Chapter ML:VI

VI. Decision Trees

Q

Q
a
Q

Decision Trees Basics
Impurity Functions
Decision Tree Algorithms
Decision Tree Pruning

ML:VI-81 Decision Trees

©STEIN/LETTMANN 2024

Decision Tree Algorithms
ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:
o X is a multiset of feature vectors.
o C'is a set of classes.

0 D={(xy,c1),...,(Xn,cn)} € X x Cis amultiset of examples.

Learning task:

o Fit D using a decision tree T'.

Decision Tree Algorithms
ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:
o X is a multiset of feature vectors.

o (Cis a set of classes.

0 D={(xy,c1),...,(Xn,cn)} € X x Cis amultiset of examples.

Learning task:
o Fit D using a decision tree T'.

Characteristics of the ID3 algorithm:

1. Each splitting is based on one nominal feature and considers its complete
domain. Splitting based on feature A with domain dom(A) = {a4,...,a,}:

X={xeX xja=a} U...U{xeX xX[ga=a,}

2. Splitting criterion is information gain.

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#definition-splitting
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain

Decision Tree Algorithms
ID3 Algorithm (continued) [Mitchell 1997 version] [algorithm template]

ID3(D, Features)
1. Create a node t for the tree.
2. Label t with the most common class in D.

3. If all examples in D have the same class, return the single-node tree t.

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#dtree-with-training-set

Decision Tree Algorithms
ID3 Algorithm (continued) [Mitchell 1997 version] [algorithm template]

ID3(D, Features)
1. Create a node t for the tree.
2. Label t with the most common class in D.
3. If all examples in D have the same class, return the single-node tree t.
4

If Features is empty, return the single-node tree t.

Otherwise:
5. Let A* be the feature from Features that best classifies examples in D.

Assign t the decision feature A”.

6. For each possible value “a” in dom(A*) do:
O Add a new tree branch below t, corresponding to the test A* = “a”.
O Let D, be the subset of D that has value “a” for A*.
a If Dy is empty:
Then add a leaf node with the label of the most common class in D.
Else add the subtree ID3(D,, Features \ {A*}).

7. Returnt.

ML:VI-85 Decision Trees O©STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#dtree-with-training-set

Decision Tree Algorithms
ID3 Algorithm (continued) [algorithm template]

ID3(D, Features)

1. t= createNode()
2. label(t) = mostCommonClass(D)

IF V(x,c) € D:c= label(t) THEN return(t) ENDIF

W

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct

Decision Tree Algorithms
ID3 Algorithm (continued) [algorithm template]

ID3(D, Features)

1. t= createNode()
2. label(t) = mostCommonClass(D)

IF V(x,c) € D:c= label(t) THEN return(t) ENDIF

W

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct

Decision Tree Algorithms
ID3 Algorithm (continued) [algorithm template]

ID3(D, Features)

1.
2.

3.

t = createNode()
label(t) = mostCommonClass(D)

IF V(x,c) € D:c= label(t) THEN return(t) ENDIF

FOREACH a € dom(A*) DO
D, ={(x,¢c) € D :x[s = a}
IF D, =(THEN

ELSE
createEdge(t, a, ID3(D,, Features\{A*}))
ENDIF
ENDDO
return(t)

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct

Decision Tree Algorithms
ID3 Algorithm (continued) [algorithm template]

ID3(D, Features)

1.
2.

3.

t = createNode()
label(t) = mostCommonClass(D)

IF V(x,c) € D:c= label(t) THEN return(t) ENDIF

FOREACH a € dom(A*) DO
D, ={(x,¢c) € D :x[s = a}
IF D, =(THEN

ELSE
createEdge(t, a, ID3(D,, Features\{A*}))
ENDIF
ENDDO
return(t)

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#algorithm-dt-construct

Remarks:

class to the respective node.

Q The ID3 (lterative Dichotomiser 3) was published by Ross Quinlan in 1986.

https://en.wikipedia.org/wiki/Ross_Quinlan

Decision Tree Algorithms
ID3 Algorithm: Example

Example set D for mushrooms, drawn from a set of feature vectors X over the three
dimensions color, size, and points:

Color Size Points

1 red small yes toxic

2 brown small no edible
3 brown large yes edible
4 green small no edible
5 red large no edible

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature “color”:

toxic edible

red 1 1
D|co|or = brown 0 o > |Dred‘ = 2, |Dbrown‘ = 2, |Dgreen| =1

green O 1

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature “color”:

toxic edible
red 1 1
D|co|or = brown 0 o > |Dred‘ = 2, |Dbrown‘ = 2, |Dgreen| =1
green O 1

Estimated prior probabilities:

. A 2 A 1
P(Color=red) = % = 0.4, P(Color=brown) = e 0.4, P(Color=green) = B 0.2

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature “color”:

toxic edible
red 1 1
D|co|or = brown 0 o > |Dred‘ = 2, |Dbrown‘ = 2, |Dgreen| =1
green O 1

Estimated prior probabilities:

. A 2 A 1
P(Color=red) = % = 0.4, P(Color=brown) = e 0.4, P(Color=green) = B 0.2

Conditional entropy:

H(A|[B1) = H({A1, A2} | {B11, Bi, Bi3})
H({C=toxic, C=edible} | { Color=red, Color=brown, Color=green})
= —(0.4:(3-logy 5 + 5-1ogy 5) + 0.4 (5-logy § + 5-logy 3) + 0.2:(7-logy T + 1+logy 1)) = 0.4

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature “color”:

toxic edible
red 1 1
D|co|or = brown 0 o > |Dred| = 2, |Dbrown‘ = 2, |Dgreen| =1
green O 1

Estimated prior probabilities:

. A 2 A 1
P(Color=red) = % = 0.4, P(Color=brown) = e 0.4, P(Color=green) = B 0.2

Conditional entropy:

H(A | By) = H({A1, A2} [{B11, B12, B3})
H({C=toxic, C=edible} | { Color=red, Color=brown, Color=green})
= —(0.4:(3-logy 5 + 5-1ogy 5) + 0.4 (5-logy § + 5-logy 3) + 0.2:(7-logy T + 1+logy 1)) = 0.4

H(A|Bs)
H(A | B3) = H({C=toxic, C=edible} | { Points=yes, Points=no})= ... = 0.4

H({C=toxic, C=edible} | { Size=small, Size=large}) = ... =~ 0.55

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain

Remarks:

Q The smaller H(A | B) is, the larger becomes the information gain. Hence, the difference
H(A) — H(A | B) needs not to be computed since H(.A) is constant within each recursion
step.

a Inthe example, the information gain in the first recursion step becomes maximum for the
features “color” and “points”.

a Notation. When used in the role of a random variable (here: in the argument of a
probability P), features are written in italics and capitalized.

0 Notation. The probabilities, denoted as P(-), are unknown and estimated by the relative
frequencies, denoted as P(-).

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Decision tree before the first recursion step:

feature: points

yes no

Color Size Edibility Color Size Edibility
red small toxic brown small edible
brown large edible green small edible
red large edible

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Decision tree before the second recursion step:

feature: points

yes no
feature: color Color Size Edibility
brown small edible
green green small edible
red large edible
Size Edibility Size Edibility Size Edibility
small toxic -/- -/- large edible

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Final decision tree after second recursion step:

feature: points

yes no

feature: color label: edible

red brown
green

label: toxic label: toxic label: edible

ML:VI-99 Decision Trees O©STEIN/LETTMANN 2024

Decision Tree Algorithms
ID3 Algorithm: Search Space

Features = { A, As, ..., Ay}

Remarks (search space versus hypothesis space) :

a

feature in each step (= monothetic splitting) consists of all permutations of the features in the
feature set. In particular, if the number of features (= dimensionality of a feature vector x) is p,
then the search space contains p! elements.

The set of possible decision trees over D forms the hypothesis space H. The maximum size
of H, i.e., the maximum number of decision trees for a data set D in a binary classification
setting, is 2/P! : If the feature vectors are pairwise distinct, every subset of D can form a class
while the complement of the subset will form the other class. The set of possible subsets

of D is P(D), where |P(D)| = 2!"!,

Observe that either p! < 2/ or p! > 2Pl can hold. l.e., the search space due to feature
ordering can be smaller or larger than its underlying hypothesis space. The former
characterizes the typical situation; also note that both the search space and the hypothesis
space grow exponentially in the number of features and examples respectively.

The difference between search space size and hypothesis space size results from Step 6 of
givéﬁ”cflfifffférféfhiﬁdéta sets. However, since the splitting operation in Step 6 is deterministic it
has no effect on the search space.

The runtime of the ID3 algorithm is in O(p? - n), i.e., significantly below p! since only a small
part of the search space is explored. At each split, the algorithm greedily (in fact, irrevocably)
selects the most informative feature by applying information gain as a heuristic for feature
selection.

Decision Tree Algorithms
ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a
training set for the classification of unseen feature vectors.

Observations:
o Decision tree search happens in the space of all hypotheses.

o To generate a decision tree, the ID3 algorithm needs per branch at most as
many decisions as features are given.

Decision Tree Algorithms
ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a
training set for the classification of unseen feature vectors.

Observations:

o Decision tree search happens in the space of all hypotheses.
=» The target concept is a member of the hypothesis space.

o To generate a decision tree, the ID3 algorithm needs per branch at most as
many decisions as features are given.

=» no backtracking takes place
=» the decision tree is a result of local optimization

Decision Tree Algorithms
ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a
training set for the classification of unseen feature vectors.

Observations:

o Decision tree search happens in the space of all hypotheses.
=» The target concept is a member of the hypothesis space.

o To generate a decision tree, the ID3 algorithm needs per branch at most as
many decisions as features are given.

=» no backtracking takes place
=» the decision tree is a result of local optimization

Where the inductive bias of the ID3 algorithm becomes manifest:

1. Small decision trees are preferred.
2. Highly discriminative features tend to be closer to the root.

Is this justified?

Remarks (inductive bias) :

O The inductive bias of the ID3 algorithm is of a different kind than the inductive bias of the
candidate elimination algorithm:

1. The underlying hypothesis space H of the candidate elimination algorithm is incomplete.
H corresponds to a coarsened view onto the space of all hypotheses since H contains
only conjunctions of feature-value pairs as hypotheses.

However, this restricted hypothesis space is searched completely by the candidate
elimination algorithm. Keyword:

2. The underlying hypothesis space H of the ID3 algorithm is complete since it contains all
decision trees that can be constructed over D.

However, this complete hypothesis space is searched incompletely, but following a
preference. Keyword: or search bias

O The inductive bias of the ID3 algorithm renders the algorithm robust wrt. noise.

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-concept-learning.pdf#algorithm-candidate-elimination

Decision Tree Algorithms
CART Algorithm [Breiman 1984] [ID3 Algorithm]

Setting:
o X is a multiset of feature vectors. No restrictions are presumed for the
features’ measurement scales.

o (' is a set of classes.

a D={(x1,¢1),...,(xp,cn)} € X x C'is a multiset of examples.

Learning task:
o Fit D using a decision tree T'.

https://webis.de/downloads/lecturenotes/data-mining/unit-en-data.pdf#measurement-scale

Decision Tree Algorithms
CART Algorithm [Breiman 1984] [ID3 Algorithm]

Setting:

o X is a multiset of feature vectors. No restrictions are presumed for the
features’ measurement scales.

o (' is a set of classes.

a D={(x1,¢1),...,(xp,cn)} € X x C'is a multiset of examples.

Learning task:

o Fit D using a decision tree T'.

Characteristics of the CART algorithm:
1. Each splitting is binary and considers one feature at a time.

2. Splitting criterion is the information gain or the Gini index.

https://webis.de/downloads/lecturenotes/data-mining/unit-en-data.pdf#measurement-scale
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-impurity-gini

Decision Tree Algorithms
CART Algorithm (continued)

Let A be a feature with domain dom(A). Apply (probably multiple times) the
respective rule to induce a finite number of binary splittings of X :

R1: If Ais nominal, choose B C dom(A) such that 0 < |B| < |dom(A) \ B|.

R2: If Ais ordinal, choose a € dom(A) such that z..;, < a < Zyax, Where Ty, Tnax
are the minimum and maximum values of feature A in D.

R3: If Ais numeric, choose a € dom(A) such that a = 0.5 - (z;, + x1,), Where x;,, x;,
are consecutive elements in the ordered value list of feature A in D.

ML:VI-108 Decision Trees O STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale

Decision Tree Algorithms
CART Algorithm (continued)

Let A be a feature with domain dom(A). Apply (probably multiple times) the
respective rule to induce a finite number of binary splittings of X :
R1: If Ais nominal, choose B C dom(A) such that 0 < |B| < |dom(A) \ B|.

R2: If Ais ordinal, choose a € dom(A) such that z.;, < a < Zpax, Where i, Tnax
are the minimum and maximum values of feature A in D.

R3: If Ais numeric, choose a € dom(A) such that a = 0.5 - (z;, + x1,), Where x;,, x;,
are consecutive elements in the ordered value list of feature A in D.

— 5. Forall A € Features: Generate with the above rules all splittings of D(¢).
Choose a splitting that maximizes the impurity reduction A :

Au(D(t), {D(tr), D(tr)}) = (D)) = B (D)) — Bl o (D))

— 6. Recursively call CART to process D(t;) and D(tg).

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-basics.pdf#splitting-feature-scale
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-impurity-reduction

Remarks:

Q ¢ and ti denote the left and right successor of ¢ in the decision tree. These nodes are
returned by the calls of the CART algorithm and connected to ¢ via createEdge().

passes the complete set of features as second parameter (and not: Features\{A*}).

Decision Tree Algorithms
CART Algorithm (continued)

lllustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R?:

X

Decision Tree Algorithms
CART Algorithm (continued)

lllustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R?:

Decision Tree Algorithms
CART Algorithm (continued)

lllustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R?:

Decision Tree Algorithms
CART Algorithm (continued)

lllustration for two numeric features; i.e., the feature space X underlying X

corresponds to a two-dimensional plane such as the R?:

D(t)

D(t)

D(t3)

Decision Tree Algorithms
CART Algorithm (continued)

lllustration for two numeric features; i.e., the feature space X underlying X

corresponds to a two-dimensional plane such as the R?:

D(t3)

X2‘

OO. .O
O O
e e ©
©) [5) o O
5} D
@ ® O O
O @ o
O © O OO\X

Decision Tree Algorithms
CART Algorithm (continued)

lllustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R?:

ML:VI-116 Decision Trees O©STEIN/LETTMANN 2024

Decision Tree Algorithms
CART Algorithm (continued)

lllustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R?:

ML:VI-117 Decision Trees O©STEIN/LETTMANN 2024

Decision Tree Algorithms
CART Algorithm (continued)

lllustration for two numeric features; i.e., the feature space X underlying X
corresponds to a two-dimensional plane such as the R?:

X7

@ ®0 O

By the sequence of (here: four) splittings of D the feature space X is cut into
rectangular areas that are parallel to the two axes. Keyword: guillotine cuts

