
Chapter ML:IX

IX. Deep Learning
q Introduction to Deep Learning
q Autoencoder Networks
q Convolutional Neural Networks

q Recurrent Neural Networks
q Long-Term Dependencies
q RNNs for Machine Translation
q Attention Mechanism
q Transformer

q Transformer Language Models
q Pretraining and Finetuning

ML:IX-1 Deep Learning © STEIN/VÖLSKE 2024

Introduction to Deep Learning
History

“Deep Learning” is not a particular method nor a new technology, but an umbrella
term under which various developments are collected. The term may be examined
both under a historical perspective and a field delineation in AI. [

:::::::::::
Perceptron

::::::::::
Learning]

Cybernetics (1940s–1960s)

1943 Model of the neuron (McCulloch and Pitts)
1958 Perceptron model (Rosenblatt)
1960 Adaptive linear element, ADALINE, a kind of

:::::::::::::
stochastic

:::::::::::
gradient

:::::::::::
descent (Widrow and Hoff).

Connectionism / Parallel distributed processing (1980s–1990s)

1986 Paradigm of distributed representation (Hinton et al.)
1986 Back-propagation algorithm (Rumelhart et al., LeCun 1987)
1997 Long short-term memory network, LSTM (Hochreiter and Schmidhuber)

Deep Learning (2006–today)

2006 Strategy of greedy, layer-wise pretraining (Hinton et al., Bengio et al. 2007, Ranzato 2007)
2014 Theory on the importance of depth (Pascanu et al., Montufar et al.)
2017 Transformer network architecture (Vaswani et al.)

[Goodfellow/Bengio/Courville 2016]

ML:IX-2 Deep Learning © STEIN/VÖLSKE 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#perceptron-learning-history

Introduction to Deep Learning
History

“Deep Learning” is not a particular method nor a new technology, but an umbrella
term under which various developments are collected. The term may be examined
both under a historical perspective and a field delineation in AI. [

:::::::::::
Perceptron

::::::::::
Learning]

Cybernetics (1940s–1960s)

1943 Model of the neuron (McCulloch and Pitts)
1958 Perceptron model (Rosenblatt)
1960 Adaptive linear element, ADALINE, a kind of

:::::::::::::
stochastic

:::::::::::
gradient

:::::::::::
descent (Widrow and Hoff).

Connectionism / Parallel distributed processing (1980s–1990s)

1986 Paradigm of distributed representation (Hinton et al.)
1986 Back-propagation algorithm (Rumelhart et al., LeCun 1987)
1997 Long short-term memory network, LSTM (Hochreiter and Schmidhuber)

Deep Learning (2006–today)

2006 Strategy of greedy, layer-wise pretraining (Hinton et al., Bengio et al. 2007, Ranzato 2007)
2014 Theory on the importance of depth (Pascanu et al., Montufar et al.)
2017 Transformer network architecture (Vaswani et al.)

[Goodfellow/Bengio/Courville 2016]

ML:IX-3 Deep Learning © STEIN/VÖLSKE 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#perceptron-learning-history

Introduction to Deep Learning
History

“Deep Learning” is not a particular method nor a new technology, but an umbrella
term under which various developments are collected. The term may be examined
both under a historical perspective and a field delineation in AI. [

:::::::::::
Perceptron

::::::::::
Learning]

Cybernetics (1940s–1960s)

1943 Model of the neuron (McCulloch and Pitts)
1958 Perceptron model (Rosenblatt)
1960 Adaptive linear element, ADALINE, a kind of

:::::::::::::
stochastic

:::::::::::
gradient

:::::::::::
descent (Widrow and Hoff).

Connectionism / Parallel distributed processing (1980s–1990s)

1986 Paradigm of distributed representation (Hinton et al.)
1986 Back-propagation algorithm (Rumelhart et al., LeCun 1987)
1997 Long short-term memory network, LSTM (Hochreiter and Schmidhuber)

Deep Learning (2006–today)

2006 Strategy of greedy, layer-wise pretraining (Hinton et al., Bengio et al. 2007, Ranzato 2007)
2014 Theory on the importance of depth (Pascanu et al., Montufar et al.)
2017 Transformer network architecture (Vaswani et al.)

[Goodfellow/Bengio/Courville 2016]

ML:IX-4 Deep Learning © STEIN/VÖLSKE 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#perceptron-learning-history

Introduction to Deep Learning
History

“Deep Learning” is not a particular method nor a new technology, but an umbrella
term under which various developments are collected. The term may be examined
both under a historical perspective and a field delineation in AI. [

:::::::::::
Perceptron

::::::::::
Learning]

Cybernetics (1940s–1960s)

1943 Model of the neuron (McCulloch and Pitts)
1958 Perceptron model (Rosenblatt)
1960 Adaptive linear element, ADALINE, a kind of

:::::::::::::
stochastic

:::::::::::
gradient

:::::::::::
descent (Widrow and Hoff).

Connectionism / Parallel distributed processing (1980s–1990s)

1986 Paradigm of distributed representation (Hinton et al.)
1986 Back-propagation algorithm (Rumelhart et al., LeCun 1987)
1997 Long short-term memory network, LSTM (Hochreiter and Schmidhuber)

Deep Learning (2006–today)

2006 Strategy of greedy, layer-wise pretraining (Hinton et al., Bengio et al. 2007, Ranzato 2007)
2014 Theory on the importance of depth (Pascanu et al., Montufar et al.)
2017 Transformer network architecture (Vaswani et al.)

[Goodfellow/Bengio/Courville 2016]

ML:IX-5 Deep Learning © STEIN/VÖLSKE 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#perceptron-learning-history

Introduction to Deep Learning
History (continued)

“Deep Learning” is not a particular method nor a new technology, but an umbrella
term under which various developments are collected. The term may be examined
both under a historical perspective and a field delineation in AI. [

:::::::::::
Perceptron

::::::::::
Learning]

[Goodfellow/Bengio/Courville 2016]

Deep Learning
e.g. multilayer

percetron
Representation Learning
e.g. shallow autoencoder

Machine Learning
e.g. logistic regression

Artificial Intelligence
e.g. knowledge

base / rules

ML:IX-6 Deep Learning © STEIN/VÖLSKE 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#perceptron-learning-history

Introduction to Deep Learning
History (continued)

The history of neural computing came along with a nearly exponential development
in computing power, which eventually could be “tamed” to deal with the advent of
Big Data and model functions with very lage parameter spaces.

Ü The machine-based solution of “AI problems” reached a new quality.

Characteristica of selected problems and solutions:

1980s . . . 2020s

Computing power (per device) 20 MFLOPs (Fujitsu MB86900) 300 TFLOPs (Nvidia A100)

Memory (per device) <128 MB >80 GB (GPU)

Devices (per model) 1×SUN-4/260 (SN, 1988) >10,000×Nvidia V-100 (GPT-3, 2020)

Number of network parameters <10,000 (SN, 1988) 175 Billion (GPT-3, 2020)

Speech recognition DragonDictate Google Now, MS Cortana, Apple Siri

Translation quality DeepL, Google Translate

� Deep Learning

ML:IX-7 Deep Learning © STEIN/VÖLSKE 2024

https://en.wikipedia.org/wiki/DragonDictate#History

Introduction to Deep Learning
History (continued)

The history of neural computing came along with a nearly exponential development
in computing power, which eventually could be “tamed” to deal with the advent of
Big Data and model functions with very lage parameter spaces.

Ü The machine-based solution of “AI problems” reached a new quality.

Characteristica of selected problems and solutions:

1980s . . . 2020s

Computing power (per device) 20 MFLOPs (Fujitsu MB86900) 300 TFLOPs (Nvidia A100)

Memory (per device) <128 MB >80 GB (GPU)

Devices (per model) 1×SUN-4/260 (SN, 1988) >10,000×Nvidia V-100 (GPT-3, 2020)

Number of network parameters <10,000 (SN, 1988) 175 Billion (GPT-3, 2020)

Speech recognition DragonDictate Google Now, MS Cortana, Apple Siri

Translation quality DeepL, Google Translate

� Deep Learning

ML:IX-8 Deep Learning © STEIN/VÖLSKE 2024

https://en.wikipedia.org/wiki/DragonDictate#History

Introduction to Deep Learning
Types of Learning Tasks

Mapping between constant (“stationary”) input and output:

q vector→ class email→ {spam, ham}

q matrix→ class image classification

q vector→ vector embedding

Mapping tasks involving sequences (“dynamic” input or output) :

(S1) sequence→ class sentence→ {⊕, 	}
(S2) class→ sequence {⊕, 	} → sentence
(S3) sequence→ sequence English sentence→ German sentence

Solving one of these tasks means to find / construct / parameterize a model
function y() that operationalizes the mapping “→”.

ML:IX-9 Deep Learning © STEIN/VÖLSKE 2024

Introduction to Deep Learning
Types of Learning Tasks

Mapping between constant (“stationary”) input and output:

q vector→ class email→ {spam, ham}

q matrix→ class image classification

q vector→ vector embedding

Mapping tasks involving sequences (“dynamic” input or output) :

(S1) sequence→ class sentence→ {⊕, 	}
(S2) class→ sequence {⊕, 	} → sentence
(S3) sequence→ sequence English sentence→ German sentence

Solving one of these tasks means to find / construct / parameterize a model
function y() that operationalizes the mapping “→”.

ML:IX-10 Deep Learning © STEIN/VÖLSKE 2024

Remarks:

q “⊕” and “	” denote positive and negative sentiment respectively.

q Here, the model function y() (the mapping which is behind the “→”) is a neural network such
as the

::::::::::::
Multilayer

::::::::::::::
perceptron.

q If the model function is vector-valued, it is written bold, as y().

q The model function y() (or y()) can take scalars, vectors, matrices, or sequences (typically of
vectors) as arguments / input.

q An input vector (scalar, matrix) can encode an entire problem instance or, given sequential
information, a certain time step only. An example for the former are all words of an email that
is to be classified as spam or ham. An example for the latter is a single word at a certain
position in a sentence, where the entire sentence is the instance of a translation problem.

ML:IX-11 Deep Learning © STEIN/VÖLSKE 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-multilayer-perceptron.pdf#multiple-hidden-layer-mlp

Chapter ML:IX

IX. Deep Learning
q Introduction to Deep Learning
q Autoencoder Networks
q Convolutional Neural Networks

q Recurrent Neural Networks
q Long-Term Dependencies
q RNNs for Machine Translation
q Attention Mechanism
q Self Attention and Transformers

q Transformer Language Models
q Pretraining

ML:IX-12 Deep Learning © STEIN/VÖLSKE 2024

Autoencoder Networks
Representation Learning Task: Word Embedding

[TODO]

ML:IX-13 Deep Learning © STEIN/VÖLSKE 2024

Autoencoder Networks
Word Embedding with Autoencoders

[TODO]

ML:IX-14 Deep Learning © STEIN/VÖLSKE 2024

Autoencoder Networks
Representation Learning Task: Co-Occurrence Embedding (Word2Vec)

[TODO]

ML:IX-15 Deep Learning © STEIN/VÖLSKE 2024

Chapter ML:IX

IX. Deep Learning
q Introduction to Deep Learning
q Autoencoder Networks
q Convolutional Neural Networks

q Recurrent Neural Networks
q Long-Term Dependencies
q RNNs for Machine Translation
q Attention Mechanism
q Self Attention and Transformers

q Transformer Language Models
q Pretraining

ML:IX-16 Deep Learning © STEIN/VÖLSKE 2024

Convolutional Neural Networks
Image Classification Task

…

9

0

ML:IX-17 Deep Learning © STEIN/VÖLSKE 2024

Convolutional Neural Networks
Image Classification Task

…

9

0
x12

x1q

…

xp2

xpq

…

… x11

xp1

x1

xp

... …

9

0
2

ML:IX-18 Deep Learning © STEIN/VÖLSKE 2024

Convolutional Neural Networks
Image Classification Task

…

9

0
x12

x1q

…

xp2

xpq

…

… x11

xp1

x1

xp

... …

9

0
2

?

ML:IX-19 Deep Learning © STEIN/VÖLSKE 2024

Convolutional Neural Networks
Image Classification with CNNs

x12

x1q

…

xp2

xpq

…

…

Input (a matrix)

x11

xp1

x1

xp

y

((x11. . .x1q...
xp1. . .xpq

))
= σ

(
W o
(
1
σ
(
W h yc

)))
ML:IX-20 Deep Learning © STEIN/VÖLSKE 2024

Convolutional Neural Networks
Image Classification with CNNs

Filter with 9 weights

x12

x1q

…

xp2

xpq

…

…

Input (a matrix)

x11

xp1

x1

xp

y

((x11. . .x1q...
xp1. . .xpq

))
= σ

(
W o
(
1
σ
(
W h yc

)))
ML:IX-21 Deep Learning © STEIN/VÖLSKE 2024

Convolutional Neural Networks
Image Classification with CNNs

yc

=

1:1 mapping to the
input layer of a

discrimination network
(flatten)

…

=

=

1

Filter with 9 weights

x12

x1q

…

xp2

xpq

…

…

Input (a matrix)

x11

xp1

x1

xp

y

((x11. . .x1q...
xp1. . .xpq

))
= σ

(
W o
(
1
σ
(
W h yc

)))
ML:IX-22 Deep Learning © STEIN/VÖLSKE 2024

Convolutional Neural Networks
Image Classification with CNNs

…

yk

y1

Multilayer perceptron
with a single
hidden layer

=

…

Σ

Σ

WoWh

Σ

Σ

…

y

1

yc

=

1:1 mapping to the
input layer of a

discrimination network
(flatten)

…

=

=

1

Filter with 9 weights

x12

x1q

…

xp2

xpq

…

…

Input (a matrix)

x11

xp1

x1

xp

y

((x11. . .x1q...
xp1. . .xpq

))
= σ

(
W o
(
1
σ
(
W h yc

)))
ML:IX-23 Deep Learning © STEIN/VÖLSKE 2024

Convolutional Neural Networks
Image Classification with CNNs

Representation
learning

Discrimination (= classifier)
learning

=

1:1 mapping to the
input layer of a

discrimination network
(flatten)

…

=

=

1

…

Filter with 6 weights

Filter with 4 weights

Filter with 4 weights

…

Filter with 9 weights

…

yk

y1

Multilayer perceptron
with a single
hidden layer

=

…

Σ

Σ

WoWh

Σ

Σ

…

y

1

yc

Filter with 9 weights

x12

x1q

…

xp2

xpq

…

…

Input (a matrix)

x11

xp1

x1

xp

y

((x11. . .x1q...
xp1. . .xpq

))
= σ

(
W o
(
1
σ
(
W h yc

)))
ML:IX-24 Deep Learning © STEIN/VÖLSKE 2024

Convolutional Neural Networks
Image Classification with CNNs (continued)

A convolutional filter computes of a fixed number of input “pixels” a weighted sum:

Σ Wc ⊙ [...]
i , j

x12

x1q

…

xp2

xpq

…

… x11

xp1

x1

xp

The vector yc results from concatenating the outputs of the final layer of filters.

ML:IX-25 Deep Learning © STEIN/VÖLSKE 2024

Remarks (computation of yc) :

q For a CNN with input size p× q and a single filter with weights W c of size pc × qc,

yc =

1

flatten

∑
i,j

W c �

x1 1 . . . x1 qc

...
xpc 1 . . . xpc qc

 . . .
∑
i,j

W c �

x1 (q−qc) . . . x1 q

...
xpc (q−qc) . . . xpc q

...

∑
i,j

W c �

x(p−pc) 1 . . . x(p−pc) qc

...
xp 1 . . . xp qc

 . . .
∑
i,j

W c �

x(p−pc) (q−qc) . . . x(p−pc) q

...
xp (q−qc) . . . xp q

,

where

flatten

z1 1 . . . z1 l

...
zk 1 . . . zk l

 = (z11, z12, . . . , zk l−1, zkl)

T

q
:::::::::
Recap. The symbol »�« denotes the Hadamard product, also known as the element-wise
or the Schur product. It is a binary operation that takes two matrices of the same dimensions
and produces another matrix of the same dimension as the operands, where each element is
the product of the respective elements of the two original matrices. [Wikipedia]

ML:IX-26 Deep Learning © STEIN/VÖLSKE 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-multilayer-perceptron.pdf#hadamard-product
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

Remarks (technical variants and improvements) :

q Each convolutional filter in a CNN has several hyperparameters that can be adjusted
independently, such as:

– the number of the weights (= number of inputs on the previous layer),
– how the boundary of the input is handled (e.g. padding),
– the step size (“stride”) between adjacent input regions mapped by the filter.

q In CNN architectures, convolutional layers are commonly interleaved with downsampling
layers which, instead of applying a filter with learned parameters, map an input region to its
maximum (“max-pooling”) or average (“average-pooling”).

q Modern CNN architectures commonly use skip connections, which create additional, shorter
paths through the network to help alleviate the vanishing gradient problem. This is
implemented by adding or concatenating the activations of a given layer to several layers
deeper in the network.

q The best-performing CNN models for image classification tasks can be more than 100 layers
deep, with hundreds of millions of parameters. However, current state of the art in image
classification tends to be dominated by transformer-based architectures, many of which do
not use convolutional filters explicitly, but learn similar operations from large amounts of
training data. [PapersWithCode: Classification on ImageNet]

ML:IX-27 Deep Learning © STEIN/VÖLSKE 2024

https://paperswithcode.com/sota/image-classification-on-imagenet

Remarks (learning strategies) :

q Representation and discrimination learning can follow two strategies:

1. Decoupled. Learn [the filter weights of] a representation that maps matrices on
vectors yc, also called an “embedding”. Afterwards, learn [the weights of] a classifier that
maps the vectors yc to the possible classes. Autoencoders are one possibility to learn a
representation.

2. Combined. Learn [the filter weights of] a representation along with [the weights of] a
classifier.

q The “decoupled” approach is particularly suited if the set of examples, X, is large enough to
create a suitable embedding (= to compute the filter weights), but the number of labeled
examples thereof is rather small. In its extreme form an existing embedding from a different
dataset is used instead of computing a specific embedding from the actual data set X.

q In the “combined” approach the classification errors (or losses) are propagated back into the
representation learning layers as well. Hence the embedding will encode information about
(= will be tailored to) the task. This kind of “end-to-end” learning is very effective but requires
sufficient of both ground truth data (labeled examples) and computing resources.

ML:IX-28 Deep Learning © STEIN/VÖLSKE 2024

