2) + 0.4·(02 · log2

0
2 +

2
2 · log2

2
2) + 0.2·(01 · log2

0
1 +

1
1 · log2

1
1)) = 0.4

ML:VI-94 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a
::::::::::::
splitting with regard to the feature “color” :

D|color =

toxic edible
red 1 1
brown 0 2
green 0 1

; |Dred| = 2, |Dbrown| = 2, |Dgreen| = 1

Estimated prior probabilities:

P̂ (Color=red) =
2

5
= 0.4, P̂ (Color=brown) =

2

5
= 0.4, P̂ (Color=green) =

1

5
= 0.2

::::::::::::::
Conditional

:::::::::::
entropy:

H(A | B1) = H({A1, A2} | {B1,1, B1,2, B1,3})
= H({C=toxic,C=edible} | {Color=red,Color=brown,Color=green})
= −(0.4·(12 · log2

1
2 +

1
2 · log2

1
2) + 0.4·(02 · log2

0
2 +

2
2 · log2

2
2) + 0.2·(01 · log2

0
1 +

1
1 · log2

1
1)) = 0.4

H(A | B2) = H({C=toxic,C=edible} | {Size=small,Size=large}) = . . . ≈ 0.55

H(A | B3) = H({C=toxic,C=edible} | {Points=yes,Points=no}) = . . . = 0.4

ML:VI-95 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain

Remarks:

q The smaller H(A | B) is, the larger becomes the
::::::::::::::
information

::::::
gain. Hence, the difference

H(A)−H(A | B) needs not to be computed since H(A) is constant within each recursion
step.

q In the example, the information gain in the first recursion step becomes maximum for the
features “color” and “points”.

q Notation. When used in the role of a random variable (here: in the argument of a
probability P), features are written in italics and capitalized.

q Notation. The probabilities, denoted as P (·), are unknown and estimated by the relative
frequencies, denoted as P̂ (·).

ML:VI-96 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Decision tree before the first recursion step:

feature: points

yes no

Color Size Edibility

red small toxic
brown large edible

Color Size Edibility

brown small edible
green small edible
red large edible

Choosing the feature “points” in Step 5 of the ID3 algorithm.

ML:VI-97 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Decision tree before the second recursion step:

feature: points

yes no

Size Edibility

small toxic

Size Edibility

large edible

Size Edibility

 -/- -/-

feature: color

red brown
green

Color Size Edibility

brown small edible
green small edible
red large edible

Choosing the feature “color” in Step 5 of the ID3 algorithm.

ML:VI-98 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Final decision tree after second recursion step:

feature: points

yes no

label: ediblefeature: color

red brown
green

label: toxic label: ediblelabel: toxic

Break of a tie: choosing the class “toxic” for Dgreen in Step 6 of the ID3 algorithm.

ML:VI-99 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
ID3 Algorithm: Search Space

Features = {A1, A2, . . . , Ap}

. . .A1 A2 Ap

. . .A2 A7 Ap. . .

. . .A2 A6 Ap. . . A8

. . .A2 A6 Ap. . . A9? ???

ML:VI-100 Decision Trees © STEIN/LETTMANN 2024

Remarks (search space versus hypothesis space) :

q The underlying search space of an algorithm that samples without replacement a single
feature in each step (= monothetic splitting) consists of all permutations of the features in the
feature set. In particular, if the number of features (= dimensionality of a feature vector x) is p,
then the search space contains p! elements.

q The set of possible decision trees over D forms the hypothesis space H. The maximum size
of H, i.e., the maximum number of decision trees for a data set D in a binary classification
setting, is 2|D| : If the feature vectors are pairwise distinct, every subset of D can form a class
while the complement of the subset will form the other class. The set of possible subsets
of D is P(D), where |P(D)| = 2|D|.

q Observe that either p! < 2|D| or p! > 2|D| can hold. I.e., the search space due to feature
ordering can be smaller or larger than its underlying hypothesis space. The former
characterizes the typical situation; also note that both the search space and the hypothesis
space grow exponentially in the number of features and examples respectively.

q The difference between search space size and hypothesis space size results from Step 6 of
the ID3 algorithm: the same feature selection order will lead to different decision trees when
given different data sets. However, since the splitting operation in Step 6 is deterministic it
has no effect on the search space.

q The runtime of the ID3 algorithm is in O(p2 · n), i.e., significantly below p! since only a small
part of the search space is explored. At each split, the algorithm greedily (in fact, irrevocably)
selects the most informative feature by applying information gain as a heuristic for feature
selection.

ML:VI-101 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a
training set for the classification of unseen feature vectors.

Observations:

q Decision tree search happens in the space of all hypotheses.
The target concept is a member of the hypothesis space.

q To generate a decision tree, the ID3 algorithm needs per branch at most as
many decisions as features are given.

no backtracking takes place
the decision tree is a result of local optimization

ML:VI-102 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a
training set for the classification of unseen feature vectors.

Observations:

q Decision tree search happens in the space of all hypotheses.
Ü The target concept is a member of the hypothesis space.

q To generate a decision tree, the ID3 algorithm needs per branch at most as
many decisions as features are given.
Ü no backtracking takes place
Ü the decision tree is a result of local optimization

ML:VI-103 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a
training set for the classification of unseen feature vectors.

Observations:

q Decision tree search happens in the space of all hypotheses.
Ü The target concept is a member of the hypothesis space.

q To generate a decision tree, the ID3 algorithm needs per branch at most as
many decisions as features are given.
Ü no backtracking takes place
Ü the decision tree is a result of local optimization

Where the inductive bias of the ID3 algorithm becomes manifest:

1. Small decision trees are preferred.
2. Highly discriminative features tend to be closer to the root.

Is this justified?

ML:VI-104 Decision Trees © STEIN/LETTMANN 2024

Remarks (inductive bias) :

q The inductive bias of the ID3 algorithm is of a different kind than the inductive bias of the

::::::::::::
candidate

:::::::::::::::
elimination

:::::::::::::
algorithm:

1. The underlying hypothesis space H of the candidate elimination algorithm is incomplete.
H corresponds to a coarsened view onto the space of all hypotheses since H contains
only conjunctions of feature-value pairs as hypotheses.

However, this restricted hypothesis space is searched completely by the candidate
elimination algorithm. Keyword: restriction bias

2. The underlying hypothesis space H of the ID3 algorithm is complete since it contains all
decision trees that can be constructed over D.

However, this complete hypothesis space is searched incompletely, but following a
preference. Keyword: preference bias or search bias

q The inductive bias of the ID3 algorithm renders the algorithm robust wrt. noise.

ML:VI-105 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-concept-learning.pdf#algorithm-candidate-elimination

Decision Tree Algorithms
CART Algorithm [Breiman 1984] [ID3 Algorithm]

Setting:

q X is a multiset of feature vectors. No restrictions are presumed for the
features’

:::::::::::::::::::::
measurement

:::::::::::
scales.

q C is a set of classes.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit D using a decision tree T .

ML:VI-106 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/data-mining/unit-en-data.pdf#measurement-scale

Decision Tree Algorithms
CART Algorithm [Breiman 1984] [ID3 Algorithm]

Setting:

q X is a multiset of feature vectors. No restrictions are presumed for the
features’

:::::::::::::::::::::
measurement

:::::::::::
scales.

q C is a set of classes.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit D using a decision tree T .

Characteristics of the CART algorithm:

1. Each splitting is binary and considers one feature at a time.

2. Splitting criterion is the
:::::::::::::::::
information

:::::::
gain or the

::::::
Gini

:::::::::
index.

ML:VI-107 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/data-mining/unit-en-data.pdf#measurement-scale
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-impurity-gini

Decision Tree Algorithms
CART Algorithm (continued)

Let A be a feature with domain dom(A). Apply (probably multiple times) the
respective rule to induce a finite number of binary

::::::::::::::
splittings of X :

R1: If A is nominal, choose B ⊂ dom(A) such that 0 < |B| ≤ |dom(A) \B|.

R2: If A is ordinal, choose a ∈ dom(A) such that xmin < a < xmax, where xmin, xmax

are the minimum and maximum values of feature A in D.

R3: If A is numeric, choose a ∈ dom(A) such that a = 0.5 · (xl1 + xl2), where xl1, xl2
are consecutive elements in the ordered value list of feature A in D.

ML:VI-108 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale

Decision Tree Algorithms
CART Algorithm (continued)

Let A be a feature with domain dom(A). Apply (probably multiple times) the
respective rule to induce a finite number of binary

::::::::::::::
splittings of X :

R1: If A is nominal, choose B ⊂ dom(A) such that 0 < |B| ≤ |dom(A) \B|.

R2: If A is ordinal, choose a ∈ dom(A) such that xmin < a < xmax, where xmin, xmax

are the minimum and maximum values of feature A in D.

R3: If A is numeric, choose a ∈ dom(A) such that a = 0.5 · (xl1 + xl2), where xl1, xl2
are consecutive elements in the ordered value list of feature A in D.

Adapt Step 5 and 6 to turn the ID3 algorithm into the CART algorithm:

→ 5. For all A ∈ Features : Generate with the above rules all splittings of D(t).
Choose a splitting that maximizes the impurity reduction ∆ι :

∆ι
:::

(
D(t), {D(tL), D(tR)}

)
= ι(D(t))− |D(tL)|

|D| · ι(D(tL))− |D(tR)|
|D| · ι(D(tR))

→ 6. Recursively call CART to process D(tL) and D(tR).

ML:VI-109 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-impurity-reduction

Remarks:

q tL and tR denote the left and right successor of t in the decision tree. These nodes are
returned by the calls of the CART algorithm and connected to t via createEdge().

q Since the CART algorithm creates binary splittings only, the feature A∗ chosen in Step 5 can
be chosen again later on. Hence, a call of CART to process D(tL) (or D(tR)) in Step 6
passes the complete set of features as second parameter (and not: Features\{A∗}).

ML:VI-110 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R2 :

x2

X ⊆ R2

x1

ML:VI-111 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R2 :

x2

X ⊆ R2

x1

X

ML:VI-112 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R2 :

x2

X ⊆ R2

x1

X

D

ML:VI-113 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R2 :

x2

X ⊆ R2

x1

X

D

D(t1)

D(t2) D(t3)

t3t2 D(t2) D(t3)

t1 D(t1)

ML:VI-114 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R2 :

x2

X ⊆ R2

x1

X

D

D(t1)

D(t2) D(t3)

t3t2 D(t2) D(t3)

t1 D(t1)

t5t4 D(t5)D(t4)

t2

c3

D(t5)D(t4)

ML:VI-115 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R2 :

x2

X ⊆ R2

x1

X

D

D(t1)

D(t2) D(t3)

t3t2 D(t2) D(t3)

t1 D(t1)

t5t4 D(t5)D(t4)

t2

c3

D(t5)D(t4) D(t6) D(t7)

D(t6)t6
c2

D(t7)t7
c1

t3

ML:VI-116 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R2 :

x2

X ⊆ R2

x1

X

D

D(t1)

D(t2) D(t3)

t3t2 D(t2) D(t3)

t1 D(t1)

t5t4 D(t5)D(t4)

t2

c3

D(t5)D(t4) D(t6) D(t7)

D(t6)t6
c2

D(t7)t7
c1

t3

c1 c3

D(t9)D(t8)

t5

ML:VI-117 Decision Trees © STEIN/LETTMANN 2024

Decision Tree Algorithms
CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R2 :

x2

X ⊆ R2

x1

X

D

D(t1)

D(t2) D(t3)

t3t2 D(t2) D(t3)

t1 D(t1)

t5t4 D(t5)D(t4)

t2

c3

D(t5)D(t4) D(t6) D(t7)

D(t6)t6
c2

D(t7)t7
c1

t3

c1 c3

D(t9)D(t8)

t5

X6X9X8

X7

X4

By the sequence of (here: four) splittings of D the feature space X is cut into
rectangular areas that are parallel to the two axes. Keyword: guillotine cuts

ML:VI-118 Decision Trees © STEIN/LETTMANN 2024

