
Chapter ML:II

II. Machine Learning Basics
q Rule-Based Learning of Simple Concepts
q From Regression to Classification
q Evaluating Effectiveness
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Evaluating Effectiveness
Misclassification Rate

Definition 8 (True Misclassification Rate / True Error of a Classifier y())

Let O be a finite set of objects, X the feature space associated with a
:::::::::
model

::::::::::::::
formation

:::::::::::::
function α : O → X, C a set of classes, y : X→ C a classifier, and

γ : O → C the ideal classifier to be approximated by y().

Let X = {x | x = α(o), o ∈ O} be a
::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors and cx = γ(o), o ∈ O.
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Evaluating Effectiveness
Misclassification Rate

Definition 8 (True Misclassification Rate / True Error of a Classifier y())

Let O be a finite set of objects, X the feature space associated with a
:::::::::
model

::::::::::::::
formation

:::::::::::::
function α : O → X, C a set of classes, y : X→ C a classifier, and

γ : O → C the ideal classifier to be approximated by y().

Let X = {x | x = α(o), o ∈ O} be a
::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors and cx = γ(o), o ∈ O.

o1,o3  o8 o7 o6o2,o4,o5

Objects O {                                                                      ... } 
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Evaluating Effectiveness
Misclassification Rate

Definition 8 (True Misclassification Rate / True Error of a Classifier y())

Let O be a finite set of objects, X the feature space associated with a
:::::::::
model

::::::::::::::
formation

:::::::::::::
function α : O → X, C a set of classes, y : X→ C a classifier, and

γ : O → C the ideal classifier to be approximated by y().

Let X = {x | x = α(o), o ∈ O} be a
::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors and cx = γ(o), o ∈ O.

o1,o3  o8 o7 o6o2,o4,o5

Objects O {                                                                      ... } 

Feature space X
x1

x2

α(o)  (model formation function)

ML:II-117 Machine Learning Basics © STEIN/VÖLSKE/LETTMANN 2023

machine-learning/unit-en-ml-introduction.pdf#specification-classification-problem
machine-learning/unit-en-ml-introduction.pdf#specification-classification-problem
machine-learning/unit-en-ml-introduction.pdf#feature-vector-set-vs-feature-space


Evaluating Effectiveness
Misclassification Rate

Definition 8 (True Misclassification Rate / True Error of a Classifier y())

Let O be a finite set of objects, X the feature space associated with a
:::::::::
model

::::::::::::::
formation

:::::::::::::
function α : O → X, C a set of classes, y : X→ C a classifier, and

γ : O → C the ideal classifier to be approximated by y().

Let X = {x | x = α(o), o ∈ O} be a
::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors and cx = γ(o), o ∈ O.
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Evaluating Effectiveness
Misclassification Rate [probabilistic foundation]

Definition 8 (True Misclassification Rate / True Error of a Classifier y())

Let O be a finite set of objects, X the feature space associated with a
:::::::::
model

::::::::::::::
formation

:::::::::::::
function α : O → X, C a set of classes, y : X→ C a classifier, and

γ : O → C the ideal classifier to be approximated by y().

Let X = {x | x = α(o), o ∈ O} be a
::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors and cx = γ(o), o ∈ O.

o1,o3  o8 o7 o6o2,o4,o5

Objects O {                                                                      ... } 

Feature space X
x1

x2

α(o)  (model formation function)
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γ(o)  (ideal classifier)

c2

↑
c1

↑
c2

↑
c2

↑
c1

↑
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Evaluating Effectiveness
Misclassification Rate [probabilistic foundation]

Definition 8 (True Misclassification Rate / True Error of a Classifier y())

Let O be a finite set of objects, X the feature space associated with a
:::::::::
model

::::::::::::::
formation

:::::::::::::
function α : O → X, C a set of classes, y : X→ C a classifier, and

γ : O → C the ideal classifier to be approximated by y().

Let X = {x | x = α(o), o ∈ O} be a
::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors and cx = γ(o), o ∈ O.
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γ(o)  (ideal classifier)
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↓
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↓
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↓ y(x)  (classifier, model function)
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↓
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↓
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Evaluating Effectiveness
Misclassification Rate [probabilistic foundation]

Definition 8 (True Misclassification Rate / True Error of a Classifier y())

Let O be a finite set of objects, X the feature space associated with a
:::::::::
model

::::::::::::::
formation

:::::::::::::
function α : O → X, C a set of classes, y : X→ C a classifier, and

γ : O → C the ideal classifier to be approximated by y().

Let X = {x | x = α(o), o ∈ O} be a
::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors and cx = γ(o), o ∈ O.
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Objects O {                                                                      ... } 
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γ(o)  (ideal classifier)

c2

↑
c1
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c2

↑
c2

↑
c1

↑

 c2

↓
 c1

↓
 c2

↓
 c1

↓ y(x)  (classifier, model function)
 c1

↓ ↓
 c1  c2

↓
 c2

↓

Can be tackled with
ML technology.
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Evaluating Effectiveness
Misclassification Rate [probabilistic foundation]

Definition 8 (True Misclassification Rate / True Error of a Classifier y())

Let O be a finite set of objects, X the feature space associated with a
:::::::::
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::::::::::::::
formation

:::::::::::::
function α : O → X, C a set of classes, y : X→ C a classifier, and

γ : O → C the ideal classifier to be approximated by y().
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Cannot be tackled with
ML technology.

(label noise)
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Evaluating Effectiveness
Misclassification Rate [probabilistic foundation]

Definition 8 (True Misclassification Rate / True Error of a Classifier y())

Let O be a finite set of objects, X the feature space associated with a
:::::::::
model

::::::::::::::
formation

:::::::::::::
function α : O → X, C a set of classes, y : X→ C a classifier, and

γ : O → C the ideal classifier to be approximated by y().

Let X = {x | x = α(o), o ∈ O} be a
::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors and cx = γ(o), o ∈ O.

Then, the true misclassification rate of y(), denoted Err ∗(y()), is defined as follows:

Err ∗(y()) =
|{x ∈ X : y(x) 6= cx}|

|X|
=
|{o ∈ O : y(α(o)) 6= γ(o)}|

|O|
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Evaluating Effectiveness
Misclassification Rate [probabilistic foundation]

Definition 8 (True Misclassification Rate / True Error of a Classifier y())

Let O be a finite set of objects, X the feature space associated with a
:::::::::
model

::::::::::::::
formation

:::::::::::::
function α : O → X, C a set of classes, y : X→ C a classifier, and

γ : O → C the ideal classifier to be approximated by y().

Let X = {x | x = α(o), o ∈ O} be a
::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors and cx = γ(o), o ∈ O.

Then, the true misclassification rate of y(), denoted Err ∗(y()), is defined as follows:

Err ∗(y()) =
|{x ∈ X : y(x) 6= cx}|

|X|
=
|{o ∈ O : y(α(o)) 6= γ(o)}|

|O|

Problem:

q Usually the total function γ() and hence Err ∗(y()) is unknown.

; Based on a multiset of examples D, estimation of upper and lower bounds for
Err ∗(y()) according to some sampling strategy.
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Remarks:

q Alternative to “true misclassification rate” we will also use the term “true misclassification
error” or simply “true error”.

q Since the total function γ() is unknown, cx is not given for all x ∈ X. However, for some
feature vectors x ∈ X we have knowledge about cx, namely for those in the multiset of
examples D.

q If the mapping from feature vectors to classes is not unique, the multiset of examples D is
said to contain (label) noise.

q The English word “rate” can denote both the mathematical concept of a flow quantity
(a change of a quantity per time unit) as well as the mathematical concept of a proportion,
percentage, or ratio, which has a stationary (= time-independent) semantics. Note that the
latter semantics is meant here when talking about the misclassification rate.

The German word „Rate“ is often (mis)used to denote the mathematical concept of a
proportion, percentage, or ratio. Taking a precise mathematical standpoint, the correct
German words are „Anteil“ or „Quote“. I.e., the correct translation of misclassification rate is
„Missklassifikationsanteil“, and not „Missklassifikationsrate“.
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Remarks: (continued)

q The previous definition of Err ∗(y()) is “frequency-based”: Information regarding the
distribution of feature vectors and classes is estimated from the multiset of feature vectors,
X, or examples, D, respectively.

Instead of defining Err ∗(y()) as the ratio of misclassified feature vectors in X or D, the
definition of Err ∗(y()) can be probabilistically founded via a probability measure P , that is, the
explicit specification of a joint distribution of feature vectors and classes. In this regard, we
introduce the following random variables:

X : multivariate random variable whose instances are feature vectors
C : random variable whose instances are class labels

q Recall from section
:::::::::::::::::
Specification

:::
of

::::::::::::
Learning

::::::::
Tasks in part Introduction the difference

between the following concepts, denoted by glyph variants of the same letter:

x : single feature
x : feature vector
X : feature space = domain of the feature vectors
X : multiset of feature vectors
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Evaluating Effectiveness
Misclassification Rate (continued)

Definition 9 (Probabilistic Foundation of the True Misclassification Rate)

Let Ω be sample space, which corresponds to a set O of real-world objects, and P a
probability measure defined on P(Ω). Moreover, let X be a feature space with a
finite number of elements, C a set of classes, and y : X→ C a classifier.

We consider two types of random variables, X : Ω→ X, and C : Ω→ C.
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Evaluating Effectiveness
Misclassification Rate (continued)

Definition 9 (Probabilistic Foundation of the True Misclassification Rate)

Let Ω be sample space, which corresponds to a set O of real-world objects, and P a
probability measure defined on P(Ω). Moreover, let X be a feature space with a
finite number of elements, C a set of classes, and y : X→ C a classifier.

We consider two types of random variables, X : Ω→ X, and C : Ω→ C.

o1,o3  o8 o7 o6o2,o4,o5

Objects O {                                                                      ... } 

Feature space X
x1

x2

α(o)  (model formation function)

γ(o)  (ideal classifier)

c2

↑
c1

↑
c2

↑
c2

↑
c1

↑
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Evaluating Effectiveness
Misclassification Rate (continued) [frequency-based foundation]

Definition 9 (Probabilistic Foundation of the True Misclassification Rate)

Let Ω be sample space, which corresponds to a set O of real-world objects, and P a
probability measure defined on P(Ω). Moreover, let X be a feature space with a
finite number of elements, C a set of classes, and y : X→ C a classifier.

We consider two types of random variables, X : Ω→ X, and C : Ω→ C.

o1,o3  o8 o7 o6o2,o4,o5

Objects O {                                                                      ... } 

Feature space X
x1

x2

α(o)  (model formation function)

γ(o)  (ideal classifier)

c2

↑
c1

↑
c2

↑
c2

↑
c1

↑ C  (random variable) 

X  (multivariate random variable) 

Sample space Ω
ω1,ω3  ω8 ω7 ω6ω2,ω4,ω5

P(X=x), P(C=c), P(X=x, C=c), P(X=x | C=c)

p(x),  p(c),  p(x, c),  p(x | c) 

Probabilities
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Evaluating Effectiveness
Misclassification Rate (continued) [frequency-based foundation]

Definition 9 (Probabilistic Foundation of the True Misclassification Rate)

Let Ω be sample space, which corresponds to a set O of real-world objects, and P a
probability measure defined on P(Ω). Moreover, let X be a feature space with a
finite number of elements, C a set of classes, and y : X→ C a classifier.

We consider two types of random variables, X : Ω→ X, and C : Ω→ C.

Then p(x, c), p(x, c) := P (X=x,C=c), is the probability of the joint event (1) to get the
vector x ∈ X, and, (2) that the respective object belongs to class c ∈ C.

With p(x, c) the true misclassification rate of y() can be expressed as follows:

Err ∗(y()) =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y(x), c), with I6=(y(x), c) =

{
0 if y(x) = c

1 otherwise
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Evaluating Effectiveness
Misclassification Rate (continued) [frequency-based foundation]

Definition 9 (Probabilistic Foundation of the True Misclassification Rate)

Let Ω be sample space, which corresponds to a set O of real-world objects, and P a
probability measure defined on P(Ω). Moreover, let X be a feature space with a
finite number of elements, C a set of classes, and y : X→ C a classifier.

We consider two types of random variables, X : Ω→ X, and C : Ω→ C.

Then p(x, c), p(x, c) := P (X=x,C=c), is the probability of the joint event (1) to get the
vector x ∈ X, and, (2) that the respective object belongs to class c ∈ C.

With p(x, c) the true misclassification rate of y() can be expressed as follows:

Err ∗(y()) =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y(x), c), with I6=(y(x), c) =

{
0 if y(x) = c

1 otherwise

Problem:

q Usually P and hence p(x, c) is unknown.

; Based on D estimate p(x | c) under the
::::::::
Naive

:::::::::::
Bayes

::::::::::::::::::
assumption.
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Evaluating Effectiveness
Illustration 1: Label Noise

Joint probabilities p(x, c), shading indicates magnitude:

c1

ck

...

x1 ...

(no label noise→ classes are unique)

Err ∗(y()) =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y(x), c), with I6=(y(x), c) =

{
0 if y(x) = c

1 otherwise
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Evaluating Effectiveness
Illustration 1: Label Noise

Joint probabilities p(x, c), shading indicates magnitude:

c1

ck

...

x1 ...

(no label noise→ classes are unique)

Err ∗(y()) =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y(x), c), with I6=(y(x), c) =

{
0 if y(x) = c

1 otherwise
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Evaluating Effectiveness
Illustration 1: Label Noise

Joint probabilities p(x, c), shading indicates magnitude:

c1

ck

...

x1 ...

(label noise→ classes are not unique)

Err ∗(y()) =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y(x), c), with I6=(y(x), c) =

{
0 if y(x) = c

1 otherwise
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Evaluating Effectiveness
Illustration 1: Label Noise

Joint probabilities p(x, c), shading indicates magnitude:

c1

ck

...

x1 ...

(label noise→ classes are not unique)

Err ∗(y()) =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y(x), c), with I6=(y(x), c) =

{
0 if y(x) = c

1 otherwise
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Remarks:

q X and C denote (multivariate) random variables with ranges X and C respectively.

X corresponds to a
::::::::
model

:::::::::::::
formation

::::::::::
function α, which returns for a real-world object o ∈ O its

feature vector x, x = α(o).

C corresponds to an
::::::
ideal

::::::::::::
classifier γ, which returns for a real-world object o ∈ O its class c,

c = γ(o).

q X models the fact that the occurrence of a feature vector is governed by a probability
distribution, rendering certain observations more likely than others. Keyword: prior probability
of [observing] x.

Note that the multiset X of feature vectors in the true misclassification rate Err ∗(y()) is
governed by the distribution of X: Objects in O that are more likely, but also very similar
objects, will induce the respective multiplicity of feature vectors x in X and hence are
considered with the appropriate weight.

q C models the fact that the occurrence of a class is governed by a probability distribution,
rendering certain classes more likely than others. Keyword: prior probability of c.
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Remarks: (continued)

q The classification of a feature vector x may not be deterministic: different objects in O can be
mapped to the same vector x—but to different classes. Reasons for a nondeterministic class
assignment include: incomplete feature set, imprecision and random errors during feature
measuring, lack of care during data acquisition. Keyword: label noise

q X may not be restricted to a finite set, giving rise to probability density functions (with
continuous random variables) in the place of the probability mass functions (with discrete
random variables). The illustrations in a continuous setting remain basically unchanged,
presupposed a sensible discretization of the feature space X.
[Wikipedia: continuous setting, illustration]
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Remarks (probability basics) :

q P () is a probability measure (see section
:::::::::::::
Probability

:::::::::
Basics in part Bayesian Learning) and

its argument is an event. Examples for events are “X=x”, “X=x, C=c”, or “X=x | C=c”.

q p(x, c), p(x), or p(x | c) are examples for a probability mass function, pmf. Its argument is a
realization of a discrete random variable (or several discrete random variables), to which the
pmf assigns a probability, based on a probability measure: p() is defined via P (). [illustration]

The counterpart of p() for a continuous random variable is called probability density function,
pdf, and is typically denoted by f().

q Since p(x, c) (and similarly p(x), p(x | c), etc.) is defined as P (X=x,C=c), the respective
expressions for p() and P () can usually be used interchangeably. In this sense we have two
parallel notations, arguing about realizations of random variables and events respectively.

q Let A and B denote two events, e.g., A = “X=x9” and B = “C=c3”. Then the following
expressions are equivalent notations for the probability of the joint event “A and B ” :
P (A,B), P (A ∧B), P (A ∩B).

q I6= is an indicator function that returns 1 if its arguments are unequal (and 0 if its arguments
are equal).
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Evaluating Effectiveness
Illustration 2: Bayes [Optimal] Classifier and Bayes Error

The Bayes classifier returns for x the class with the highest [posterior] probability:

c1

ck

...

x1 ...
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Evaluating Effectiveness
Illustration 2: Bayes [Optimal] Classifier and Bayes Error

The Bayes classifier returns for x the class with the highest [posterior] probability:

c1

ck

...

x1 ...
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Evaluating Effectiveness
Illustration 2: Bayes [Optimal] Classifier and Bayes Error

The Bayes classifier returns for x the class with the highest [posterior] probability:

c1

ck

...

x1 ...
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Evaluating Effectiveness
Illustration 2: Bayes [Optimal] Classifier and Bayes Error

The Bayes classifier returns for x the class with the highest [posterior] probability:

c1

ck

...

x1 ...

Bayes classifier: y∗(x) = argmax
c∈C

p(c,x) = argmax
c∈C

p(c | x)
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Evaluating Effectiveness
Illustration 2: Bayes [Optimal] Classifier and Bayes Error

The Bayes classifier returns for x the class with the highest [posterior] probability:

c1

ck

...

x1 ...

Bayes classifier: y∗(x) = argmax
c∈C

p(c,x) = argmax
c∈C

p(c | x)

Bayes error: Err ∗ =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y∗(x), c) =
∑
x∈X

(1−max
c∈C
{p(c,x)})
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Remarks (Bayes classifier) :

q The Bayes classifier (also: Bayes optimal classifier) maps each feature vector x to the
highest-probability class c according to the true joint probability distribution p(c,x) that
generates the data.

q The Bayes classifier incurs an error—the Bayes error—on feature vectors that have more
than one possible class assignment with non-zero probability. This may be the case when the
class assignment depends on additional (unobserved) features not recorded in x, or when
the relationship between objects and classes is inherently stochastic.
[Goodfellow et al. 2016, p.114] [Bishop 2006, p.40] [Daumé III 2017, ch.2] [Hastie et al. 2009, p.21]

q The Bayes error hence is the theoretically minimal error that can be achieved on average for
a classifier learned from a multiset of examples D. It is also referred to as Bayes rate,
irreducible error, or unavoidable error, and it forms a lower bound for the error of any model
created without knowledge of the probability distribution p(c,x).
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Remarks (Bayes classifier) : (continued)

q Prerequisite to construct the Bayes classifier and to compute its error is knowledge about the
joint probabilities, p(c,x) or p(c | x). In this regard the size of the available data, D, decides
about the possibility and the quality for the estimation of the probabilities.

q Do not mix up the following two issues: (1) The joint probabilities cannot be reliably
estimated, (2) the joint probabilities can be reliably estimated but entail an unacceptably large
Bayes error. The former issue can be addressed by enlarging D. The latter issue indicates
the deficiency of the features, which can neither be repaired with more data nor with a (very
complex) model function, but which requires the identification of new, more effective features:
the model formation process is to be reconsidered.
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions

Joint probabilities p(x, c), shading indicates magnitude:

p(x9, c3)
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions

Marginal probabilities p(x):

p(x9, c3)

p(x1) p(x2) ...
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions

Marginal probabilities p(c):

p(x9, c3)
p(c1

)
p(c2

)

...
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions

Probabilities of the classes c under feature vector (the condition) x4,
denoted as p(c | x4):

p(x9, c3)

p(c | x4)

Conditional ’class probability function’, CCPF.
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions

Probabilities of the feature vectors x under class (the condition) c5,
denoted as p(x | c5):

p(x9, c3)

p(x | c5)

Class-conditional ’probability function’, CPF.
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions

Overview:

p(x9, c3)

p(x1) p(x2) ...

p(c1
)
p(c2

)

...

p(c | x4)

p(x | c5)
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Remarks:

q p(c | x) := P (X=x,C=c)/P (X=x) = P (C=c | X=x) ≡ PX=x(C=c)

p(c | x) is called (feature-)conditional ’class probability function’, CCPF.

In the illustration: Summation over the c ∈ C of the fourth column yields the marginal
probability p(x4). p(c | x4) gives the probabilities of the c (consider the column) under feature
vector x4 (= having normalized by p(x4)), i.e., p(x4, c)/p(x4).

q p(x | c) := P (X=x,C=c)/P (C=c) = P (X=x | C=c) ≡ PC=c(X=x)

p(x | c) is called class-conditional (feature) ’probability function’, CPF.

In the illustration: Summation / integration over the x ∈ X of the fifth row yields the marginal
probability p(c5). p(x | c5) gives the probabilities of the x (consider the row) under class c5
(= having normalized by p(c5)), i.e., p(x, c5)/p(c5).

q p(x, c) = p(c,x) = p(c | x) · p(x), where p(x) is the prior probability for event X=x, and p(c | x)
is the probability for event C=c given event X=x. Likewise, p(x, c) = p(x | c) · p(c), where p(c)
is the prior probability for event C=c, and p(x | c) is the probability for event X=x given
event C=c.

q Let the events X=x and C=c have occurred, and, let x be known and c be unknown. Then,
p(x | c) is called likelihood (for event X=x given event C=c). [Mathworld]

In the Bayes classification setting p(c | x) is called “posterior probability”, i.e., the probability
for c after we know that x has occurred.
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Evaluating Effectiveness
Illustration 4: Probability Distribution in a Classifiction Setting
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Evaluating Effectiveness
Illustration 4: Probability Distribution in a Classifiction Setting
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Joint and marginal probability functions p(x, c), p(x), and p(c) :

p(x2)p(x1) ...
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)
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Evaluating Effectiveness
Illustration 4: Probability Distribution in a Classifiction Setting
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Joint and marginal probability functions p(x, c), p(x), and p(c) :

p(x2)p(x1) ...
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Evaluating Effectiveness
Illustration 4: Probability Distribution in a Classifiction Setting
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Evaluating Effectiveness
Illustration 4: Probability Distribution in a Classifiction Setting
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Optimum hyperplane classifier:

p(x2)p(x1) ...
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)

p(c2
)

p(x2) c2 c1
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Evaluating Effectiveness
Illustration 4: Probability Distribution in a Classifiction Setting
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Class-conditional probability functions p(x | c1) and p(x | c2) :
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)

p(x2) c2 c1
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Remarks:

q The illustration shows a classification task without label noise: each feature vector x belongs
to exactly one class. Moreover, the classification task can be reduced to solving a regression
problem (e.g., via the

::::::
LMS

::::::::::::
algorithm). Even more, for perfect classification the regression

function needs to define a straight line only. Keyword: linear separability

q Solving classification tasks via regression requires a feature space with a particular structure.
Here we assume that the feature space is a vector space over the scalar field of real
numbers R, equipped with the dot product.

q Actually, the two figures illustrate the discriminative approach (top) and the generative
approach (bottom) to classification. See section

::::::::::::
Elements

::::
of

:::::::::::
Machine

::::::::::::
Learning in part

Introduction.
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Evaluating Effectiveness
Estimating Error Bounds [Comparing Model Variants]

Experiment setting:

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

q y() is the classifier trained on D.

q The true error Err ∗(y()) measures the performance of y() on X (“in the wild”).

q Q: How can the true error Err ∗(y()) be approximated?
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Evaluating Effectiveness
Estimating Error Bounds [Comparing Model Variants]

Experiment setting:

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

q y() is the classifier trained on D.

q The true error Err ∗(y()) measures the performance of y() on X (“in the wild”).

q Q: How can the true error Err ∗(y()) be approximated?

The following relations typically hold:

Underestimation (likely) Overestimation (unlikely)

Training error Cross-validation error Holdout error True error

Err (y(), Dtr) < Err (y(), D, k) . Err (y(), Dtest) < Err ∗(y()) < Err (y(), D, k) . Err (y(), Dtest)
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Evaluating Effectiveness
Estimating Error Bounds [Comparing Model Variants]

Experiment setting:

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

q y() is the classifier trained on D.

q The true error Err ∗(y()) measures the performance of y() on X (“in the wild”).

q Q: How can the true error Err ∗(y()) be approximated?

The following relations typically hold:

Underestimation (likely) Overestimation (unlikely)

Training error Cross-validation error Holdout error True error

Err (y(), Dtr) < Err (y(), D, k) . Err (y(), Dtest) < Err ∗(y()) < Err (y(), D, k) . Err (y(), Dtest)

��
|D| → |X|
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Evaluating Effectiveness
Estimating Error Bounds [Comparing Model Variants]

Experiment setting:

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

q y() is the classifier trained on D.

q The true error Err ∗(y()) measures the performance of y() on X (“in the wild”).

q Q: How can the true error Err ∗(y()) be approximated?

The following relations typically hold:

Underestimation (likely) Overestimation (unlikely)

Training error Cross-validation error Holdout error True error

Err (y(), Dtr) < Err (y(), D, k) . Err (y(), Dtest) < Err ∗(y()) < Err (y(), D, k) . Err (y(), Dtest)

� �
difference quantifies overfitting
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Remarks:

q Notation of the different error estimation methods:

Training error: Err (y(), Dtr)

classifier

data, used for training as well as to test

Holdout error: Err (y(), Dtest), also: Err (y())

classifier

test data, different from training data

Cross-validation error: Err (y(), D, k) , also: Err (y())

classifier

data, split into Dtr and Dtest according to split fraction

split fraction 1/k

q Relating the true error Err ∗(y()) to the error estimations Err (y(), Dtr), Err (y(), D, k), or
Err (y(), Dtest) is not straightforward but requires an in-depth analysis of the sampling
strategy, the sample size D, and the set X of possible / typical / considered feature vectors.
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Evaluating Effectiveness
Training Error

Dtr

D→  y ( )

→  Err (y ( ) ,Dtr)

Evaluation setting:

q y() is the classifier trained on Dtr = D.

Training error of y() :

q Err (y(), Dtr ) =
|{(x, c) ∈ Dtr : y(x) 6= c}|

|Dtr |

= misclassification rate of y() on the training set.
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Remarks (training error) :

q For the training error Err (y(), Dtr) holds that the same examples that are used for training y()
are also used to test y(). Hence Err (y(), Dtr) quantifies the memorization power of y() but not
its generalization power.

Consider the extreme case: If y() stored D during “training” into a hashtable (key: x, value: c),
then Err (y(), Dtr) would be zero, which would tell us nothing about the performance of y() in
the wild.

q The training error Err (y(), Dtr) is an optimistic estimation, i.e., it is always lower compared to
the (unknown) true error Err ∗(y()). With D = X the training error Err (y(), Dtr) becomes the
true error Err ∗(y()).

q Note that the above discussion relate to the meaningfulness of Err (y(), Dtr) as an error
estimate—and not to the classifier y():

Obviously, to get the maximum out of the data when training y(), D must be exploited
completely. A classifier y() trained on D will on average outperform every classifier y′()
trained on a subset of D. I.e., on average, Err ∗(y()) < Err ∗(y′()).
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Evaluating Effectiveness
Holdout Error

Dtr

D→  y ( )

→  Err (y’ ( ) ,Dtest)

→  y ’ ( )

Dtest

Evaluation setting:

q Dtest ⊂ D is a test set.

q y() is the classifier trained on D.

q y′() is the classifier trained on Dtr = D \Dtest .
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Evaluating Effectiveness
Holdout Error

Dtr

D→  y ( )

→  Err (y’ ( ) ,Dtest)

→  y ’ ( )

Dtest

Evaluation setting:

q Dtest ⊂ D is a test set.

q y() is the classifier trained on D.

q y′() is the classifier trained on Dtr = D \Dtest .

Holdout error of y′(), y() :

q Err (y′(), Dtest) =
|{(x, c) ∈ Dtest : y′(x) 6= c}|

|Dtest |

= misclassification rate of y′() on the test set.

q Err (y(), Dtest) := Err (y′(), Dtest)
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Evaluating Effectiveness
Holdout Error (continued) [

:::::
LMS

::::::::::
algorithm]

Principle: We build y(), and, in order to judge y(), we train and analyze y′().

1. Training (D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT
...

10. UNTIL(convergence(D, y(), t) ; y(), Err (y(), Dtr ) with Dtr = D

2. Training (Dtr , η)

1. initialize_random_weights(w), t = 0

2. REPEAT
...

10. UNTIL(convergence(Dtr , y
′(), t) ; y′(), Err (y′(), Dtr ) with Dtr = D \Dtest

3. Test (Dtest , y
′()) ; Err (y(), Dtest) := Err (y′(), Dtest)
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Evaluating Effectiveness
Holdout Error (continued) [

:::::
LMS

::::::::::
algorithm]

Principle: We build y(), and, in order to judge y(), we train and analyze y′().

1. Training (D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT
...

10. UNTIL(convergence(D, y(), t) ; y(), Err (y(), Dtr ) with Dtr = D

2. Training (Dtr , η)

1. initialize_random_weights(w), t = 0

2. REPEAT
...

10. UNTIL(convergence(Dtr , y
′(), t) ; y′(), Err (y′(), Dtr ) with Dtr = D \Dtest

3. Test (Dtest , y
′()) ; Err (y(), Dtest) := Err (y′(), Dtest)
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Remarks (holdout error) :

q We will use the prime symbol »’« to indicate whether a classifier is trained by withholding a
test set. E.g., y′() and y′i() denote classifiers trained by withholding the test sets Dtest and
Dtest i respectively.

q A holdout error of y() cannot be computed if D is entirely used for training y(). Instead,
Err (y′(), Dtest), the holdout error for y′() is computed, where y′() has been trained by
witholding Dtest .

Err (y(), Dtest), the holdout estimation of Err ∗(y()) on Dtest , is defined as Err (y′(), Dtest).

Recall in this regard that a classifier y() trained on D will on average outperform every
classifier y′() trained on a subset of D. I.e., on average, Err ∗(y()) < Err ∗(y′()).

q The difference between the training error Err ( · , Dtr) and the holdout error Err ( · , Dtest) of a
classifier quantifies the severity of a possible

:::::::::::::
overfitting.
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Remarks (holdout error) : (continued)

q When splitting D into Dtr and Dtest one has to ensure that the underlying distribution is
maintained, i.e., the examples have to be drawn independently and according to P (). If this
condition is not fulfilled, then Err (y(), Dtest) cannot be used as an estimation of Err ∗(y()).
Keyword: sample selection bias

q An important aspect of the underlying data distribution specific to classification problems is
the relative frequency of the classes. A sample Dtr ⊂ D is called a (class-)stratified sample
of D if it has the same class frequency distribution as D, i.e.:

∀ci ∈ C :
|{(x, c) ∈ Dtr : c = ci}|

|Dtr |
≈ |{(x, c) ∈ D : c = ci}|

|D|

q Dtr and Dtest should have similar sizes. A typical ratio for splitting D into training set Dtr and
test set Dtest is 2:1.
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Evaluating Effectiveness
k-Fold Cross-Validation

Dtr

D→  y ( )

→  y’k( ) ,   Err (y’k( ) ,Dtestk)

→  y’1() ,   Err (y’1() ,Dtest1
)

1 k ...2

...

1 k ...2

1 k ...2 Dtest

...
Evaluation setting:

q k test sets Dtest i by splitting D into k disjoint sets of similar size.

q y() is the classifier trained on D.

q y′i(), i = 1, . . . , k, are the classifiers trained on Dtr i = D \Dtest i.
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Evaluating Effectiveness
k-Fold Cross-Validation

Dtr

D→  y ( )

→  y’k( ) ,   Err (y’k( ) ,Dtestk)

→  y’1() ,   Err (y’1() ,Dtest1
)

1 k ...2

...

1 k ...2

1 k ...2 Dtest

...
Evaluation setting:

q k test sets Dtest i by splitting D into k disjoint sets of similar size.

q y() is the classifier trained on D.

q y′i(), i = 1, . . . , k, are the classifiers trained on Dtr i = D \Dtest i.

Cross-validation error of y() :

q Err (y(), D, k) :=
1

k

k∑
i=1

|{(x, c) ∈ Dtest i : y′i(x) 6= c}|
|Dtest i|

= averaged misclassification rate of the y′i() on the k test sets.
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Remarks:

q n-fold cross-validation (aka “leave one out”) is the special case with k = n. Obviously
singleton test sets (|Dtest i| = 1) are never stratified since they contain a single class only.

q n-fold cross-validation is a special case of exhaustive cross-validation methods, which learn
and test on all possible ways to divide the original sample into a training and a validation set.
[Wikipedia]

q Instead of splitting D into disjoint subsets through sampling without replacement, it is also
possible to generate folds by sampling with replacement; this results in a bootstrap estimate
for Err ∗(y()) (see section

:::::::::::::
Ensemble

::::::::::::
Methods

::
>

::::::::::::::
Bootstrap

::::::::::::::::
Aggregating in part Ensemble and

Meta). [Wikipedia]
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Evaluating Effectiveness
Comparing Model Variants [Estimating Error Bounds]

Experiment setting:

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

q m hyperparameter values π1, π2, . . . , πm.

q yπ1(), yπ2(), . . . , yπm() are the classifiers trained on D.

q Q: Which is the most effective among the m classifiers yπl()?
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Remarks:

q In general, a hyperparameter π (with values π1, π2, . . . , πm) controls the learning process for a
model’s parameters, but is itself not learned. Instead, various hyperparameter settings are
tried out.

On the other hand, a regime in which knowledge (such as hyperparameter settings) about a
machine learning process is learned is called meta learning.

q Examples for hyperparameters in different kinds of model functions:

– learning rate η in regression-based models fit via gradient descent

– type of
::::::::::::::::::
regularization

::::::
loss used, e.g., R||~w||22 or R||~w||1

– the term λ controlling the weighting of goodness-of-fit loss and regularization loss

– number of hidden layers and the number of units per layer in
:::::::::::::
multilayer

::::::::::::::::
perceptrons

– choice of
::::::::::
impurity

:::::::::::
function and

:::::::::
pruning

:::::::::::
strategy in decision trees

– architectural choices in deep learning-based models

q Different search strategies may be combined with cross-validation to find an optimal
combination of hyperparameters for a given dataset and family of model functions.

Depending on the size of the hyperparameter space, appropriate strategies can include both
exhaustive grid search and approximation methods (metaheuristics) such as tabu search,
simulated annealing, or evolutionary algorithms.
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Evaluating Effectiveness
Model Selection: Single Validation Set [Holdout Error]

Dtr

D→  y ( )

Dval→  π*

→  Err (y’π*( ) ,Dtest)

→  y’π1
() ,  ..., y’πm

( ) Dtest

Evaluation setting:

q Dtest ⊂ D is a test set.

q Dval ⊂ (D \Dtest) is a validation set.

q y′πl(), l = 1, . . . ,m, are the classifiers trained on Dtr = D \ (Dtest ∪Dval).
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Evaluating Effectiveness
Model Selection: Single Validation Set [Holdout Error]

Dtr

D→  y ( )

Dval→  π*

→  Err (y’π*( ) ,Dtest)

→  y’π1
() ,  ..., y’πm

( ) Dtest

Evaluation setting:

q Dtest ⊂ D is a test set.

q Dval ⊂ (D \Dtest) is a validation set.

q y′πl(), l = 1, . . . ,m, are the classifiers trained on Dtr = D \ (Dtest ∪Dval).

q π∗ = argmin
πl, l=1,...,m

|{(x, c) ∈ Dval : y′πl(x) 6= c}|
|Dval |

↪→p. 180

ML:II-179 Machine Learning Basics © STEIN/VÖLSKE/LETTMANN 2023



Evaluating Effectiveness
Model Selection: Single Validation Set (continued) [Holdout Error]

Dtr

D→  y ( )

Dval→  π*

→  Err (y’π*( ) ,Dtest)

→  y’π1
() ,  ..., y’πm

( ) Dtest

→  yπ*( )

→  y’π*( )

Evaluation setting:
...

q yπ∗() is the classifier trained on D.

q y′π∗() is the classifier trained on Dtr = D \Dtest .

Holdout error of yπ∗() :

q Err (yπ∗(), Dtest) :=
|{(x, c) ∈ Dtest : y′π∗(x) 6= c}|

|Dtest |

= misclassification rate of y′π∗() on the test set.
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Evaluating Effectiveness
Model Selection: k validation sets [k-Fold Cross-Validation]

Dtr

D→  y ( )

→  y’1π1
() ,  ..., y’1πm

( )

→  y’kπ1
() ,  ..., y’kπm

( )

Dval

→  Err (y’π*( ) ,Dtest)

1  k...2

...

1  k...2

1  k...2

Dtest

... → π*

Evaluation setting:

q Dtest ⊂ D

q k validation sets Dval i by splitting D \Dtest into k disjoint sets of similar size.

q y′iπl
(), i = 1, . . . , k, l = 1, . . . ,m, are the k ·m classifiers trained on

Dtr i = D \ (Dtest ∪Dval i).
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Evaluating Effectiveness
Model Selection: k validation sets [k-Fold Cross-Validation]

Dtr

D→  y ( )

→  y’1π1
() ,  ..., y’1πm

( )

→  y’kπ1
() ,  ..., y’kπm

( )

Dval

→  Err (y’π*( ) ,Dtest)

1  k...2

...

1  k...2

1  k...2

Dtest

... → π*

Evaluation setting:

q Dtest ⊂ D

q k validation sets Dval i by splitting D \Dtest into k disjoint sets of similar size.

q y′iπl
(), i = 1, . . . , k, l = 1, . . . ,m, are the k ·m classifiers trained on

Dtr i = D \ (Dtest ∪Dval i).

q π∗ = argmin
πl, l=1,...,m

k∑
i=1

|{(x, c) ∈ Dval i : y′iπl
(x) 6= c}|

|Dval i|

↪→p. 183
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Evaluating Effectiveness
Model Selection: k validation sets (continued) [k-Fold Cross-Validation]

Dtr

D→  y ( )

→  y’1π1
() ,  ..., y’1πm

( )

→  y’kπ1
() ,  ..., y’kπm

( )

Dval

→  Err (y’π*( ) ,Dtest)

1  k...2

...

1  k...2

1  k...2

Dtest

... → π*

→  yπ*( )

→  y’π*( )

Evaluation setting:
...

q yπ∗() is the classifier trained on D,

q y′π∗() is the classifier trained on Dtr = D \Dtest .

Holdout error of yπ∗() : (computation as before)
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Remarks:

q The validation set is also called “development set” or “dev set”. [Wikipedia]
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Evaluating Effectiveness
Misclassification Costs

Use of a cost measure for the misclassification of a feature vector x ∈ X in a wrong
class c′ instead of in the correct class c :

cost(c′, c)

{
≥ 0 if c′ 6= c

= 0 otherwise

Holdout error of y() based on misclassification costs:

q Err cost(y(), Dtest) :=
1

|Dtest |
·
∑

(x,c)∈Dtest

cost(y′(x), c)

= weighted misclassification rate of y′() on the test set.
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Remarks:

q The true error, Err ∗(y()), is a special case of Err cost(y()) with cost(c′, c) = 1 for c′ 6= c.

Consider in this regard the notation of Err ∗(y()) in terms of the function I6=(y(), c):

Err ∗(y()) =
|{x ∈ X : y(x) 6= c}|

|X|
=
∑
x∈X

I6=(y(x), c)
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