
Chapter ML:III

III. Linear Models
q Logistic Regression
q Loss Computation in Detail
q Overfitting
q Regularization
q Gradient Descent in Detail

ML:III-121 Linear Models © STEIN/VÖLSKE 2023

Gradient Descent in Detail
ML Stack: Gradient Descend [ML stack:

:::::
LMS,

::::
log.

::::::::::::
regression,

::::
loss

:::::::
comp.,

::::::::::::::
regularization, GD]

Optimization approach

Optimization objective
Loss function [+ Regularization]

Model function ; Hypothesis space

4

Task

Data

LMS, BGDσ, BGD, IGD, SGD, Conjugate GD

(“GD” = gradient descend)

...

...

...

...

ML:III-122 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#ml-stack-lms
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#ml-stack-logistic-regression
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#ml-stack-loss-computation
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#ml-stack-regularization

Gradient Descent in Detail
Principle

Gradient descent, GD, is a first-order iterative optimization algorithm for finding a
local extremum of a differentiable function f . [Wikipedia]

In our algorithms, f is the
:::::::::
global

:::::::
loss

:::::::::::::
function, L, or some

:::::::::::::
objective

:::::::::::::
function, L.

w0

w1

L 2
(w

)
ML:III-123 Linear Models © STEIN/VÖLSKE 2023

https://en.wikipedia.org/wiki/Gradient_descent
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-global-loss-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#definition-objective-function

Gradient Descent in Detail
Principle

Gradient descent, GD, is a first-order iterative optimization algorithm for finding a
local extremum of a differentiable function f . [Wikipedia]

In our algorithms, f is the
:::::::::
global

:::::::
loss

:::::::::::::
function, L, or some

:::::::::::::
objective

:::::::::::::
function, L.

w0

w1

L 2
(w

)
ML:III-124 Linear Models © STEIN/VÖLSKE 2023

https://en.wikipedia.org/wiki/Gradient_descent
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-global-loss-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#definition-objective-function

Gradient Descent in Detail
Principle

Gradient descent, GD, is a first-order iterative optimization algorithm for finding a
local extremum of a differentiable function f . [Wikipedia]

In our algorithms, f is the
:::::::::
global

:::::::
loss

:::::::::::::
function, L, or some

:::::::::::::
objective

:::::::::::::
function, L.

w0

w1

L 2
(w

)
ML:III-125 Linear Models © STEIN/VÖLSKE 2023

https://en.wikipedia.org/wiki/Gradient_descent
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-global-loss-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#definition-objective-function

Gradient Descent in Detail
Principle

Gradient descent, GD, is a first-order iterative optimization algorithm for finding a
local extremum of a differentiable function f . [Wikipedia]

In our algorithms, f is the
:::::::::
global

:::::::
loss

:::::::::::::
function, L, or some

:::::::::::::
objective

:::::::::::::
function, L.

t0t1t2

Iteration of algorithm

q The gradient ∇f of a differentiable function f of several variables is a vector
whose components are the partial derivatives of f . (simplified definition)

q The gradient of a function is the direction of steepest ascent or descent.

q Gradient ascent means stepping in the direction of the gradient.

q Likewise, gradient descent means stepping in the opposite direction of the
gradient; it will lead to a local minimum of that function.

ML:III-126 Linear Models © STEIN/VÖLSKE 2023

https://en.wikipedia.org/wiki/Gradient_descent
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-global-loss-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#definition-objective-function

Remarks:

q In machine learning the GD principle is applied to take the direction of steepest descent for
various loss and objective functions. In this section, we will discuss gradient descent in the
following hypothesis search settings:

(1) linear regression + squared loss

(2) linear regression + 0/1 loss

(3) logistic regression + logistic loss + regularization

In section
::::::::::::
Multilayer

:::::::::::::::
Perceptron of part Neural Networks, the GD principle is applied in the

form of the backpropagation mechanism to tackle search settings with unconstrained
hypotheses forms:

(4) multilayer perceptron with single hidden layer and k-dimensional output + squared loss

(5) multilayer perceptron with d hidden layers and k-dimensional output + squared loss

q Recall that by the method of steepest (= gradient) descent the determination of the global
optimum can be guaranteed for convex functions only.

The (loss or objective) functions considered in the settings (1) and (3) are convex; the (loss
or objective) functions considered in the settings (2), (4), and (5) are typically non-convex.

ML:III-127 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-multilayer-perceptron.pdf#non-linear-regression-squared-loss

Gradient Descent in Detail
(1) Linear Regression + Squared Loss

+ +

wTx

-1 - --

++ +

+

-

1

y(x)

0

20

051015

-20
-5 -10 -15w0

8

0
2

4
6

-8

-2
-4

-6

w1

8000

6000

4000

2000

0

L 2
(w

)

y(x)
(?)
= wTx

ML:III-128 Linear Models © STEIN/VÖLSKE 2023

Gradient Descent in Detail
(1) Linear Regression + Squared Loss

+ +

wTx

-1 - --

++ +

+

-

1

y(x)

0

20

051015

-20
-5 -10 -15w0

8

0
2

4
6

-8

-2
-4

-6

w1

8000

6000

4000

2000

0

L 2
(w

)

Residuals, basis of loss computation

y(x)
(?)
= wTx

L2(w) =
1

2
·RSS(w) =

1

2
·
∑

(x,c)∈D

(c− y(x))2 [pointwise squared loss]

ML:III-129 Linear Models © STEIN/VÖLSKE 2023

Gradient Descent in Detail
(1) Linear Regression + Squared Loss

+ +

wTx

-1 - --

++ +

+

-

1

y(x)

0

20

051015

-20
-5 -10 -15w0

8

0
2

4
6

-8

-2
-4

-6

w1

8000

6000

4000

2000

0

L 2
(w

)

Residuals, basis of loss computation

y(x)
(?)
= wTx

L2(w) =
1

2
·RSS(w) =

1

2
·
∑

(x,c)∈D

(c− y(x))2 [pointwise squared loss]

ML:III-130 Linear Models © STEIN/VÖLSKE 2023

Gradient Descent in Detail
(1) Linear Regression + Squared Loss

+ +

wTx

-1 - --

++ +

+

-

1

y(x)

0

20

051015

-20
-5 -10 -15w0

8

0
2

4
6

-8

-2
-4

-6

w1

8000

6000

4000

2000

0

L 2
(w

)

Residuals, basis of loss computation

y(x)
(?)
= wTx

L2(w) =
1

2
·RSS(w) =

1

2
·
∑

(x,c)∈D

(c− y(x))2 [pointwise squared loss]

ML:III-131 Linear Models © STEIN/VÖLSKE 2023

Gradient Descent in Detail
(1) Linear Regression + Squared Loss

+ +

wTx

-1 - --

++ +

+

-

1

y(x)

0

20

051015

-20
-5 -10 -15w0

8

0
2

4
6

-8

-2
-4

-6

w1

8000

6000

4000

2000

0

L 2
(w

)

Residuals, basis of loss computation

y(x)
(?)
= wTx

L2(w) =
1

2
·RSS(w) =

1

2
·
∑

(x,c)∈D

(c− y(x))2 [pointwise squared loss]

∇L2(w) =

(
∂L2(w)

∂w0
,
∂L2(w)

∂w1
, · · · , ∂L2(w)

∂wp

)T
ML:III-132 Linear Models © STEIN/VÖLSKE 2023

Gradient Descent in Detail
(1) Linear Regression + Squared Loss (continued)

Update of weight vector w: (BGD algorithm, Line 9)

w = w + ∆w,

using the gradient of the loss function L2(w) to take steepest descent:

∆w = −η · ∇L2(w)

ML:III-133 Linear Models © STEIN/VÖLSKE 2023

Gradient Descent in Detail
(1) Linear Regression + Squared Loss (continued)

Update of weight vector w: (BGD algorithm, Line 9)

w = w + ∆w,

using the gradient of the loss function L2(w) to take steepest descent:

∆w = −η · ∇L2(w)

= −η ·
(
∂L2(w)

∂w0
,
∂L2(w)

∂w1
, · · · , ∂L2(w)

∂wp

)T
... [derivation]

= η ·
∑

(x,c)∈D

(c−wTx) · x

ML:III-134 Linear Models © STEIN/VÖLSKE 2023

Remarks (derivation of ∇L2(w)) :

q Consider the partial derivative for a parameter wj, j = 0, . . . , p :

∂

∂wj
L2(w) =

∂

∂wj

1

2
·
∑

(x,c)∈D

(c− y(x))2 =
1

2
·
∑

(x,c)∈D

∂

∂wj
(c− y(x))2

(1)
=

∑
(x,c)∈D

(c− y(x)) · ∂

∂wj
(c− y(x))

=
∑

(x,c)∈D

(c−wTx) · ∂

∂wj
(c−wTx) // j-th summand depends on wj.

=
∑

(x,c)∈D

(c−wTx) · (−xj)

= −
∑

(x,c)∈D

(c−wTx) · xj

q Plugging the results for ∂
∂wj

L2(w) into −η · (. . .)T yields the update formula for ∆w.

q Hints:

(1) Chain rule with d
dz(g(z))2 = 2 · g(z) · ddzg(z)

ML:III-135 Linear Models © STEIN/VÖLSKE 2023

Gradient Descent in Detail
The BGD Algorithm [algorithms:

:::::
LMS,

:::::::
BGDσ, BGD, IGD,

:::
PT]

Algorithm: BGD Batch Gradient Descent with squared loss.
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {−1, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

BGD(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1, ∆w = 0

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= wTx

6. δ = c− y(x)

7. ∆w
(?)
= ∆w + η · δ · x // −δ · x is the derivative of l2(c, y(x)) wrt.w.

8. ENDDO

9. w = w + ∆w // ∆w = −η · ∇L2(w)

10. UNTIL(convergence(D, y(), t))

11. return(w)

ML:III-136 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#algorithm-least-mean-squares
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#algorithm-batch-gradient-descent-logistic-loss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#algorithm-perceptron-training

Gradient Descent in Detail
The BGD Algorithm [algorithms:

:::::
LMS,

:::::::
BGDσ, BGD, IGD,

:::
PT]

Algorithm: BGD Batch Gradient Descent with squared loss.
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {−1, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

BGD(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1, ∆w = 0

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= wTx

6. δ = c− y(x)

7. ∆w
(?)
= ∆w + η · δ · x // −δ · x is the derivative of l2(c, y(x)) wrt.w.

8. ENDDO

9. w = w + ∆w // ∆w = −η · ∇L2(w)

10. UNTIL(convergence(D, y(), t))

11. return(w)

Model function evaluation.

Calculation of residual.

Calculation of derivative of the loss, accumulate for D.

Parameter vector update =̂ one gradient step down.

ML:III-137 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#algorithm-least-mean-squares
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#algorithm-batch-gradient-descent-logistic-loss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#algorithm-perceptron-training

Remarks:

(?)
:::::::::
Recap. We consider the feature vector x in its extended form when used as operand in a
scalar product with the weight vector, wTx, and consequently, when noted as argument of
the model function, y(x). I.e., x = (1, x1, . . . , xp)

T ∈ Rp+1, and x0 = 1.

q
::::::::
Recap. Each BGD iteration “REPEAT . . .UNTIL”

1. computes the direction of steepest loss descent as −∇L2(wt) =
∑

(x,c)∈D(c− yt(x)) · x,
and

2. updates wt by taking a step of length η in this direction.

q
::::::::
Recap. The function convergence() can analyze the global squared loss, L2(wt), or the norm
of the loss gradient, ||∇L2(wt)||, and compare it to a small positive bound ε. Consider in this
regard the vectors of observed and computed classes, D|c and y(D|x) respectively. In
addition, the function may check via t an upper bound on the number of iterations.

ML:III-138 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#convention-extended-x-vector
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#algorithm-batch-gradient-descent-logistic-loss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#convergence-function

Gradient Descent in Detail
Global Loss versus Pointwise Loss

The weight adaptation of the BGD algorithm computes in each iteration the global
loss, i.e., the loss of all examples in D (“batch gradient descent”).

The (squared) loss with regard to a single example (x, c) ∈ D, also called
:::::::::::::::
pointwise

::::::
loss is given as:

l2(c, y(x)) =
1

2
(c−wTx)2 [global squared loss]

The respective weight adaptation computes canonically as follows:

∆w = η · (c−wTx) · x [IGD algorithm]

ML:III-139 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#loss-linear-regression
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#loss-linear-regression

Remarks:

q The adaptation rule for a single example, ∆w = η · (c−wTx) · x, is known under different
names:

– delta rule
– Widrow-Hoff rule
– adaline rule
– least mean squares (LMS) rule

q The delta rule gives rise to the IGD algorithm (incremental gradient descent), which is shown
in the following. Moreover, the delta rule forms the basis of the backpropagation algorithm.

q The basic gradient descent is a first-order optimization method, and its speed of convergence
may be considered unsatisfactory. Even when taking the optimal step size η at each iteration,
it has only a linear rate of convergence. [Meza 2010]

More advanced numerical algorithms to tackle the optimization (search for minimum L2) are
listed below but are not treated in detail here:

– BFGS algorithm (Broyden-Fletcher-Goldfarb-Shanno)

– L-BFGS algorithm (limited memory BFGS)

– Conjugate gradient method

– Newton-Raphson algorithm

ML:III-140 Linear Models © STEIN/VÖLSKE 2023

https://math.stackexchange.com/questions/2201384/what-is-the-definition-of-a-first-order-method#answer-2748192
https://www.juancmeza.com/s/steepest-descent.pdf
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
https://en.wikipedia.org/wiki/Limited-memory_BFGS
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Newton%27s_method

Gradient Descent in Detail
The IGD Algorithm [algorithms:

:::::
LMS,

:::::::
BGDσ, BGD, IGD,

:::
PT]

Algorithm: IGD Incremental Gradient Descent with squared loss.
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {−1, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

IGD(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= wTx

6. δ = c− y(x)

7. ∆w
(?)
= η · δ · x // −δ · x is the derivative of l2(c, y(x)) wrt.w.

8. w = w + ∆w

9. ENDDO

10. UNTIL(convergence(D, y(), t))

11. return(w)

ML:III-141 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#algorithm-least-mean-squares
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#algorithm-batch-gradient-descent-logistic-loss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#algorithm-perceptron-training

Gradient Descent in Detail
The IGD Algorithm [algorithms:

:::::
LMS,

:::::::
BGDσ, BGD, IGD,

:::
PT]

Algorithm: IGD Incremental Gradient Descent with squared loss.
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {−1, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

IGD(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= wTx

6. δ = c− y(x)

7. ∆w
(?)
= η · δ · x // −δ · x is the derivative of l2(c, y(x)) wrt.w.

8. w = w + ∆w

9. ENDDO

10. UNTIL(convergence(D, y(), t))

11. return(w)

Model function evaluation.

Calculation of residual.

Calculation of derivative.

Parameter vector update =̂ one gradient step down.

ML:III-142 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#algorithm-least-mean-squares
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#algorithm-batch-gradient-descent-logistic-loss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#algorithm-perceptron-training

Remarks (IGD) :

q The sequence of incremental weight adaptations approximates the gradient descent of the
batch approach. If η is chosen sufficiently small this approximation can be done at arbitrary
precision.

q The computation of the global loss, L2(w) (RSS), of batch gradient descent enables larger
weight adaptation steps. Compared to batch gradient descent, the example-based weight
adaptation of incremental gradient descent can better avoid getting stuck in a local minimum
of the loss function.

q A related method to incremental gradient descent is stochastic gradient descent, SGD, which
estimates the gradient from a randomly selected subset of the data.

q When, as is done here, the squared loss is chosen as loss function, the incremental gradient
descent algorithm, IGD, is very similar to the

::::::
LMS

:::::::::::::
algorithm. The only difference between

IGD with squared loss and LMS is that the former exploits the entire example set D while the
latter works on a random subset of D. I.e., LMS corresponds to an SGD with squared loss.

ML:III-143 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#algorithm-least-mean-squares

Remarks (
::::::::
recap. different roles of loss functions) :

q Observe that loss functions are employed at two places (in two roles) in an optimization
approach:

1. For the fitting of the data (i.e., the parameter update during regression / optimization /
hyperplane search), where a new position of the hyperplane is computed.

Example: Lines 6+7 in the BGD Algorithm and the IGD Algorithm.

2. For the evaluation of the effectiveness of a hypothesis, where the proportion of correctly
and misclassified examples is analyzed.

Example: Line 10 in the BGD Algorithm and the IGD Algorithm.
General: section

:::::::::::::
Evaluating

::::::::::::::::::
Effectiveness of part Machine Learning Basics.

Typically, fitting (optimization) (1.) and effectiveness evaluation (2.) are done with different
loss functions. E.g., logistic regression uses Lσ and L0/1 for fitting and evaluation
respectively. However, linear regression (not classification) uses RSS (the L2 loss) for both
fitting and evaluation. The basic perceptron learning algorithm uses the misclassification
information (the L0/1 loss) for both fitting and evaluation.

ML:III-144 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#loss-functions-for-fitting-and-evaluation
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#true-misclassification-rate

Gradient Descent in Detail
(2) Linear Regression + 0/1 Loss [squared loss]

+ +

wTx

-1 - --

++ +

+

-

1

y(x)

0

20

051015

-20
-5 -10 -15w0

8

0
2

4
6

-8

-2
-4

-6

w1

8

6

4

2

0

y(x)
(?)
= wTx

ML:III-145 Linear Models © STEIN/VÖLSKE 2023

Gradient Descent in Detail
(2) Linear Regression + 0/1 Loss [squared loss]

+ +

wTx

-1 - --

++ +

+

-

1

y(x)

0

20

051015

-20
-5 -10 -15w0

8

0
2

4
6

-8

-2
-4

-6

w1

8

6

4

2

0

Residuals, basis of loss computation

y(x)
(?)
= wTx

L0/1(w) =
∑

(x,c)∈D

I6=(c, sign(y(x))) =
∑

(x,c)∈D

1

2
·
∣∣c− sign(wTx)

∣∣ [
::::::::::
pointwise

::::
0/1

:::::
loss]

ML:III-146 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#loss-linear-regression

Gradient Descent in Detail
(2) Linear Regression + 0/1 Loss [squared loss]

+ +

wTx

-1 - --

++ +

+

-

1

y(x)

0

20

051015

-20
-5 -10 -15w0

8

0
2

4
6

-8

-2
-4

-6

w1

8

6

4

2

0

Residuals, basis of loss computation

L 0
/1

(w
)

y(x)
(?)
= wTx

L0/1(w) =
∑

(x,c)∈D

I6=(c, sign(y(x))) =
∑

(x,c)∈D

1

2
·
∣∣c− sign(wTx)

∣∣ [
::::::::::
pointwise

::::
0/1

:::::
loss]

ML:III-147 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#loss-linear-regression

Gradient Descent in Detail
(2) Linear Regression + 0/1 Loss [squared loss]

+ +

wTx

-1 - --

++ +

+

-

1

y(x)

0

20

051015

-20
-5 -10 -15w0

8

0
2

4
6

-8

-2
-4

-6

w1

8

6

4

2

0

Residuals, basis of loss computation

L 0
/1

(w
)

y(x)
(?)
= wTx

L0/1(w) =
∑

(x,c)∈D

I6=(c, sign(y(x))) =
∑

(x,c)∈D

1

2
·
∣∣c− sign(wTx)

∣∣ [
::::::::::
pointwise

::::
0/1

:::::
loss]

L0/1(w) cannot be expressed as a differentiable function.
ML:III-148 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#loss-linear-regression

Remarks:

q Since L0/1(w) is not a differentiable function, the gradient descent method cannot be applied
to determine its minimum.

q Recap. I6= is an indicator function that returns 1 if its arguments are unequal (and 0 if its
arguments are equal).

q Recap. We label y(0) with the “positive” class and define sign(0) = 1 here.

ML:III-149 Linear Models © STEIN/VÖLSKE 2023

Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization [squared loss]

+ +

wTx0 - --

++ +

+

-

1

y(x)

0.5

10

02.557.5

-10
-2.5 -5 -7.5w0

4

0
1

2
3

-4

-1
-2

-3

w1

160

120

80

40

0

L
σ(

w
)

y(x)
(?)
=

1

1 + e−wTx

ML:III-150 Linear Models © STEIN/VÖLSKE 2023

Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization [squared loss]

+ +

wTx0 - --

++ +

+

-

1

y(x)

0.5

10

02.557.5

-10
-2.5 -5 -7.5w0

4

0
1

2
3

-4

-1
-2

-3

w1

160

120

80

40

0

L
σ(

w
)

Residuals, basis of loss computation

y(x)
(?)
=

1

1 + e−wTx

Lσ(w) = Lσ + λ·R‖~w‖22 =
∑

(x,c)∈D

lσ(c, y(x))
::::::::::::::

+ λ·~wT ~w [definitions:
:::
Lσ,

::
lσ,

:::::
R‖~w‖22]

=
∑

(x,c)∈D

−c · log(y(x))− (1− c) · log(1− y(x)) + λ·~wT ~w

ML:III-151 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#derivation-logistic-loss2
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-global-logistic-loss-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-logistic-loss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#definition-w-two-norm-regularization

Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization [squared loss]

+ +

wTx0 - --

++ +

+

-

1

y(x)

0.5

10

02.557.5

-10
-2.5 -5 -7.5w0

4

0
1

2
3

-4

-1
-2

-3

w1

160

120

80

40

0

L
σ(

w
)

Residuals, basis of loss computation

y(x)
(?)
=

1

1 + e−wTx

Lσ(w) = Lσ + λ·R‖~w‖22 =
∑

(x,c)∈D

lσ(c, y(x))
::::::::::::::

+ λ·~wT ~w [definitions:
:::
Lσ,

::
lσ,

:::::
R‖~w‖22]

=
∑

(x,c)∈D

−c · log(y(x))− (1− c) · log(1− y(x)) + λ·~wT ~w

ML:III-152 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#derivation-logistic-loss2
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-global-logistic-loss-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-logistic-loss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#definition-w-two-norm-regularization

Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization [squared loss]

+ +

wTx0 - --

++ +

+

-

1

y(x)

0.5

10

02.557.5

-10
-2.5 -5 -7.5w0

4

0
1

2
3

-4

-1
-2

-3

w1

160

120

80

40

0

L
σ(

w
)

Residuals, basis of loss computation

y(x)
(?)
=

1

1 + e−wTx

Lσ(w) = Lσ + λ·R‖~w‖22 =
∑

(x,c)∈D

lσ(c, y(x))
::::::::::::::

+ λ·~wT ~w [definitions:
:::
Lσ,

::
lσ,

:::::
R‖~w‖22]

=
∑

(x,c)∈D

−c · log(y(x))− (1− c) · log(1− y(x)) + λ·~wT ~w

ML:III-153 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#derivation-logistic-loss2
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-global-logistic-loss-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-logistic-loss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#definition-w-two-norm-regularization

Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization [squared loss]

+ +

wTx0 - --

++ +

+

-

1

y(x)

0.5

10

02.557.5

-10
-2.5 -5 -7.5w0

4

0
1

2
3

-4

-1
-2

-3

w1

160

120

80

40

0

L
σ(

w
)

Residuals, basis of loss computation

y(x)
(?)
=

1

1 + e−wTx

Lσ(w) = Lσ + λ·R‖~w‖22 =
∑

(x,c)∈D

lσ(c, y(x))
::::::::::::::

+ λ·~wT ~w [definitions:
:::
Lσ,

::
lσ,

:::::
R‖~w‖22]

∇Lσ(w) =

(
∂Lσ(w)

∂w0
,
∂Lσ(w)

∂w1
, · · · , ∂Lσ(w)

∂wp

)T
ML:III-154 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#derivation-logistic-loss2
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-global-logistic-loss-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#definition-logistic-loss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#definition-w-two-norm-regularization

Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization (continued)

Update of weight vector w: (
::::::::
BGDσ ::::::::::::

algorithm, Line 9)

w = w + ∆w,

using the gradient of the objective function Lσ(w) to take steepest descent:

∆w = −η · ∇Lσ(w)

ML:III-155 Linear Models © STEIN/VÖLSKE 2023

machine-learning/unit-en-logistic-regression.pdf#algorithm-batch-gradient-descent-logistic-loss

Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization (continued)

Update of weight vector w: (
::::::::
BGDσ ::::::::::::

algorithm, Line 9)

w = w + ∆w,

using the gradient of the objective function Lσ(w) to take steepest descent:

∆w = −η · ∇Lσ(w)

= −η ·
(
∂Lσ(w)

∂w0
,
∂Lσ(w)

∂w1
, · · · , ∂Lσ(w)

∂wp

)T
... [derivation]

= η ·
∑

(x,c)∈D

(c− σ(wTx)) · x − η · 2λ ·
(

0
~w

)

ML:III-156 Linear Models © STEIN/VÖLSKE 2023

machine-learning/unit-en-logistic-regression.pdf#algorithm-batch-gradient-descent-logistic-loss

Remarks:

q
::::::::
Recap. Distinguish between the p-dimensional direction vector ~w = (w1, . . . , wp)

T , and the
(p+1)-dimensional hypothesis w = (w0, w1, . . . , wp)

T .

q The BGD variant BGDσ has already been introduced in section Logistic Regression of part
Linear Models. However, none of the algorithms presented so far consider the update term
η · 2λ ·

(
0
~w

)
for the ridge regression regularization constraint, λ · ~wT ~w, which has been derived

now and which may be added to the respective algorithms as follows:

[
::::::
BGDσ, BGD] Line 9: w = w + ∆w − η · 2λ ·

(
0
~w

)
[IGD] Line 8: w = w + ∆w − η · 2 λ

|D| ·
(
0
~w

)

ML:III-157 Linear Models © STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#regularization-constrains-direction-vector
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#algorithm-batch-gradient-descent-logistic-loss

Remarks (derivation of ∇Lσ(w)) :

q Consider the partial derivative for a parameter wj, j = 0, . . . , p :

∂

∂wj
Lσ(w) =

∂

∂wj
Lσ(w) +

∂

∂wj
λ ·R‖~w‖22(w)

=
∑

(x,c)∈D

∂

∂wj
lσ(c, y(x)) + λ · ∂

∂wj
~wT ~w

=
∑

(x,c)∈D

∂

∂wj

[
−c · log(σ(wTx))− (1− c) · log(1− σ(wTx))

]
+ λ · ∂

∂wj

p∑
i=1

w2
i

=
∑

(x,c)∈D

[
−c · ∂

∂wj
log(σ(wTx))− (1− c) · ∂

∂wj
log(1− σ(wTx))

]
(1)
+ λ · ∂

∂wj
w2
j

(2)
=

∑
(x,c)∈D

[
−c · 1

σ(wTx)
· ∂

∂wj
σ(wTx)

− (1− c) · 1

1− σ(wTx)
·
(
− ∂

∂wj
σ(wTx)

)]
(1)
+ 2λ · wj

= ↪→ p. 159

ML:III-158 Linear Models © STEIN/VÖLSKE 2023

Remarks (derivation of ∇Lσ(w)) : (continued)

(3)
=

∑
(x,c)∈D

[
−c · 1

σ(wTx)
· σ(wTx) · (1− σ(wTx)) · ∂

∂wj
wTx

− (1− c) · 1

1− σ(wTx)
· (−1) · σ(wTx) · (1− σ(wTx)) · ∂

∂wj
wTx

]
(1)
+ 2λ · wj

=
∑

(x,c)∈D

−c · (1− σ(wTx)) · xj + (1− c) · σ(wTx) · xj
(1)
+ 2λ · wj

= −
∑

(x,c)∈D

(c− σ(wTx)) · xj
(1)
+ 2λ · wj

q Plugging the results for ∂
∂wj
Lσ(w) into −η · (. . .)T yields the update formula for ∆w.

q Hints:

(1) Since ~w ≡ (w1, . . . , wp)
T , the right summand is defined as 0 for wj = w0.

(2) Chain rule with d
dz log(z) = 1

z

(3) Chain rule with d
dzσ(z) = σ(z) · (1− σ(z)), where σ(z) = 1

1+e−z

ML:III-159 Linear Models © STEIN/VÖLSKE 2023

