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Decision Trees Basics
Classification Problems with Nominal Features
Setting:

o X is a multiset of feature vectors.

o C'is a set of classes.

0 D={(xy,c1),...,(Xn,cn)} € X x Cis amultiset of examples.

Learning task:
o Fit D using a decision tree T'.



Decision Trees Basics
Decision Tree for the Concept “EnjoySurfing”  [concept learning]

Example Sky Temperature Humidity Wind Water Forecast

1 sunny warm normal strong warm same yes
2 sunny warm high strong warm  same yes

3 rainy cold high strong warm change no

feature: Sky

feature: Temperature yes feature: Wind

cold warm strong light

no yes no yes


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-concept-learning.pdf#training-set-enjoy-sport

Decision Trees Basics
Decision Tree for the Concept “EnjoySurfing”  [concept learning]

Example Sky Temperature Humidity Wind Water Forecast EnjoySurfing

1 sunny warm normal strong warm same yes
2 sunny warm high strong warm  same yes

3 rainy cold high strong warm change no

feature: Sky

feature: Temperature label: yes feature: Wind
cold warm strong light
label: no label: yes label: no label: yes

Splitting of X at the root node:
X ={xe X x|y, =sunny} U {x € X : x|, =cloudy} U {x€ X : x|, =rainy}


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-concept-learning.pdf#training-set-enjoy-sport

Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)
Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X

is a decomposition of X into mutually exclusive subsets X;,..., X,,.
le., X =X,U...UX, withX;#40and X;n Xy =0,wherel,l' e {1,....m}, [ #1.



Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
Is a decomposition of X into mutually exclusive subsets X7, ..., X,,.

le, X =X;U...UX,with X; #£0and X; N X, =0, where [,I' € {1,....,m}, [ #1.

A splitting X1, ..., X,, of feature vectors X induces a splitting D, ..., D,, of
examples D, where D;, 1 =1,...,m, is defined as {(x,c) € D | x € X}.

X

N

Feature vectors x Examples (x,c)
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X3, ..., X,,.

le, X =X, U...UX,, with X; 420 and X;N X, =0, where [,I' ¢ {1,...,m},l #1.

A splitting X1, ..., X,, of feature vectors X induces a splitting D1, ..., D,, of
examples D, where D;, I =1,...,m, is defined as {(x,¢) € D | x € X;}.

X

Examples (x,c)
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X3, ..., X,,.

le, X =X, U...UX,, with X; 420 and X;N X, =0, where [,I' ¢ {1,...,m},l #1.

A splitting X1, ..., X,, of feature vectors X induces a splitting D1, ..., D,, of
examples D, where D;, I =1,...,m, is defined as {(x,¢) € D | x € X;}.

X

»

induced ]
splitting
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X, ..., X,,.
le., X =X,U...UX, withX;#40and X;n Xy =0,wherel,l' e {1,....m}, [ #1.

A splitting X3, ..., X,, of feature vectors X induces a splitting D+, ..., D,, of
examples D, where D;, 1 =1,...,m, is defined as {(x,c) € D | x € X;}.

A splitting of X depends on the measurement scale of a feature A:

X1
X2
X3 A {31,32,33, ,am} XA_X3
X = ~
dom(A)
Xp
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)

Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X
is a decomposition of X into mutually exclusive subsets X, ..., X,,.

le, X =X;U...UX,with X; #£0and X; N X, =0, where [,I' € {1,....,m}, [ #1.

A splitting X3, ..., X,, of feature vectors X induces a splitting D+, ..., D,, of
examples D, where D;, 1 =1,...,m, is defined as {(x,c) € D | x € X;}.

A splitting of X depends on the measurement scale of a feature A:

1. me-ary splitting induced by a (nominal) feature A with finite domain:
dom(A) ={ay,...,an}: X={xeX x|,=a1} U...U {xe X x|, =an}
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)
Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X

is a decomposition of X into mutually exclusive subsets X, ..., X,,.
le., X =X,U...UX, withX;#40and X;n Xy =0,wherel,l' e {1,....m}, [ #1.

A splitting X3, ..., X,, of feature vectors X induces a splitting D+, ..., D,, of
examples D, where D;, 1 =1,...,m, is defined as {(x,c) € D | x € X;}.
A splitting of X depends on the measurement scale of a feature A:

1. me-ary splitting induced by a (nominal) feature A with finite domain:
dom(A) ={ay,...,an}: X={xeX x|,=a1} U...U {xe X x|, =an}

2. Binary splitting induced by a (nominal) feature A:
V C dom(A) : X={xeX:x|,eV} U {xeX:x|, &€V}
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Decision Trees Basics

Definition 1 (Splitting, Induced Splitting)
Let X be a multiset of feature vectors and D a multiset of examples. A splitting of X

is a decomposition of X into mutually exclusive subsets X, ..., X,,.
le., X =X,U...UX, withX;#40and X;n Xy =0,wherel,l' e {1,....m}, [ #1.

A splitting X3, ..., X,, of feature vectors X induces a splitting D+, ..., D,, of
examples D, where D;, 1 =1,...,m, is defined as {(x,c) € D | x € X;}.

A splitting of X depends on the measurement scale of a feature A:

1. me-ary splitting induced by a (nominal) feature A with finite domain:
dom(A) ={ay,...,an}: X={xeX x|,=a1} U...U {xe X x|, =an}

2. Binary splitting induced by a (nominal) feature A:
V C dom(A) : X={xeX:x|,eV} U {xeX:x|, &€V}

3. Binary splitting induced by an ordinal feature A:
v e dom(A) : X={xeX:x|,=v} U{xeX x|, <v}
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Remarks:

Q x|, denotes the projection operator, which returns that vector component (dimension) of x,
x = (z1,...,2,), that is associated with the feature A. Without loss of generality this
projection can be presumed being unique.

a A splitting of X into two disjoint, non-empty subsets is called a binary splitting.

O We consider only splittings of X that are induced by a splitting of a single feature A of X.
Such kinds of splittings are called “monothetic splittings”.

By contrast, a polythetic splitting considers several features at the same time.



Decision Trees Basics

Definition 2 (Decision Tree)

Let X be a set of features and C' a set of classes. A decision tree T for X and C'is a
finite tree with a distinguished root node. A non-leaf node ¢ of 7" has assigned

(1) aset X(t) C X, (2) a splitting of X (¢), and (3) a one-to-one mapping of the

subsets of the splitting to its successors.

A leaf node of T" has assigned a class from C. X (t) = X iff tis root node.



Decision Trees Basics

Definition 2 (Decision Tree)
Let X be a set of features and C' a set of classes. A decision tree T for X and C'is a

finite tree with a distinguished root node. A non-leaf node ¢ of 7" has assigned
(1) aset X(t) C X, (2) a splitting of X (¢), and (3) a one-to-one mapping of the
subsets of the splitting to its successors.

A leaf node of T" has assigned a class from C. X (t) = X iff tis root node.

How to classify some x € X given a decision tree T

1. Find the root node ¢ of T'.

2. If t is a non-leaf node, find among its successors that node " whose subset of
the splitting of X (¢) contains x. Repeat Step 2 with ¢t = ¢'.

3. Iftis aleaf node, label x with the associated class.



Decision Trees Basics

Definition 2 (Decision Tree)
Let X be a set of features and C' a set of classes. A decision tree T for X and C'is a

finite tree with a distinguished root node. A non-leaf node ¢ of 7" has assigned
(1) aset X(t) C X, (2) a splitting of X (¢), and (3) a one-to-one mapping of the
subsets of the splitting to its successors.

A leaf node of T" has assigned a class from C. X (t) = X iff tis root node.

How to classify some x € X given a decision tree T

1. Find the root node ¢ of T'.

2. If t is a non-leaf node, find among its successors that node " whose subset of
the splitting of X (¢) contains x. Repeat Step 2 with ¢t = ¢'.

3. Iftis aleaf node, label x with the associated class.

The set of possible decision trees over D forms the hypothesis space H.
[hypothesis space: LMS, Find-S, log. regression]


machine-learning/unit-en-ml-elements.pdf#ml-stack-lms
machine-learning/unit-en-concept-learning.pdf#find-s1
machine-learning/unit-en-logistic-regression.pdf#ml-stack-logistic-regression

Remarks:

Q The classification of an x € X determines a unique path from the root node of 7' to some leaf
node of 7.

O At each non-leaf node a particular feature of x is evaluated in order to find the next node
along with a possible next feature to be analyzed.

Q Each path from the root node to some leaf node corresponds to a conjunction of feature
values, which are successively tested. This test can be formulated as a decision rule.

IF Sky=rainy AND Wind=light THEN EnjoySurfing=yes

If all tests in T" are of the kind shown in the example, namely, an equality test regarding a
feature value, all feature domains must be finite.

O Since at all non-leaf nodes of 7" one feature is evaluated at a time, 7" is called a monothetic

decision tree. Examples for polythetic decision trees are the so-called oblique decision trees.

O Decision trees became popular in 1986, with the introduction of the ID3 Algorithm by
Ross Quinlan.

0 Recap. The string “Iff” or “iff” is an abbreviation for “If and only if”.


https://en.wikipedia.org/wiki/Ross_Quinlan
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-concept-learning.pdf#remarks-if-and-only-if

Decision Trees Basics
Notation

D(t3)

D(ts)




Remarks:

a

a

a

The set X (¢) consists of those members x of X that are filtered by a path from the root node
of T" to the node t¢.

leaves(T') denotes the set of all leaf nodes of 7.

Each node t of a decision tree T, and hence T itself, encode a piecewise constant function.
This way, t as well as T" can form complex, non-linear classifiers. The functions encoded by ¢
and T differ in the number of evaluated features of x, which is one for ¢ and the tree height
for T.

In the following we will use the symbols “¢” and “I” to denote also the classifiers that are
encoded by a node ¢t and a tree T respectively:

t,T: X —=C



Decision Trees Basics
Algorithm Template: Construction f[illustration]

Algorithm: DT-construct Decision Tree Construction
Input: D Multiset of examples.
Output: t Root node of a decision tree.

DT-construct(D)

1. t = createNode()
label(t) = representativeClass(D)

5. return(t)



Decision Trees Basics
Algorithm Template: Construction f[illustration]

Algorithm: DT-construct Decision Tree Construction
Input: D Multiset of examples.
Output: t Root node of a decision tree.

DT-construct(D)

1. t = createNode()
label(t) = representativeClass(D)

2. 1IF impure(D)
THEN = splitCriterion(D)
ELSE return(t)

3. {Dy,...,D,} = decompose(D, )

5. return(t)



Decision Trees Basics
Algorithm Template: Construction f[illustration]

Algorithm: DT-construct Decision Tree Construction
Input: D Multiset of examples.
Output: t Root node of a decision tree.

DT-construct(D)

1. t = createNode()
label(t) = representativeClass(D)

2. 1IF impure(D)
THEN = splitCriterion(D)
ELSE return(t)

3. {Dy,...,D,} = decompose(D, )

4. FOREACH D' 1IN {D,,...,D,} DO
addSuccessor(t, DT-construct(D"))

ENDDO

5. return(t)



Remarks:

Q Functions of DT-construct() :

createNode()

representativeClass(D)

Returns a representative class for the example set D. Note that, due to pruning, each
node may become a leaf node.

impure(D)
Assesses the (im)purity of a set D of examples.

splitCriterion(D)
Returns a split criterion for X (¢) based on the examples in D(t).

decompose(D, criterion)

addSuccessor(t,t")
Inserts the successor ¢’ for node t.

O Since DT-construct() assigns to each node of a decision tree 7" a class, each subtree of T
(as well as each pruned version of a subtree of T) represents a valid decision tree on its own.



Decision Trees Basics
Algorithm Template: Classification

Algorithm: DT-classify Decision Tree Classification

Input: X Feature vector.
t Root node of a decision tree.
Output: y(x) Class of feature vector x in the decision tree below t.

DT-classify(x, t)

1. 1IF isLeafNode(t)
THEN return(label(t))
ELSE return(DT-classify(x, splitSuccessor(t, x))



Remarks:

Q Functions of DT-classify() :
— isLeafNode(t)
Tests whether ¢ is a leaf node.

— splitSuccessor (t, x)
Returns the (unique) successor ¢’ of ¢ for which x € X (¢') holds.



Decision Trees Basics
When to Use Decision Trees

Problem characteristics that suggest a decision tree classifier:

o the objects can be described by feature-value combinations
o the domain and range of the target function are discrete

o classification decisions should be comprehensible and explainable

a = (Sky=sunny A Temperature=warm) Vv Sky=cloudy Vv (Sky=rainy A Wind=light)

ML:VI-26 Decision Trees O STEIN/LETTMANN 2024
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Decision Trees Basics
When to Use Decision Trees

Problem characteristics that suggest a decision tree classifier:

o the objects can be described by feature-value combinations
o the domain and range of the target function are discrete
o classification decisions should be comprehensible and explainable

0 hypotheses can be represented in disjunctive normal form. Example:

a = (Sky=sunny A Temperature=warm) Vv Sky=cloudy Vv (Sky=rainy A Wind=light)

Exemplary fields of application:

o medical diagnosis

o fault detection in technical systems

o risk analysis in financial applications

o scheduling tasks such as calendar management

o classification of design flaws and patterns in software engineering
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Decision Trees Basics
On the Construction of Decision Trees [illustration]

o How to exploit an example set both efficiently and effectively?
o According to what rationale should a node become a leaf node?
o How to assign a class for nodes of impure example sets?

o How to assess decision tree performance?



Decision Trees Basics
Assessment of Decision Trees

1. Size

2. Classification error


https://en.wikipedia.org/wiki/Occam%27s_razor

Decision Trees Basics
Assessment of Decision Trees

1. Size

Among those theories that can explain an observation, the most simple one
is to be preferred (Ockham’s Razor) :

Entia non sunt multiplicanda sine necessitate.

[Johannes Clauberg 1622-1665]

Here: among all decision trees of minimum classification error we choose the
one of smallest size.

2. Classification error
Quantifies the rigor according to which a class label is assigned to x in a leaf

If all leaf nodes of a decision tree T' represent a single example of D, the
classification error of 1" with respect to D is zero.

ML:VI-30 Decision Trees © STEIN/LETTMANN 2024
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Decision Trees Basics
Assessment of Decision Trees: Size

o Leaf node number

o Tree height

o External path length

o Weighted external path length



Decision Trees Basics
Assessment of Decision Trees: Size

o Leaf node number
The leaf node number corresponds to the number of rules that are encoded
in a decision tree.

o Tree height
The tree height corresponds to the maximum rule length and bounds the
number of premises to be evaluated to reach a class decision.

o External path length
The external path length totals the lengths of all paths from the root of a tree
to its leaf nodes. It corresponds to the space to store all rules that are
encoded in a decision tree.

o Weighted external path length
The weighted external path length is defined as the external path length with
each length value weighted by the number of examples in D that are
classified by this path.

ML:VI-32 Decision Trees © STEIN/LETTMANN 2024



Decision Trees Basics
Assessment of Decision Trees: Size (continued)

Example set D for mushrooms, implicitly defining a feature space X over the three
dimensions color, size, and points:

Color Size Points

1 red small yes toxic

2 brown small no edible
3 brown large yes edible
4 green  small no edible
5 red large no edible




Decision Trees Basics

Assessment of Decision Trees: Size (continued)

The following trees correctly classify all examples in D :

(a) feature: Color
feature: Size edible edible
small large
toxic edible

Criterion (@ (b)
Leaf node number 4 3
Tree height 2 2
External path length 6 5

(b)

feature: Size

small

feature: Points

yes

toxic

no

edible

large

edible



Decision Trees Basics
Assessment of Decision Trees: Size (continued)

The following trees correctly classify all examples in D :

(a) feature: Color (b) feature: Size
small large
feature: Size edible 1x edible 2x feature: Points edible 2x
small large yes no
toxic 1x edible 1x toxic 1x edible 2x

Criterion (a) (b)
Leaf node number 4 3
Tree height 2 2
External path length 6 5
Weighted external path length 7 8




Decision Trees Basics
Assessment of Decision Trees: Size (continued)

Theorem 3 (External Path Length Bound)
The problem to decide for a set of examples D whether or not a decision tree exists
whose external path length is bounded by b, is NP-complete.



Decision Trees Basics
Assessment of Decision Trees: Classification Error

Given a decision tree T, a set of examples D, and a node ¢ of T that represents the
example subset D(t) C D. Then, the class that is assigned to ¢, label(t), is defined

as follows:

label(t) = argmax [{(x,c) € D(t)}|
ceC



Decision Trees Basics
Assessment of Decision Trees: Classification Error

Given a decision tree T, a set of examples D, and a node ¢ of T that represents the
example subset D(t) C D. Then, the class that is assigned to ¢, label(t), is defined
as follows:

_ argg;ax [{(x,c) € D(t)}|

Misclassification rate of node classifier ¢t wrt. D(?):

x,c) € D(t) + ¢}
[D(t)]

Err(t,D(t)) = il
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Decision Trees Basics
Assessment of Decision Trees: Classification Error

Given a decision tree T, a set of examples D, and a node ¢ of T that represents the
example subset D(t) C D. Then, the class that is assigned to ¢, label(t), is defined
as follows:

_ argg;ax [{(x,c) € D(t)}|

Misclassification rate of node classifier ¢t wrt. D(?):

x,¢) € D(t) : 7l {(x,¢) € D)}
[D(#)] ceC |D(#)]

Err(t,D(t)) = il
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Decision Trees Basics
Assessment of Decision Trees: Classification Error

Given a decision tree T, a set of examples D, and a node ¢ of T that represents the
example subset D(t) C D. Then, the class that is assigned to ¢, label(t), is defined
as follows:

= argmax {(x,¢c) € D(t)}]

Misclassification rate of node classifier ¢t wrt. D(?):

x,¢) € D(t) : 7l {(x,¢) € D)}
[D(#)] ceC |D(#)]

Err(t,D(t)) = Al

Misclassification rate of decision tree classifier T wrt. D :

Err(T.D)= Y . Err(t, D(t))

t € leaves (T')


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#holdout-error

Remarks:

O The classifiers t and 7" may not have been constructed using D(t) as training data. l.e., the
example set D(¢) is in the role of a test set and Err (7T, D) denotes the holdout error.

O If D has been used as training set, a reliable interpretation of the (training) error Err(T, D) in
terms of Err*(T) requires the Inductive Learning Hypothesis to hold.

O Observe the difference between max f() and argmax f(). Both expressions maximize f(), but
the former returns the maximum f()-value (the image) while the latter returns the argument
(the preimage) for which f() becomes maximum:

max f(c) = max {f(c)|ce C}

ceC
argmax f(c) = ¢ = f(c) = max f(e)
ceC ce

QO The true misclassification rate Err*(T) is based on a probability measure P (and not on
relative frequencies). For a node ¢ of T this probability becomes minimum iff:

label(t) = argmax P(C=c | D=X(t)),
ceC

where C denotes a random variable with range C, the set of classes. D=X(¢) is a data event
where D denotes a set of random vectors with realization X ().


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#holdout-error
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-concept-learning.pdf#inductive-learning-hypothesis
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#true-misclassification-rate

Remarks (misclassification costs) :

O The assessment of decision trees can also be based on misclassification costs:

label(t) = argmin Y |{(x,c) € D(t)}| - cost(c',c)

ceC ccC

(x,¢) € D)}

1 . /
Erreost(t, D(t)) = m Z cost(label(t),c) = min Z 1 D00 - cost(c, c)
(x,0)€D(t) ceC
D(t
Erreost(T, D) = Z % - Erreost(t, D(t))

teleaves(T)

O As before, observe the difference between min f() and argmin f(). Both expressions
minimize f(), but the former returns the minimum f()-value (the image) while the latter
returns the argument (the preimage) for which f() becomes minimum.
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