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Decision Trees Basics
Classification Problems with Nominal Features

Setting:

q X is a multiset of feature vectors.

q C is a set of classes.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit D using a decision tree T .
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Decision Trees Basics
Decision Tree for the Concept “EnjoySurfing” [

::::::::
concept

:::::::::
learning]

Example Sky Temperature Humidity Wind Water Forecast EnjoySurfing

1 sunny warm normal strong warm same yes
2 sunny warm high strong warm same yes
3 rainy cold high strong warm change no
...

feature: Sky

feature: Temperature feature: Wind

cold warm strong light

sunny rainy
cloudy

label: yes

label: yes label: no label: yeslabel: no
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Decision Trees Basics
Decision Tree for the Concept “EnjoySurfing” [

::::::::
concept

:::::::::
learning]

Example Sky Temperature Humidity Wind Water Forecast EnjoySurfing

1 sunny warm normal strong warm same yes
2 sunny warm high strong warm same yes
3 rainy cold high strong warm change no
...

feature: Sky

feature: Temperature feature: Wind

cold warm strong light

sunny rainy
cloudy

label: yes

label: yes label: no label: yeslabel: no

Splitting of X at the root node:
X = {x ∈ X : x|Sky = sunny} ∪ {x ∈ X : x|Sky = cloudy} ∪ {x ∈ X : x|Sky = rainy}
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X1, . . . , Xm.
I.e., X = X1 ∪ . . . ∪Xm with Xl 6= ∅ and Xl ∩Xl′ = ∅, where l, l′ ∈ {1, . . . ,m}, l 6= l′.

A splitting X1, . . . , Xm of feature vectors X induces a splitting D1, . . . , Dm of
examples D, where Dl, l = 1, . . . ,m, is defined as {(x, c) ∈ D | x ∈ Xl}.
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X1, . . . , Xm.
I.e., X = X1 ∪ . . . ∪Xm with Xl 6= ∅ and Xl ∩Xl′ = ∅, where l, l′ ∈ {1, . . . ,m}, l 6= l′.

A splitting X1, . . . , Xm of feature vectors X induces a splitting D1, . . . , Dm of
examples D, where Dl, l = 1, . . . ,m, is defined as {(x, c) ∈ D | x ∈ Xl}.

Feature vectors x

DX

Examples (x ,c )
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X1, . . . , Xm.
I.e., X = X1 ∪ . . . ∪Xm with Xl 6= ∅ and Xl ∩Xl′ = ∅, where l, l′ ∈ {1, . . . ,m}, l 6= l′.

A splitting X1, . . . , Xm of feature vectors X induces a splitting D1, . . . , Dm of
examples D, where Dl, l = 1, . . . ,m, is defined as {(x, c) ∈ D | x ∈ Xl}.

Feature vectors x

DX

Examples (x ,c )

X1

X2

X3

X4
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X1, . . . , Xm.
I.e., X = X1 ∪ . . . ∪Xm with Xl 6= ∅ and Xl ∩Xl′ = ∅, where l, l′ ∈ {1, . . . ,m}, l 6= l′.

A splitting X1, . . . , Xm of feature vectors X induces a splitting D1, . . . , Dm of
examples D, where Dl, l = 1, . . . ,m, is defined as {(x, c) ∈ D | x ∈ Xl}.

Feature vectors x

DX

Examples (x ,c )

X1

X2

X3

X4

induced
splitting

D1

D2

D3

D4
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X1, . . . , Xm.
I.e., X = X1 ∪ . . . ∪Xm with Xl 6= ∅ and Xl ∩Xl′ = ∅, where l, l′ ∈ {1, . . . ,m}, l 6= l′.

A splitting X1, . . . , Xm of feature vectors X induces a splitting D1, . . . , Dm of
examples D, where Dl, l = 1, . . . ,m, is defined as {(x, c) ∈ D | x ∈ Xl}.

A splitting of X depends on the
:::::::::::::::::::::
measurement

:::::::::
scale of a feature A :

A

x1

x2

x3

.

.

.

xp

x  =
{a1 , a2 , a3 , ... , am }

dom(A )

x     = x3A

.

.

.

ML:VI-9 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/data-mining/unit-en-data.pdf#measurement-scale


Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X1, . . . , Xm.
I.e., X = X1 ∪ . . . ∪Xm with Xl 6= ∅ and Xl ∩Xl′ = ∅, where l, l′ ∈ {1, . . . ,m}, l 6= l′.

A splitting X1, . . . , Xm of feature vectors X induces a splitting D1, . . . , Dm of
examples D, where Dl, l = 1, . . . ,m, is defined as {(x, c) ∈ D | x ∈ Xl}.

A splitting of X depends on the
:::::::::::::::::::::
measurement

:::::::::
scale of a feature A :

1. m-ary splitting induced by a (nominal) feature A with finite domain:

dom(A) = {a1, . . . , am} : X = {x ∈ X : x|
A
= a1} ∪ . . . ∪ {x ∈ X : x|

A
= am}
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X1, . . . , Xm.
I.e., X = X1 ∪ . . . ∪Xm with Xl 6= ∅ and Xl ∩Xl′ = ∅, where l, l′ ∈ {1, . . . ,m}, l 6= l′.

A splitting X1, . . . , Xm of feature vectors X induces a splitting D1, . . . , Dm of
examples D, where Dl, l = 1, . . . ,m, is defined as {(x, c) ∈ D | x ∈ Xl}.

A splitting of X depends on the
:::::::::::::::::::::
measurement

:::::::::
scale of a feature A :

1. m-ary splitting induced by a (nominal) feature A with finite domain:

dom(A) = {a1, . . . , am} : X = {x ∈ X : x|
A
= a1} ∪ . . . ∪ {x ∈ X : x|

A
= am}

2. Binary splitting induced by a (nominal) feature A:

V ⊂ dom(A) : X = {x ∈ X : x|
A
∈ V } ∪ {x ∈ X : x|

A
6∈ V }
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X1, . . . , Xm.
I.e., X = X1 ∪ . . . ∪Xm with Xl 6= ∅ and Xl ∩Xl′ = ∅, where l, l′ ∈ {1, . . . ,m}, l 6= l′.

A splitting X1, . . . , Xm of feature vectors X induces a splitting D1, . . . , Dm of
examples D, where Dl, l = 1, . . . ,m, is defined as {(x, c) ∈ D | x ∈ Xl}.

A splitting of X depends on the
:::::::::::::::::::::
measurement

:::::::::
scale of a feature A :

1. m-ary splitting induced by a (nominal) feature A with finite domain:

dom(A) = {a1, . . . , am} : X = {x ∈ X : x|
A
= a1} ∪ . . . ∪ {x ∈ X : x|

A
= am}

2. Binary splitting induced by a (nominal) feature A:

V ⊂ dom(A) : X = {x ∈ X : x|
A
∈ V } ∪ {x ∈ X : x|

A
6∈ V }

3. Binary splitting induced by an ordinal feature A:

v ∈ dom(A) : X = {x ∈ X : x|
A
� v} ∪ {x ∈ X : x|

A
≺ v}
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Remarks:

q x|
A

denotes the projection operator, which returns that vector component (dimension) of x,
x = (x1, . . . , xp), that is associated with the feature A. Without loss of generality this
projection can be presumed being unique.

q A splitting of X into two disjoint, non-empty subsets is called a binary splitting.

q We consider only splittings of X that are induced by a splitting of a single feature A of X.
Such kinds of splittings are called “monothetic splittings”.

By contrast, a polythetic splitting considers several features at the same time.
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Decision Trees Basics

Definition 2 (Decision Tree)

Let X be a set of features and C a set of classes. A decision tree T for X and C is a
finite tree with a distinguished root node. A non-leaf node t of T has assigned
(1) a set X(t) ⊆ X, (2) a splitting of X(t), and (3) a one-to-one mapping of the
subsets of the splitting to its successors.

A leaf node of T has assigned a class from C. X(t) = X iff t is root node.
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Decision Trees Basics

Definition 2 (Decision Tree)

Let X be a set of features and C a set of classes. A decision tree T for X and C is a
finite tree with a distinguished root node. A non-leaf node t of T has assigned
(1) a set X(t) ⊆ X, (2) a splitting of X(t), and (3) a one-to-one mapping of the
subsets of the splitting to its successors.

A leaf node of T has assigned a class from C. X(t) = X iff t is root node.

How to classify some x ∈ X given a decision tree T :

1. Find the root node t of T .

2. If t is a non-leaf node, find among its successors that node t′ whose subset of
the splitting of X(t) contains x. Repeat Step 2 with t = t′.

3. If t is a leaf node, label x with the associated class.
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Decision Trees Basics

Definition 2 (Decision Tree)

Let X be a set of features and C a set of classes. A decision tree T for X and C is a
finite tree with a distinguished root node. A non-leaf node t of T has assigned
(1) a set X(t) ⊆ X, (2) a splitting of X(t), and (3) a one-to-one mapping of the
subsets of the splitting to its successors.

A leaf node of T has assigned a class from C. X(t) = X iff t is root node.

How to classify some x ∈ X given a decision tree T :

1. Find the root node t of T .

2. If t is a non-leaf node, find among its successors that node t′ whose subset of
the splitting of X(t) contains x. Repeat Step 2 with t = t′.

3. If t is a leaf node, label x with the associated class.

The set of possible decision trees over D forms the hypothesis space H.
[hypothesis space:

:::::
LMS,

:::::::
Find-S,

::::
log.

::::::::::::
regression ]
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Remarks:

q The classification of an x ∈ X determines a unique path from the root node of T to some leaf
node of T .

q At each non-leaf node a particular feature of x is evaluated in order to find the next node
along with a possible next feature to be analyzed.

q Each path from the root node to some leaf node corresponds to a conjunction of feature
values, which are successively tested. This test can be formulated as a decision rule.
Example:

IF Sky=rainy AND Wind=light THEN EnjoySurfing=yes

If all tests in T are of the kind shown in the example, namely, an equality test regarding a
feature value, all feature domains must be finite.

q Since at all non-leaf nodes of T one feature is evaluated at a time, T is called a monothetic
decision tree. Examples for polythetic decision trees are the so-called oblique decision trees.

q Decision trees became popular in 1986, with the introduction of the ID3 Algorithm by
Ross Quinlan.

q
:::::::::
Recap. The string “Iff” or “iff” is an abbreviation for “If and only if”.
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Decision Trees Basics
Notation

Let T be a decision tree for X and C, let D be a set of examples [setting], and let t be
a node of T . Then we agree on the following notation:

q X(t) denotes the subset of X that is represented by t. [decision tree definition (1)]

q D(t) denotes the subset of the example set D that is represented by t, i.e.,
D(t) = {(x, c) ∈ D | x ∈ X(t)}. [splitting definition]

Illustration (colors correspond to classes) :

t1

t3t2 D(t2)

c1 c2

c3

c3 c1

c1

D(t3)

t5t4 D(t5)D(t4)

D(t1)

D(t6)t6

D(t1)

D(t2) D(t3)

D(t5) D(t6)
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Remarks:

q The set X(t) consists of those members x of X that are filtered by a path from the root node
of T to the node t.

q leaves(T ) denotes the set of all leaf nodes of T .

q Each node t of a decision tree T , and hence T itself, encode a piecewise constant function.
This way, t as well as T can form complex, non-linear classifiers. The functions encoded by t
and T differ in the number of evaluated features of x, which is one for t and the tree height
for T .

q In the following we will use the symbols “t” and “T ” to denote also the classifiers that are
encoded by a node t and a tree T respectively:

t, T : X → C (instead of yt, yT : X → C)
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Decision Trees Basics
Algorithm Template: Construction [illustration]

Algorithm: DT -construct Decision Tree Construction
Input: D Multiset of examples.
Output: t Root node of a decision tree.

DT -construct(D)

1. t = createNode()
label(t) = representativeClass(D)

2. IF impure(D)
THEN criterion = splitCriterion(D)
ELSE return(t)

3. {D1, . . . , Dm} = decompose(D, criterion)

4. FOREACH D′ IN {D1, . . . , Dm} DO

addSuccessor(t,DT -construct(D′))

ENDDO

5. return(t)
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Decision Trees Basics
Algorithm Template: Construction [illustration]

Algorithm: DT -construct Decision Tree Construction
Input: D Multiset of examples.
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Decision Trees Basics
Algorithm Template: Construction [illustration]

Algorithm: DT -construct Decision Tree Construction
Input: D Multiset of examples.
Output: t Root node of a decision tree.

DT -construct(D)

1. t = createNode()
label(t) = representativeClass(D)

2. IF impure(D)
THEN criterion = splitCriterion(D)
ELSE return(t)

3. {D1, . . . , Dm} = decompose(D, criterion)

4. FOREACH D′ IN {D1, . . . , Dm} DO

addSuccessor(t,DT -construct(D′))

ENDDO

5. return(t)
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Remarks:

q Functions of DT -construct() :

– createNode()
Returns the data strucure for a node according to the definition.

– representativeClass(D)

Returns a representative class for the example set D. Note that, due to pruning, each
node may become a leaf node.

– impure(D)

Assesses the (im)purity of a set D of examples.

– splitCriterion(D)

Returns a split criterion for X(t) based on the examples in D(t).

– decompose(D, criterion)
Returns a splitting of D according to criterion.

– addSuccessor(t, t′)
Inserts the successor t′ for node t.

q Since DT -construct() assigns to each node of a decision tree T a class, each subtree of T
(as well as each pruned version of a subtree of T ) represents a valid decision tree on its own.
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Decision Trees Basics
Algorithm Template: Classification

Algorithm: DT -classify Decision Tree Classification
Input: x Feature vector.

t Root node of a decision tree.
Output: y(x) Class of feature vector x in the decision tree below t.

DT -classify(x, t)

1. IF isLeafNode(t)
THEN return(label(t))
ELSE return(DT -classify(x, splitSuccessor(t,x))
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Remarks:

q Functions of DT -classify() :

– isLeafNode(t)
Tests whether t is a leaf node.

– splitSuccessor(t,x)
Returns the (unique) successor t′ of t for which x ∈ X(t′) holds.
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Decision Trees Basics
When to Use Decision Trees

Problem characteristics that suggest a decision tree classifier:

q the objects can be described by feature-value combinations

q the domain and range of the target function are discrete

q classification decisions should be comprehensible and explainable

q hypotheses can be represented in disjunctive normal form. Example:

α = (Sky=sunny ∧ Temperature=warm) ∨ Sky=cloudy ∨ (Sky=rainy ∧Wind=light)
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Decision Trees Basics
When to Use Decision Trees

Problem characteristics that suggest a decision tree classifier:

q the objects can be described by feature-value combinations

q the domain and range of the target function are discrete

q classification decisions should be comprehensible and explainable

q hypotheses can be represented in disjunctive normal form. Example:

α = (Sky=sunny ∧ Temperature=warm) ∨ Sky=cloudy ∨ (Sky=rainy ∧Wind=light)

Exemplary fields of application:

q medical diagnosis

q fault detection in technical systems

q risk analysis in financial applications

q scheduling tasks such as calendar management

q classification of design flaws and patterns in software engineering
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Decision Trees Basics
On the Construction of Decision Trees [illustration]

q How to exploit an example set both efficiently and effectively?

q According to what rationale should a node become a leaf node?

q How to assign a class for nodes of impure example sets?

q How to assess decision tree performance?
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Decision Trees Basics
Assessment of Decision Trees

1. Size
Among those theories that can explain an observation, the most simple one
is to be preferred (Ockham’s Razor) :

Entia non sunt multiplicanda sine necessitate.

[Johannes Clauberg 1622-1665]

Here: among all decision trees of minimum classification error we choose the
one of smallest size.

2. Classification error
Quantifies the rigor according to which a class label is assigned to x in a leaf
node of T , based on the examples in D. [illustration]

If all leaf nodes of a decision tree T represent a single example of D, the
classification error of T with respect to D is zero.
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Decision Trees Basics
Assessment of Decision Trees

1. Size
Among those theories that can explain an observation, the most simple one
is to be preferred (Ockham’s Razor) :

Entia non sunt multiplicanda sine necessitate.

[Johannes Clauberg 1622-1665]

Here: among all decision trees of minimum classification error we choose the
one of smallest size.

2. Classification error
Quantifies the rigor according to which a class label is assigned to x in a leaf
node of T , based on the examples in D. [illustration]

If all leaf nodes of a decision tree T represent a single example of D, the
classification error of T with respect to D is zero.
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Decision Trees Basics
Assessment of Decision Trees: Size

q Leaf node number
The leaf node number corresponds to the number of rules that are encoded
in a decision tree.

q Tree height
The tree height corresponds to the maximum rule length and bounds the
number of premises to be evaluated to reach a class decision.

q External path length
The external path length totals the lengths of all paths from the root of a tree
to its leaf nodes. It corresponds to the space to store all rules that are
encoded in a decision tree.

q Weighted external path length
The weighted external path length is defined as the external path length with
each length value weighted by the number of examples in D that are
classified by this path.
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Decision Trees Basics
Assessment of Decision Trees: Size

q Leaf node number
The leaf node number corresponds to the number of rules that are encoded
in a decision tree.

q Tree height
The tree height corresponds to the maximum rule length and bounds the
number of premises to be evaluated to reach a class decision.

q External path length
The external path length totals the lengths of all paths from the root of a tree
to its leaf nodes. It corresponds to the space to store all rules that are
encoded in a decision tree.

q Weighted external path length
The weighted external path length is defined as the external path length with
each length value weighted by the number of examples in D that are
classified by this path.
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Decision Trees Basics
Assessment of Decision Trees: Size (continued)

Example set D for mushrooms, implicitly defining a feature space X over the three
dimensions color, size, and points:

Color Size Points Edibility

1 red small yes toxic
2 brown small no edible
3 brown large yes edible
4 green small no edible
5 red large no edible
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Decision Trees Basics
Assessment of Decision Trees: Size (continued)

The following trees correctly classify all examples in D :

feature: Color

feature: Size label: edible

small large

red brown
green

label: edible

label: ediblelabel: toxic

feature: Size

small large

feature: Points

yes no

(a)

label: edible

label: ediblelabel: toxic

(b)

Criterion (a) (b)

Leaf node number 4 3
Tree height 2 2
External path length 6 5
Weighted external path length 7 8
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Decision Trees Basics
Assessment of Decision Trees: Size (continued)

The following trees correctly classify all examples in D :

feature: Color

feature: Size label: edible

small large

red brown
green

label: edible

label: ediblelabel: toxic

feature: Size

small large

feature: Points

yes no

(a)

label: edible

label: ediblelabel: toxic

(b)

2x1x

1x1x

2x

2x1x

Criterion (a) (b)

Leaf node number 4 3
Tree height 2 2
External path length 6 5
Weighted external path length 7 8
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Decision Trees Basics
Assessment of Decision Trees: Size (continued)

Theorem 3 (External Path Length Bound)

The problem to decide for a set of examples D whether or not a decision tree exists
whose external path length is bounded by b, is NP-complete.
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Decision Trees Basics
Assessment of Decision Trees: Classification Error

Given a decision tree T , a set of examples D, and a node t of T that represents the
example subset D(t) ⊆ D. Then, the class that is assigned to t, label(t), is defined
as follows:

label(t) = argmax
c∈C

|{(x, c) ∈ D(t)}|
[illustration]
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Decision Trees Basics
Assessment of Decision Trees: Classification Error

Given a decision tree T , a set of examples D, and a node t of T that represents the
example subset D(t) ⊆ D. Then, the class that is assigned to t, label(t), is defined
as follows:

label(t) = argmax
c∈C

|{(x, c) ∈ D(t)}|
[illustration]

:::::::::::::::::::::::::
Misclassification

:::::::
rate of node classifier t wrt. D(t) :

Err (t,D(t)) =
|{(x, c) ∈ D(t) : label(t) 6= c}|

|D(t)|
= 1−

max. accuracy at t︷ ︸︸ ︷
max
c∈C

|{(x, c) ∈ D(t)}|
|D(t)|
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Decision Trees Basics
Assessment of Decision Trees: Classification Error

Given a decision tree T , a set of examples D, and a node t of T that represents the
example subset D(t) ⊆ D. Then, the class that is assigned to t, label(t), is defined
as follows:

label(t) = argmax
c∈C

|{(x, c) ∈ D(t)}|
[illustration]

:::::::::::::::::::::::::
Misclassification

:::::::
rate of node classifier t wrt. D(t) :

Err (t,D(t)) =
|{(x, c) ∈ D(t) : label(t) 6= c}|

|D(t)|
= 1−

max. accuracy at t︷ ︸︸ ︷
max
c∈C

|{(x, c) ∈ D(t)}|
|D(t)|
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Decision Trees Basics
Assessment of Decision Trees: Classification Error

Given a decision tree T , a set of examples D, and a node t of T that represents the
example subset D(t) ⊆ D. Then, the class that is assigned to t, label(t), is defined
as follows:

label(t) = argmax
c∈C

|{(x, c) ∈ D(t)}|
[illustration]

:::::::::::::::::::::::::
Misclassification

:::::::
rate of node classifier t wrt. D(t) :

Err (t,D(t)) =
|{(x, c) ∈ D(t) : label(t) 6= c}|

|D(t)|
= 1−

max. accuracy at t︷ ︸︸ ︷
max
c∈C

|{(x, c) ∈ D(t)}|
|D(t)|

Misclassification rate of decision tree classifier T wrt. D :

Err (T,D) =
∑

t∈ leaves (T )

|D(t)|
|D|

· Err (t,D(t))

ML:VI-40 Decision Trees © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#holdout-error


Remarks:

q The classifiers t and T may not have been constructed using D(t) as training data. I.e., the
example set D(t) is in the role of a test set and Err (T,D) denotes the

:::::::::
holdout

:::::::
error.

q If D has been used as training set, a reliable interpretation of the (training) error Err (T,D) in
terms of Err ∗(T ) requires the

:::::::::::
Inductive

::::::::::::
Learning

:::::::::::::::
Hypothesis to hold.

q Observe the difference between max f() and argmax f(). Both expressions maximize f(), but
the former returns the maximum f()-value (the image) while the latter returns the argument
(the preimage) for which f() becomes maximum:

max
c∈C

f(c) = max {f(c) | c ∈ C}

argmax
c∈C

f(c) = c∗ ⇒ f(c∗) = max
c∈C

f(c)

q The
:::::
true

:::::::::::::::::::::
misclassification

::::::
rate Err ∗(T ) is based on a probability measure P (and not on

relative frequencies). For a node t of T this probability becomes minimum iff:

label(t) = argmax
c∈C

P (C=c | D=X(t)),

where C denotes a random variable with range C, the set of classes. D=X(t) is a data event
where D denotes a set of random vectors with realization X(t).
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Remarks (misclassification costs) :

q The assessment of decision trees can also be based on
:::::::::::::::::::::
misclassification

:::::::
costs:

label(t) = argmin
c′∈C

∑
c∈C

|{(x, c) ∈ D(t)}| · cost(c′, c)

Err cost(t,D(t)) =
1

|D(t)|
·

∑
(x,c)∈D(t)

cost(label(t), c) = min
c′∈C

∑
c∈C

|{(x, c) ∈ D(t)}|
|D(t)|

· cost(c′, c)

Err cost(T,D) =
∑

t∈leaves(T )

|D(t)|
|D|

· Err cost(t,D(t))

q As before, observe the difference between min f() and argmin f(). Both expressions
minimize f(), but the former returns the minimum f()-value (the image) while the latter
returns the argument (the preimage) for which f() becomes minimum.
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