
Chapter ML:VII

VII. Bayesian Learning
q Approaches to Probability
q Conditional Probability
q Bayes Classifier
q Exploitation of Data
q Frequentist versus Subjectivist
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes [

::::
data

:::::::::::::
exploitation

:::::::::::
examples]

non-probabilistic

probabilistic

frequentist

subjectivist

discriminative
( frequentist)

generative
( probabilistic)

 Support vector machine
(1) Linear regression with least square estimates from D

(2) Logistic regression via p() with ML estimates from D
(3) Logistic regression via L() with ML estimates from D

(4) Bayes with prior probability estimates from D
 (5) Probability model with ML estimate from D

 (6) Bayes with subjective priors
(4) Bayes with subjective priors

 D  = {(x1,y1) , . . . , (xn,yn)} ,  D  = {(x1,c1) , . . . , (xn,cn)}
 D  = {y1, . . . ,yn} ,  D  = {c1, . . . ,cn}

data
exploitation

(2) Logistic regression via p() with ML estimates from D

(4) Bayes with subjective priors

(4) Bayes with prior probability estimates from D
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes (continued) [

::::
data

:::::::::::::
exploitation

:::::::::::
examples]

(2) wML = argmax
w∈Rp+1

∏
(x,c)∈D

p(c | x;w) ; y(x) = σ(wT
MLx) ; cwML (logistic regression)

(4) cMAP = argmax
c∈{⊕,	}

p(c | x)

Observation 1. Both approaches maximize p(D) :

q (2), the MLE principle, determines the parameters w of the logistic model
function such that

∏
D p(c | x) becomes maximum. Note that a parameter

vector w that maximizes
∏

D p(c | x) ::::
will

::::::::
also

:::::::::::::::
maximize

∏
D p(x, c), and thus

p(D) (under the i.i.d. assumption).

q (4), Naive Bayes, determines for a given x its most probable class directly. As
an application of the Bayesian framework, it chooses cMAP for each x and
maximizes p(D) by maximizing each factor of

∏
D p(c | x). Note that p(x) is

constant per factor. Naive Bayes approximates p(x | c) with
∏p

j=1 p(xj | c).
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes (continued) [

::::
data

:::::::::::::
exploitation

:::::::::::
examples]

(2) wML = argmax
w∈Rp+1

∏
(x,c)∈D

p(c | x;w) ; y(x) = σ(wT
MLx) ; cwML (logistic regression)

(4) cMAP = argmax
c∈{⊕,	}

p(x | c) · p(c)
p(x)

(Bayes)

Observation 1. Both approaches maximize p(D) :

q (2), the MLE principle, determines the parameters w of the logistic model
function such that

∏
D p(c | x) becomes maximum. Note that a parameter

vector w that maximizes
∏

D p(c | x) ::::
will

::::::::
also

:::::::::::::::
maximize

∏
D p(x, c), and thus

p(D) (under the i.i.d. assumption).

q (4), Naive Bayes, determines for a given x its most probable class directly. As
an application of the Bayesian framework, it chooses cMAP for each x and
maximizes p(D) by maximizing each factor of

∏
D p(c | x). Note that p(x) is

constant per factor. Naive Bayes approximates p(x | c) with
∏p

j=1 p(xj | c).
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes (continued) [

::::
data

:::::::::::::
exploitation

:::::::::::
examples]

(2) wML = argmax
w∈Rp+1

∏
(x,c)∈D

p(c | x;w) ; y(x) = σ(wT
MLx) ; cwML (logistic regression)

(4) cMAP = argmax
c∈{⊕,	}

p(x | c) · p(c) (Bayes)

Observation 1. Both approaches maximize p(D) :

q (2), the MLE principle, determines the parameters w of the logistic model
function such that

∏
D p(c | x) becomes maximum. Note that a parameter

vector w that maximizes
∏

D p(c | x) ::::
will

::::::::
also

:::::::::::::::
maximize

∏
D p(x, c), and thus

p(D) (under the i.i.d. assumption).

q (4), Naive Bayes, determines for a given x its most probable class directly. As
an application of the Bayesian framework, it chooses cMAP for each x and
maximizes p(D) by maximizing each factor of

∏
D p(c | x). Note that p(x) is

constant per factor. Naive Bayes approximates p(x | c) with
∏p

j=1 p(xj | c).
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes (continued) [

::::
data

:::::::::::::
exploitation

:::::::::::
examples]

(2) wML = argmax
w∈Rp+1

∏
(x,c)∈D

p(c | x;w) ; y(x) = σ(wT
MLx) ; cwML (logistic regression)

(4) cMAP = argmax
c∈{⊕,	}

∏p
j=1 p(xj | c) · p(c) (Naive Bayes)

Observation 1. Both approaches maximize p(D) :

q (2), the MLE principle, determines the parameters w of the logistic model
function such that

∏
D p(c | x) becomes maximum. Note that a parameter

vector w that maximizes
∏

D p(c | x) ::::
will

::::::::
also

:::::::::::::::
maximize

∏
D p(x, c), and thus

p(D) (under the i.i.d. assumption).

q (4), Naive Bayes, determines for a given x its most probable class directly. As
an application of the Bayesian framework, it chooses cMAP for each x and
maximizes p(D) by maximizing each factor of

∏
D p(c | x). Note that p(x) is

constant per factor. Naive Bayes approximates p(x | c) with
∏p

j=1 p(xj | c).
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes (continued) [

::::
data

:::::::::::::
exploitation

:::::::::::
examples]

(2) wML = argmax
w∈Rp+1

∏
(x,c)∈D

p(c | x;w) ; y(x) = σ(wT
MLx) ; cwML (logistic regression)

(4) cMAP = argmax
c∈{⊕,	}

∏p
j=1 p(xj | c) · p(c) (Naive Bayes)

Observation 1. Both approaches maximize p(D) :

q (2), the MLE principle, determines the parameters w of the logistic model
function such that

∏
D p(c | x) becomes maximum. Note that a parameter

vector w that maximizes
∏

D p(c | x) ::::
will

::::::::
also

:::::::::::::::
maximize

∏
D p(x, c), and thus

p(D) (under the i.i.d. assumption).

q (4), Naive Bayes, determines for a given x its most probable class directly. As
an application of the Bayesian framework, it chooses cMAP for each x and
maximizes p(D) by maximizing each factor of

∏
D p(c | x). Note that p(x) is

constant per factor. Naive Bayes approximates p(x | c) with
∏p

j=1 p(xj | c).
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes (continued) [

::::
data

:::::::::::::
exploitation

:::::::::::
examples]

(2) wML = argmax
w∈Rp+1

∏
(x,c)∈D

p(c | x;w) ; y(x) = σ(wT
MLx) ; cwML (logistic regression)

(4) cMAP = argmax
c∈{⊕,	}

∏p
j=1 p(xj | c) · p(c) (Naive Bayes)

Observation 2 (corollary). Both approaches model the covariate distribution:

q (2), the MLE principle, considers p(x), the distribution of the independent
variables x, implicitly via the multiplicity of x in the data D. Recall that D is a
multiset of examples.

q (4), Naive Bayes, as an application of the Bayesian framework, is a generative
approach; it models p(x | c) and p(c), and hence also p(x, c), p(x), and p(c | x).
The likelihoods, p(x | c) (or p(xj | c) under Naive Bayes), are estimated
from D; the priors, p(c), may be estimated by subjective assessments.
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Remarks:

q Both approaches maximize p(D) by maximizing
∏

D p(c | x).
Note that estimating p(c | x) is usually significantly easier than estimating p(x, c).

(4) Naive Bayes models p(x | c) as
∏p

j=1 p(xj | c), where p(xj | c) is estimated as p̂(xj | c),
p̂(xj | c) = |{(x, c) ∈ D : x|j=xj}| / |{( · , c) ∈ D}|.

Similarly, p(c) can be estimated as p̂(c), p̂(c) = |{( · , c) ∈ D}|; but, also a dedicated (and
subjective) prior probability model can be stated.

p(x) can be computed with the Law of Total Probability, p(x) =
∑

c∈{⊕,	} p(x | c) · p(c). Note,
however, that p(x) is not required to compute cMAP for x.

(4) If for Naive Bayes—aside from the likelihoods p(xj | c)— also the class priors, p(c), are
computed from D, we follow the frequentist paradigm, similar to the MLE principle. Only if the
values for p(c) (= the prior probability model) rely on subjective assessments, the application
of Naive Bayes can be considered as subjectivist.

q Whether to apply logistic regression (MLE principle) or Naive Bayes is not a free choice; it
depends on

– knowledge about the distribution of the condition events (= the hypotheses, here: c),
– the distribution of feature values in the data set D,
– the measurement scale of the features xj.

q Synonymous: covariate, predictor, independent [variable]
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Remarks: (continued)

q Observe the subtle distinction between “Bayes rule” and “Bayesian framework”. With the
former we refer to the identity that connects the posterior probability, P (A | B), and the
likelihood, P (B | A) (the “reversal of condition and consequence”).

With the latter we refer to the optimization method (= comparison of possible events) where
the event with the maximum a posteriori probability is determined (= MAP hypothesis). The
event can be a class (as in (4)) or a distribution parameter (as in (6)).

q Note that a class-conditional event “X=x | C=c” does not necessarily model a cause-effect
relation: the event “C=c” may cause—but does not need to cause—the event “X=x”.

Examples:

– A disease c will cause the symptoms x (but not vice versa).
– Weather conditions x will cause the decision “EnjoySurfing=yes” (but not vice versa).

Similarly, also if x is the independent variable of a function y(x) that maps features to
classes c, the cause-effect direction is not necessarily x→ c, but can also be the other way
around: Consider y(x) = c with “disease c”→ ”symptoms x”.
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes: Example

A multiset of examples D:

URLs Spelling errors Spam

1 5 3 yes
2 4 1 no
3 4 3 yes
... ... ... ...

10 1 0 no
11 1 0 yes

... ... ... ...
15 1 4 no
16 1 4 yes

... ... ... ...
20 0 4 no x1 ... x18x10 x14... ...

Spam
Ham

Learning task:

q Fit D to compute a classifier for feature vectors x, x 6∈ D.

ML:VII-137 Bayesian Learning © STEIN/VÖLSKE 2024



Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes: Example

A multiset of examples D:

URLs Spelling errors Spam

1 5 3 yes
2 4 1 no
3 4 3 yes
... ... ... ...

10 1 0 no
11 1 0 yes

... ... ... ...
15 1 4 no
16 1 4 yes

... ... ... ...
20 0 4 no x1 ... x18x10 x14... ...

Spam
Ham

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls
Learning task:

q Fit D to compute a classifier for feature vectors x, x 6∈ D.
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes: Example

A multiset of examples D:

URLs Spelling errors Spam

1 5 3 yes
2 4 1 no
3 4 3 yes
... ... ... ...

10 1 0 no
11 1 0 yes

... ... ... ...
15 1 4 no
16 1 4 yes

... ... ... ...
20 0 4 no x1 ... x18x10 x14... ...

Spam
Ham

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

Label noise

Learning task:

q Fit D to compute a classifier for feature vectors x, x 6∈ D.
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes: Conditional Class Probabilities

Logistic regression:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

q Distribution of D.
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes: Conditional Class Probabilities

Logistic regression:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

q Hyperplane wT
MLx = 0. wML is the

ML estimate for w given D.
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes: Conditional Class Probabilities

Logistic regression:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

Hyperplane
distance

p (   |x )  = 1.0

p (   |x )  = 1.0

Ham
Spam

q Conditional class probabilities
computed with y(x) = σ(wT

MLx).
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes: Conditional Class Probabilities

Logistic regression:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

Hyperplane
distance

p (   |x )  = 1.0

p (   |x )  = 1.0

Ham
Spam

D

q Training error.
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes: Conditional Class Probabilities

Logistic regression:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

Hyperplane
distance

p (   |x )  = 1.0

p (   |x )  = 1.0

Ham
Spam

D

q Training error.

Naive Bayes:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls
q Distribution of D.
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes: Conditional Class Probabilities

Logistic regression:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

Hyperplane
distance

p (   |x )  = 1.0

p (   |x )  = 1.0

Ham
Spam

D

q Training error.

Naive Bayes:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

Probability
for spam

p (   |x )  = 1.0

p (   |x )  = 1.0

Ham
Spam

q Conditional class probabilities
computed for the respective MAP
class, using p(c) estimates
from D.
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes: Conditional Class Probabilities

Logistic regression:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

Hyperplane
distance

p (   |x )  = 1.0

p (   |x )  = 1.0

Ham
Spam

D

q Training error.

Naive Bayes:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

Probability
for spam

p (   |x )  = 1.0

p (   |x )  = 1.0

Ham
Spam

D

q Training error.
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Frequentist versus Subjectivist
Logistic Regression versus Naive Bayes: Conditional Class Probabilities

Logistic regression:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

Hyperplane
distance

p (   |x )  = 1.0

p (   |x )  = 1.0

Ham
Spam

D

q Computation of a hyperplane.

q Approach: minimization of
accumulated “misclassification
distances” for examples in D.

q Discriminative and probabilistic.

Naive Bayes:

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

Probability
for spam

p (   |x )  = 1.0

p (   |x )  = 1.0

Ham
Spam

D

q Computation of a probability
distribution.

q Basis: class-conditional feature
and class frequencies in D.

q Generative (implies probabilistic).
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Remarks:

q Both approaches, logistic regression and Naive Bayes, estimate the conditional class
probability function, p(Spam | x) or p(Ham | x) = 1− p(Spam | x). However, the two
estimation approaches follow very different concepts.

q Generalization characteristic:

– The conditional class probability function as computed via logistic regression decides not
only the feature space {0, 1, 2, 3, 4, 5}2 but the entire R2 (whether this makes sense is
another question).

– The conditional class probability function as computed via Naive Bayes provides class
probability estimates for x ∈ {0, 1, 2, 3, 4, 5}2. The probabilities are estimated from the
class-conditional feature frequencies (likelihood estimates) and class frequencies,
p̂(x1 | c), p̂(x2 | c), and p̂(c), as found in D. Note that a vector x = (x1, x2)

T gets the
probability of zero for class c, if x1 or x2 does not occur in some feature vector with class
label c in D.

q Handling of class imbalance and covariate distribution:

– Logistic regression considers the p(c) and the p(x) implicitly via their multiplicity in D.
I.e., the learned parameter vector wML has the class imbalance as well as the covariate
distribution “compiled in”.

– Naive Bayes, again, estimates the p(c) and the p(x) from the frequencies in D. More
specifically, p(x) can be estimated from p̂(x1 | c), p̂(x2 | c), and p̂(c) with the Law of Total
Probability. Note that the computation of p(x) is not necessary for a ranking
(= classification without class membership probability).
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Frequentist versus Subjectivist
Naive Bayes: Smoothing and Continuous Likelihoods

; BOARD
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Frequentist versus Subjectivist
Naive Bayes: Prior Probability Models

Comparison of the conditional class probability function, p(c | x), under Naive Bayes
for three different prior probability models (= assessments of class priors), p(c).

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

(a)

D

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

(a)

D

(b)

D

0 54321

0

5

4

3

2

1

X1: Spelling errors

X
2:

 U
R

Ls

(a)

D

(b)

D

(c)

D

p(c) estimates from D Subjective assessments for p(c)

Pa(C=Spam) = p̂(Spam) = 0.45

Pa(C=Ham) = p̂(Ham) = 0.55

Pb(C=Spam) = 0.6

Pb(C=Ham) = 0.4

Pc(C=Spam) = 0.8

Pc(C=Ham) = 0.2

ML:VII-150 Bayesian Learning © STEIN/VÖLSKE 2024



Frequentist versus Subjectivist
Classification: Bayes Optimum versus MAP versus Ensemble

; BOARD
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Frequentist versus Subjectivist
Advanced Bayesian Decision Making

Recall the
::::::::::
Bayes

:::::::
rule,

P (A | B) =
P (B | A) · P (A)

P (B)
,

with A and B in the role of a “hypothesis event”, H=h, and a “data event”, D=D,

P (H=h | D=D) =
P (D=D | H=h) · P (H=h)

P (D=D)
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Frequentist versus Subjectivist
Advanced Bayesian Decision Making

Recall the
::::::::::
Bayes

:::::::
rule,

P (A | B) =
P (B | A) · P (A)

P (B)
,

with A and B in the role of a “hypothesis event”, H=h, and a “data event”, D=D,

P (H=h | D=D) =
P (D=D | H=h) · P (H=h)

P (D=D)

rewritten using probability mass functions, pmf, (in case of discrete events) :

p(h | D) =
p(D | h) · p(h)

p(D)

q Likelihood: How well does h explain (= entail, induce, evoke) the data D?
q Prior: How probable is the hypothesis h a priori (= in principle)?
q Normalization: How probable is the observation of the data D?
q Posterior: How probable is the hypothesis h when observing the data D?

ML:VII-153 Bayesian Learning © STEIN/VÖLSKE 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-probability-basics.pdf#conditional-probability-deductions


Frequentist versus Subjectivist
Advanced Bayesian Decision Making

Recall the
::::::::::
Bayes

:::::::
rule,

P (A | B) =
P (B | A) · P (A)

P (B)
,

with A and B in the role of a “hypothesis event”, H=h, and a “data event”, D=D,

P (H=h | D=D) =
P (D=D | H=h) · P (H=h)

P (D=D)

rewritten using probability mass functions, pmf, (in case of discrete events) :

p(h | D) =
p(D | h) · p(h)

p(D)

q Likelihood: How well does h explain (= entail, induce, evoke) the data D?
q Prior: How probable is the hypothesis h a priori (= in principle)?
q Normalization: How probable is the observation of the data D?
q Posterior: How probable is the hypothesis h when observing the data D?
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Frequentist versus Subjectivist
Advanced Bayesian Decision Making

Recall the
::::::::::
Bayes

:::::::
rule,

P (A | B) =
P (B | A) · P (A)

P (B)
,

with A and B in the role of a “hypothesis event”, H=h, and a “data event”, D=D,

P (H=h | D=D) =
P (D=D | H=h) · P (H=h)

P (D=D)

rewritten using probability mass functions, pmf, (in case of discrete events) :

p(h | D) =
p(D | h) · p(h)

p(D)

q Likelihood: How well does h explain (= entail, induce, evoke) the data D?
q Prior: How probable is the hypothesis h a priori (= in principle)?
q Normalization: How probable is the observation of the data D?
q Posterior: How probable is the hypothesis h when observing the data D?
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Frequentist versus Subjectivist
Advanced Bayesian Decision Making

Recall the
::::::::::
Bayes

:::::::
rule,

P (A | B) =
P (B | A) · P (A)

P (B)
,

with A and B in the role of a “hypothesis event”, H=h, and a “data event”, D=D,

P (H=h | D=D) =
P (D=D | H=h) · P (H=h)

P (D=D)

rewritten using probability mass functions, pmf, (in case of discrete events) :

p(h | D) =
p(D | h) · p(h)

p(D)

q Likelihood: How well does h explain (= entail, induce, evoke) the data D?
q Prior: How probable is the hypothesis h a priori (= in principle)?
q Normalization: How probable is the observation of the data D?
q Posterior: How probable is the hypothesis h when observing the data D?
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Remarks:

q When using the Bayesian framework for a predictor-response setting, then p(D),
p(D) := P (D=D), is the probability of the data D = x. I.e., D is a random vector whose
domain is the feature space X.

q When using the Bayesian framework for an outcome-only setting, then p(D),
p(D) := P (D=D), is the probability of the data D = {y1, . . . , yn} or D = {c1, . . . , cn}. I.e., D is
a random vector whose domain is Rn or Cn, where C is the set of possible classes or class
labels.

q p(h) := P (H=h) (also p(w), p(θ), or similar) is the probability of choosing a certain h, a
parameter vector w, or some model function as hypothesis. I.e., H is a random variable
whose domain is the set H of possible hypotheses.

q
::::::::
Recap. Recall that p() is defined via P () and that the two notations can be used
interchangeably, arguing about realizations of random variables and events respectively.
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