
Chapter ML:III

III. Linear Models
q Logistic Regression
q Loss Computation in Detail
q Overfitting
q Regularization
q Gradient Descent in Detail

ML:III-1 Linear Models © STEIN 2023

Logistic Regression
Binary Classification Problems

Setting:

q X is a multiset of feature vectors from an
::::::::
inner

:::::::::::::
product

::::::::::
space

::::
X, X ⊆ Rp.

q C = {0, 1} is a set of two classes. Similarly: {−1, 1}, {	,⊕}, {no, yes}, etc.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit D using a logistic function y().

ML:III-2 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#inner-product-space

Logistic Regression
Binary Classification Problems

Setting:

q X is a multiset of feature vectors from an
::::::::
inner

:::::::::::::
product

::::::::::
space

::::
X, X ⊆ Rp.

q C = {0, 1} is a set of two classes. Similarly: {−1, 1}, {	,⊕}, {no, yes}, etc.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit D using a logistic function y().

Examples for binary classification problems:

q Is an email spam or ham?

q Is a patient infected or healthy?

q Is a bank customer creditworthy or not?

ML:III-3 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#inner-product-space

Logistic Regression
Linear Regression

x (|obscene words|)

(spam) 1

(ham) -1

y(x)

q Linear regression: y(x)
(?)
= wTx

q Classification: Predict

{
“spam”, if wTx ≥ 0

“ham”, if wTx < 0

ML:III-4 Linear Models © STEIN 2023

Logistic Regression
Linear Regression

x (|obscene words|)

(spam) 1

(ham) -1

y(x)

- -- + +++
x'

0

wTx ≥ 0wTx < 0

q Linear regression: y(x)
(?)
= wTx

q Classification: Predict

{
“spam”, if wTx ≥ 0

“ham”, if wTx < 0

ML:III-5 Linear Models © STEIN 2023

Logistic Regression
Linear Regression

x (|obscene words|)

(spam) 1

(ham) -1

y(x)

q Linear regression: y(x)
(?)
= wTx

q Classification: Predict

{
“spam”, if wTx ≥ 0

“ham”, if wTx < 0

ML:III-6 Linear Models © STEIN 2023

Logistic Regression
Linear Regression

x (|obscene words|)

(spam) 1

(ham) -1

y(x)

- -- - -
x'

0

wTx ≥ 0wTx < 0

++ +

q Linear regression: y(x)
(?)
= wTx

q Classification: Predict

{
“spam”, if wTx ≥ 0

“ham”, if wTx < 0

ML:III-7 Linear Models © STEIN 2023

Logistic Regression
Linear Regression

x (|obscene words|)

(spam) 1

(ham) -1

y(x)

Restrict the range of y(x) to reflect the two-class classification semantics:

−1 ≤ y(x) ≤ 1 or 0 ≤ y(x) ≤ 1

ML:III-8 Linear Models © STEIN 2023

Remarks:

(?)
:::::::::
Recap. We consider the feature vector x in its extended form when used as operand in a
scalar product with the weight vector, wTx, and consequently, when noted as argument of
the model function, y(x). I.e., x = (1, x1, . . . , xp)

T ∈ Rp+1, and x0 = 1.

ML:III-9 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#convention-extended-x-vector

Logistic Regression
Sigmoid (Logistic) Function

1

0.5

0
z

σ(z)

+ +++ ++

- -- -- - -

Linear regression Sigmoid function Logistic model function

wTx ◦ σ(z) =
1

1 + e−z
; y(x) ≡ σ(wTx)

(?)
=

1

1 + e−wTx

y(x) : Rp+1 → (0; 1)

ML:III-10 Linear Models © STEIN 2023

Logistic Regression
Sigmoid (Logistic) Function

1

0.5

0
z

σ(z)

+ +++ ++

- -- -- - -

Linear regression Sigmoid function Logistic model function

wTx ◦ σ(z) =
1

1 + e−z
; y(x) ≡ σ(wTx)

(?)
=

1

1 + e−wTx

y(x) : Rp+1 → (0; 1)

ML:III-11 Linear Models © STEIN 2023

Logistic Regression
Sigmoid (Logistic) Function

1

0.5

0
z

σ(z)

+ +++ ++

- -- -- - -

σ(wTx)

wTx

Linear regression Sigmoid function Logistic model function

wTx ◦ σ(z) =
1

1 + e−z
; y(x) ≡ σ(wTx)

(?)
=

1

1 + e−wTx

y(x) : Rp+1 → (0; 1)

ML:III-12 Linear Models © STEIN 2023

Logistic Regression
Sigmoid (Logistic) Function

1

0.5

0
z

σ(z)

+ +++ ++

- -- -- - -

σ(wTx)

wTx

Linear regression Sigmoid function Logistic model function

wTx ◦ σ(z) =
1

1 + e−z
; y(x) ≡ σ(wTx)

(?)
=

1

1 + e−wTx

y(x) : Rp+1 → (0; 1)

ML:III-13 Linear Models © STEIN 2023

Logistic Regression
Interpretation of the Logistic Model Function

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) =: P (C=1 | X=x;w) = p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) =: P (C=0 | X=x;w) = p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

ML:III-14 Linear Models © STEIN 2023

Logistic Regression
Interpretation of the Logistic Model Function

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) =: P (C=1 | X=x;w) = p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) =: P (C=0 | X=x;w) = p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

The »+« and »-« are
examples from D,
projected on the z-axis,
along with the probabilities
as specified by σ(wTx).

1

0.5

0
z

σ(z)

+ +++ ++

- -- -- - -

σ(wTx)

wTx

p(1|x6)= 0.15 p(1|x8)= 0.8 p(1|x10)= 0.95

x9 = x10 → label noise

p (0|x4) = 1-p (1|x4) = 0.95

p (0|x7) = 1-p (1|x7) = 0.6

p (0|x9) = 1-p (1|x9) = 0.05

ML:III-15 Linear Models © STEIN 2023

Logistic Regression
Interpretation of the Logistic Model Function (continued)

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) =: P (C=1 | X=x;w) = p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) =: P (C=0 | X=x;w) = p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

Example (email spam classification) :

x =

(
x0

x1

)
=

(
1

|obscene words|

)
, x1 =

(
1

5

)
and y(x1) = 0.67

; 67% chance that this email is spam.

ML:III-16 Linear Models © STEIN 2023

Logistic Regression
Interpretation of the Logistic Model Function (continued)

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) =: P (C=1 | X=x;w) = p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) =: P (C=0 | X=x;w) = p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

Example (email spam classification) :

x =

(
x0

x1

)
=

(
1

|obscene words|

)
, x1 =

(
1

5

)
and y(x1) = 0.67

; 67% chance that this email is spam.

ML:III-17 Linear Models © STEIN 2023

Logistic Regression
Interpretation of the Logistic Model Function (continued)

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) =: P (C=1 | X=x;w) = p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) =: P (C=0 | X=x;w) = p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

Example (email spam classification) :

x =

(
x0

x1

)
=

(
1

|obscene words|

)
, x1 =

(
1

5

)
and y(x1) = 0.67

; 67% chance that this email is spam.

Classification: Predict


1, if σ(wTx) ≥ 0.5 ⇔ wTx ≥ 0

0, if σ(wTx) < 0.5 ⇔ wTx < 0

ML:III-18 Linear Models © STEIN 2023

Logistic Regression
Interpretation of the Logistic Model Function (continued)

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) =: P (C=1 | X=x;w) = p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) =: P (C=0 | X=x;w) = p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

Example (email spam classification) :

x =

(
x0

x1

)
=

(
1

|obscene words|

)
, x1 =

(
1

5

)
and y(x1) = 0.67

; 67% chance that this email is spam.

Classification: Predict


1, if σ(wTx) ≥ 0.5 ⇔ wTx ≥ 0

0, if σ(wTx) < 0.5 ⇔ wTx < 0

ML:III-19 Linear Models © STEIN 2023

Logistic Regression
Interpretation of the Logistic Model Function (continued)

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) =: P (C=1 | X=x;w) = p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) =: P (C=0 | X=x;w) = p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

Estimate optimum w by maximizing the probability p(D;w) :

wML = argmax
w∈Rp+1

p(D;w)

... [derivation]

= argmin
w∈Rp+1

Lσ(w) [
:::::
RSS

::::::::::::::
minimization]

I.e., optimizing w by maximizing p(D;w) is equivalent to optimizing w by minimizing
the logistic loss Lσ(w).

ML:III-20 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#equation-regression-rss

Remarks (probabilistic view to classification) :

q If y(x) = σ(wTx) is interpreted as “probability for C=1 given feature vector x”, then w is the
(unique) characterizing parameter vector of the hidden stochastic process that generates the
observed data D.

::::::::
Recap. As a consequence, w is not the realization of a random variable—which would come
along with a distribution—but an exogenous parameter, which is varied in order to find the
maximum probability p(D;w) or the minimum loss Lσ(w).

The fact that w is an exogenous parameter and not a the realization of a random variable is
reflected by the notation, which uses a »;« instead of a »|« in p().

q The underlying probability space—which can be left implicit—looks as follows:

The sample space Ω corresponds to a set O of real-world objects, P is a probability measure
defined on P(Ω). The classification task (experiment) suggests two types of random
variables, X : Ω→ X and C : Ω→ {0, 1}.
See section

:::::::::::::
Evaluating

::::::::::::::::::
Effectiveness of part Machine Learning Basics for an illustration of

the probabilistic view to classification, and section
:::::::::::::
Probability

::::::::::
Basics of part Bayesian

Learning for a recap of concepts from probability theory.

q X and C denote (multivariate) random variables with ranges X and C respectively.

X corresponds to a
::::::::
model

:::::::::::::
formation

::::::::::
function α that returns for a real-world object o ∈ O its

feature vector x, x = α(o), and C corresponds to an
::::::
ideal

::::::::::::
classifier γ that returns its class c,

c = γ(o).

ML:III-21 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#parameter-in-probability-function
https://en.wikipedia.org/wiki/Probability_space
https://en.wikipedia.org/wiki/Sample_space
https://en.wikipedia.org/wiki/Probability_measure
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Random_variable
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#true-misclassification-rate-probabilistic
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-probability-basics.pdf#definition-probability-measure
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#model-formation-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#ideal-classifier

Remarks (probabilistic view to classification) : (continued)

q Interpreting y(x) = σ(wTx) as probability for the event C=1 means that P (C=1 | X=x) is
defined as y(x).

q The interpretation of y(x) = σ(wTx) as probability for the event C=1 is not a mathematical
consequence but a decision of the modeler. This decision is based on the advantageous
properties of the sigmoid function, on practical considerations, and on heuristic
simplifications of the real world.

Consider the following two aspects where an interpretation of σ(wTx) is questionable:

1. The sigmoid function implies that with wTx→ +∞ we get y(x)→ 1 or P (C=1)→ 1.
Likewise, with wTx→ −∞ we get P (C=1)→ 0. Though such a strict monotonicity
appears self-evident, it need not necessarily correspond to the observed behavior in a
real world experiment.

2. The sigmoid function implies a smooth, virtually linear transition from low probability
values (around 0.1) to high probability values (around 0.9) as its argument wTx
increases.

This link between the continuous growth of wTx and the continuous growth of probability
values P (C=1) presumes a proportional connection between cause (in the form of X=x)
and effect (in the form of C=1). Again, such a relation appears sensible but may not
necessarily model the real world.

ML:III-22 Linear Models © STEIN 2023

Remarks (derivation of Lσ(w)) :

q The most probable (= optimum) hypothesis in the space H of possible hypotheses, hML, can
be estimated with the

::::::::::::
maximum

:::::::::::::
likelihood

::::::::::::
principle: hML = argmax

h∈H
p(D;h).

q Applied to logistic regression: wML = argmax
w∈Rp+1

p(D;w), where

argmax
w∈Rp+1

p(D;w) = argmax
w∈Rp+1

∏
(x,c)∈D

p(x, c;w) = argmax
w∈Rp+1

∏
(x,c)∈D

(
p(c | x;w) · p(x)

)

= argmax
w∈Rp+1

∏
(x,c)∈D

p(x) ·
∏

(x,c)∈D

p(c | x;w)
(1)
= argmax

w∈Rp+1

∏
(x,c)∈D

p(c | x;w)

= argmax
w∈Rp+1

∏
(x,1)∈D

σ(wTx) ·
∏

(x,0)∈D

(1− σ(wTx))

= argmax
w∈Rp+1

∏
(x,1)∈D

y(x) ·
∏

(x,0)∈D

(1− y(x))

(2)
= argmax

w∈Rp+1

log
∏

(x,1)∈D

y(x) + log
∏

(x,0)∈D

(1− y(x))

= argmax
w∈Rp+1

∑
(x,1)∈D

log(y(x)) +
∑

(x,0)∈D

log(1− y(x))

= ↪→ p. 24

ML:III-23 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#frequentist-parameter-estimation

Remarks (derivation of Lσ(w)) : (continued)

= argmax
w∈Rp+1

∑
(x,c)∈D

(
c · log(y(x)) + (1− c) · log(1− y(x))

)
(3)
= argmin

w∈Rp+1

−
∑

(x,c)∈D

(
c · log(y(x)) + (1− c) · log(1− y(x))

)

(4)
= argmin

w∈Rp+1

∑
(x,c)∈D

lσ :=︷ ︸︸ ︷(
− c · log(y(x)) − (1− c) · log(1− y(x))

)

=: argmin
w∈Rp+1

∑
(x,c)∈D

lσ(c, y(x)) = argmin
w∈Rp+1

Lσ(w)

q Hints:

(1)
∏

(x,c)∈D p(x) is constant with respect to the variation of w.

(2) argmaxx f(x) = argmaxx g ◦ f(x) (similarly for argmin) if g(z) is a strictly monotonically
increasing function. Here, log(z) is in the role of g(z). Conversely, if g(z) is a strictly
monotonically decreasing function, then argmaxx f(x) = argminx g ◦ f(x).

(3) The maximization problem (the argmax-expression) can be reformulated as minimization
problem, i.e., as an argmin-expression. See in this regard the second part of Hint (2).

(4) The argument of the argmin-expression quantifies Lσ(w), the global logistic loss related
to some w, and, analogously, the pointwise logistic loss, lσ(c, y(x)).

ML:III-24 Linear Models © STEIN 2023

Logistic Regression
::::::::::
Recap. Linear Regression for Classification (illustrated for p = 2)

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-

-
-- -- - -

++
++

+
+

+

ML:III-25 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#regression-for-classification-2d-3

Logistic Regression
::::::::::
Recap. Linear Regression for Classification (illustrated for p = 2)

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-
--

y(x1, x2)

--
-

-- -- - -

++
++

+
+

+

ML:III-26 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#regression-for-classification-2d-3

Logistic Regression
Logistic Regression for Classification (illustrated for p = 2)

x1

x2

1

0
-
- -
-

-

-
-

-
-

-
-- -- - -

y(x1, x2)

0

++
++

+
+

+

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

ML:III-27 Linear Models © STEIN 2023

Logistic Regression
Logistic Regression for Classification (illustrated for p = 2)

Use logistic regression to learn w from D, where y(x) =
1

1 + e−wTx
.

x1

x2

1

0
-
- -
-

-

-
-

-
-

-
-- -- - -

y(x1, x2)

0

++
++

+
+

+

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

y(x1, x2) =
1

1 + e−(w0 + w1 · x1 + w2 · x2)

ML:III-28 Linear Models © STEIN 2023

Logistic Regression
Logistic Regression for Classification (illustrated for p = 2)

Use logistic regression to learn w from D, where y(x) =
1

1 + e−wTx
.

x1

x2

1

0
-
- -
-

-

-
-

-
-

-
-- -- - -

y(x1, x2)

0

++
++

+
+

+

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

(w1 w2)T
0.5

y(x1, x2) =
1

1 + e−(w0 + w1 · x1 + w2 · x2)

ML:III-29 Linear Models © STEIN 2023

Logistic Regression
Logistic Regression for Classification (illustrated for p = 2)

Use logistic regression to learn w from D, where y(x) =
1

1 + e−wTx
.

x1

x2

1

0
-
- -
-

-

-
-

-
-

-
-- -- - -

y(x1, x2)

0

++
++

+
+

+

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

(w1 w2)T
0.5

Classification: Predict


1, if σ(wTx) ≥ 0.5 ⇔ wTx ≥ 0

0, if σ(wTx) < 0.5 ⇔ wTx < 0

ML:III-30 Linear Models © STEIN 2023

Logistic Regression
Logistic Regression for Classification (illustrated for p = 2)

Use logistic regression to learn w from D, where y(x) =
1

1 + e−wTx
.

x1

x2

1

0

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+++
++

+
+

+
-
- -
-

-

-
-

-
-

-
-- -- - -

wTx ≥ 0wTx < 0

(w1 w2)T

Classification: Predict


1, if σ(wTx) ≥ 0.5 ⇔ wTx ≥ 0

0, if σ(wTx) < 0.5 ⇔ wTx < 0

ML:III-31 Linear Models © STEIN 2023

Logistic Regression
Logistic Regression for Classification (illustrated for p = 2)

Use logistic regression to learn w from D, where y(x) =
1

1 + e−wTx
.

x1

x2

1

0

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+++
++

+
+

+
-
- -
-

-

-
-

-
-

-
-- -- - -

wTx ≥ 0wTx < 0

(w1 w2)T

Classification: Predict


1, if σ(wTx) ≥ 0.5 ⇔ wTx ≥ 0

0, if σ(wTx) < 0.5 ⇔ wTx < 0

ML:III-32 Linear Models © STEIN 2023

Logistic Regression
The BGDσ Algorithm [algorithms:

:::::
LMS, BGDσ,

:::::
BGD,

::::
IGD,

:::
PT]

Algorithm: BGDσ Batch Gradient Descent with logistic loss.
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {0, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

BGDσ(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1, ∆w = 0

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= σ(wTx) = 1

1+e−wT x

6. δ = c− y(x)

7. ∆w
(?)
= ∆w + η · δ · x // −δ · x is the derivative of lσ(c, y(x)) wrt.w.

8. ENDDO

9. w = w + ∆w

10. UNTIL(convergence(D, y(), t))

11. return(w)

ML:III-33 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#algorithm-least-mean-squares
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#algorithm-batch-gradient-descent-squared-loss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#algorithm-incremental-gradient-descent
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#algorithm-perceptron-training

Logistic Regression
The BGDσ Algorithm [algorithms:

:::::
LMS, BGDσ,

:::::
BGD,

::::
IGD,

:::
PT]

Algorithm: BGDσ Batch Gradient Descent with logistic loss.
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {0, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

BGDσ(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1, ∆w = 0

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= σ(wTx) = 1

1+e−wT x

6. δ = c− y(x)

7. ∆w
(?)
= ∆w + η · δ · x // −δ · x is the derivative of lσ(c, y(x)) wrt.w.

8. ENDDO

9. w = w + ∆w

10. UNTIL(convergence(D, y(), t))

11. return(w)

Model function evaluation.

Calculation of residual.

Calculation of derivative of the loss, accumulate for D.

Parameter vector update =̂ one gradient step down.

ML:III-34 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#algorithm-least-mean-squares
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#algorithm-batch-gradient-descent-squared-loss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#algorithm-incremental-gradient-descent
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#algorithm-perceptron-training

Remarks (BGDσ Algorithm) :

q The BGDσ Algorithm is an iterative method to estimate wML in the model function
y(x) = σ(wTx). There is no direct method (such as the normal equations in linear
regression) to tackle the optimization problem.

q The BGDσ Algorithm exploits the derivative of the pointwise logistic loss lσ(c, y(x)) with
respect to w, which is −δ · x = −(c− y(x)) · x = −(c− σ(wTx)) · x. The derivation of this
term, as well as notes regarding the speed of convergence of the basic gradient descent are
given in section

:::::::::::
Gradient

:::::::::::
Descent

:::
in

::::::::
Detail of part Linear Models.

q Each BGDσ iteration “REPEAT . . . UNTIL”

1. computes the direction of steepest loss descent as

−
:::::::::::
∇Lσ(wt) =

∑
(x,c)∈D

(c− yt(x)) · x, and

2. updates wt by taking a step of length η in this direction.

q The output of the logistic model (function), y(x) = σ(wTx), is a continuous variable in the
domain (0, 1), while the dependent variable that we use for training is Bernoulli-distributed:
c = 0 ∨ c = 1.

ML:III-35 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#gradient-descent-numeric-notes
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#derivation-logistic-objective-function

Remarks: (continued)

q
:::::::::
Recap. A hypothesis is a proposed explanation for a phenomenon. [Wikipedia]

Here, hypothesis “explains” (= fits) the data D. Hence, a concrete model function y(), y(), or,
if the function type is clear from the context, its parameters w or θ are called “hypothesis”.
The variable name h (similarly: h1, h2, hi, h′, etc.) may be used to refer to a specific instance
of a model function or its parameters.

q
::::::::
Recap. The function convergence() can analyze the global logistic loss, Lσ(wt), or the norm
of the loss gradient, ||∇Lσ(wt)||, and compare it to a small positive bound ε. Consider in this
regard the vectors of observed and computed classes, D|c and y(D|x) respectively. In
addition, the function may check via t an upper bound on the number of iterations.

ML:III-36 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#definition-hypothesis
https://en.wikipedia.org/wiki/Hypothesis
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#convergence-function

Logistic Regression
ML Stack: Logistic Regression [ML stack:

:::::
LMS, log. regression, loss comp.,

::::::::::::::
regularization,

::::
GD]

Optimization approach

Optimization objective
Loss function [+ Regularization]

Model function ; Hypothesis space

4

Task

Data

BGD, Newton-Raphson, BFGS, Conjugate GD

q Objective: minimize logistic loss Lσ(w)

q Regularization: none
q Loss: lσ(c,y(x)) = −c·log(y(x))−(1−c)·log(1−y(x))

q Hypothesis space: w ∈ Rp+1

q Logistic model: y(x) = σ(wTx) = 1

1+e−wT x

Binary classification

D = {(x1, c1), . . . , (xn, cn)} ⊆ X × {0, 1}

ML:III-37 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#ml-stack-lms
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#ml-stack-regularization
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#ml-stack-gd
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
https://en.wikipedia.org/wiki/Conjugate_gradient_method

Logistic Regression
ML Stack: Logistic Regression [ML stack:

:::::
LMS, log. regression, loss comp.,

::::::::::::::
regularization,

::::
GD]

Optimization approach

Optimization objective
Loss function [+ Regularization]

Model function ; Hypothesis space

4

Task

Data

BGD, Newton-Raphson, BFGS, Conjugate GD

q Objective: minimize logistic loss Lσ(w)

q Regularization: none
q Loss: lσ(c,y(x)) = −c·log(y(x))−(1−c)·log(1−y(x))

q Hypothesis space: w ∈ Rp+1

q Logistic model: y(x) = σ(wTx) = 1

1+e−wT x

Binary classification

D = {(x1, c1), . . . , (xn, cn)} ⊆ X × {0, 1}

ML:III-38 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#ml-stack-lms
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#ml-stack-regularization
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#ml-stack-gd
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
https://en.wikipedia.org/wiki/Conjugate_gradient_method

Logistic Regression
ML Stack: Logistic Regression [ML stack:

:::::
LMS, log. regression, loss comp.,

::::::::::::::
regularization,

::::
GD]

Optimization approach

Optimization objective
Loss function [+ Regularization]

Model function ; Hypothesis space

4

Task

Data

BGD, Newton-Raphson, BFGS, Conjugate GD

q Objective: minimize logistic loss Lσ(w)

q Regularization: none
q Loss: lσ(c,y(x)) = −c·log(y(x))−(1−c)·log(1−y(x))

q Hypothesis space: w ∈ Rp+1

q Logistic model: y(x) = σ(wTx) = 1

1+e−wT x

Binary classification

D = {(x1, c1), . . . , (xn, cn)} ⊆ X × {0, 1}

ML:III-39 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#ml-stack-lms
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#ml-stack-regularization
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#ml-stack-gd
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
https://en.wikipedia.org/wiki/Conjugate_gradient_method

Logistic Regression
ML Stack: Logistic Regression [ML stack:

:::::
LMS, log. regression, loss comp.,

::::::::::::::
regularization,

::::
GD]

Optimization approach

Optimization objective
Loss function [+ Regularization]

Model function ; Hypothesis space

4

Task

Data

BGD, Newton-Raphson, BFGS, Conjugate GD

q Objective: minimize logistic loss Lσ(w)

q Regularization: none
q Loss: lσ(c,y(x)) = −c·log(y(x))−(1−c)·log(1−y(x))

q Hypothesis space: w ∈ Rp+1

q Logistic model: y(x) = σ(wTx) = 1

1+e−wT x

Binary classification

D = {(x1, c1), . . . , (xn, cn)} ⊆ X × {0, 1}

ML:III-40 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#ml-stack-lms
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#ml-stack-regularization
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#ml-stack-gd
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
https://en.wikipedia.org/wiki/Conjugate_gradient_method

Logistic Regression
ML Stack: Logistic Regression [ML stack:

:::::
LMS, log. regression, loss comp.,

::::::::::::::
regularization,

::::
GD]

Optimization approach

Optimization objective
Loss function [+ Regularization]

Model function ; Hypothesis space

4

Task

Data

BGD, Newton-Raphson, BFGS, Conjugate GD

q Objective: minimize logistic loss Lσ(w)

q Regularization: none
q Loss: lσ(c,y(x)) = −c·log(y(x))−(1−c)·log(1−y(x))

q Hypothesis space: w ∈ Rp+1

q Logistic model: y(x) = σ(wTx) = 1

1+e−wT x

Binary classification

D = {(x1, c1), . . . , (xn, cn)} ⊆ X × {0, 1}

ML:III-41 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#ml-stack-lms
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#ml-stack-regularization
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#ml-stack-gd
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
https://en.wikipedia.org/wiki/Conjugate_gradient_method

Logistic Regression
Non-Linear Decision Boundaries [

::::::
linear

:::::::::::
regression]

x2

x1

1

-1

1-1

-

+

+

+

+

++ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+
- -

-

-
- --

-

-

-
- --

-
-

+

+

+

+

+

+

+
+ +

Higher order polynomial terms in the features (
:::::::::
linear

:::
in

::::::
the

:::::::::::::::::::
parameters):

y(x) = σ(wTx) = σ(w0 + w1 · x1 + w2 · x2 + w3 · x2
1 + w4 · x2

2)

ML:III-42 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#nonlinear-decision-boundary1
machine-learning/unit-en-regression-for-classification.pdf#linear-model-function-variants

Logistic Regression
Non-Linear Decision Boundaries [

::::::
linear

:::::::::::
regression]

x2

x1

1

-1

1-1

-

+

+

+

+

++ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+
- -

-

-
- --

-

-

-
- --

-
-

+

+

+

+

+

+

+
+ +

Higher order polynomial terms in the features (
:::::::::
linear

:::
in

::::::
the

:::::::::::::::::::
parameters):

y(x) = σ(wTx) = σ(w0 + w1 · x1 + w2 · x2 + w3 · x2
1 + w4 · x2

2)

ML:III-43 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#nonlinear-decision-boundary1
machine-learning/unit-en-regression-for-classification.pdf#linear-model-function-variants

Logistic Regression
Non-Linear Decision Boundaries [

::::::
linear

:::::::::::
regression]

x2

x1

1

-1

1-1

-

+

+

+

+

++ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+
- -

-

-
- --

-

-

-
- --

-
-

+

+

+

+

+

+

+
+ +

x1
2 + x2

2 = 1

Higher order polynomial terms in the features (
:::::::::
linear

:::
in

::::::
the

:::::::::::::::::::
parameters):

y(x) = σ(wTx) = σ(w0 + w1 · x1 + w2 · x2 + w3 · x2
1 + w4 · x2

2)

with w =


−1

0
0
1
1

 ; y(x) =
1

1 + e−(−1 + x21 + x22)

ML:III-44 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#nonlinear-decision-boundary1
machine-learning/unit-en-regression-for-classification.pdf#linear-model-function-variants

Logistic Regression
Non-Linear Decision Boundaries [

::::::
linear

:::::::::::
regression]

x2

x1

1

-1

1-1

-

+

+

+

+

++ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+
- -

-

-
- --

-

-

-
- --

-
-

+

+

+

+

+

+

+
+ +

x1
2 + x2

2 = 1

x1
2 + x2

2 ≥ 1
cx = 1

x1
2 + x2

2 < 1
cx = -1

Higher order polynomial terms in the features (
:::::::::
linear

:::
in

::::::
the

:::::::::::::::::::
parameters):

y(x) = σ(wTx) = σ(w0 + w1 · x1 + w2 · x2 + w3 · x2
1 + w4 · x2

2)

with w =


−1

0
0
1
1

 ; y(x) =
1

1 + e−(−1 + x21 + x22)

Classification: Predict

{
1, if x2

1 + x2
2 ≥ 1 ⇔ wTx ≥ 0

0, if x2
1 + x2

2 < 1 ⇔ wTx < 0
ML:III-45 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#nonlinear-decision-boundary1
machine-learning/unit-en-regression-for-classification.pdf#linear-model-function-variants

Logistic Regression
Non-Linear Decision Boundaries [

::::::
linear

:::::::::::
regression]

x2

x1

1

-1

1-1

cx = 1

cx = -1

More complex polynomials entail more complex decision boundaries:

y(x) = σ(w0 + w1 · x1 + w2 · x2 + w3 · x2
1 + w4 · x2

1 · x2 + w5 · x2
1 · x2

2 + . . .)

ML:III-46 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#nonlinear-decision-boundary1

Remarks:

q Under logistic regression the structure of a hypothesis, i.e., the forms of possible decision
boundaries, is identical to the hypothesis structure under linear regression. Similarly, the
respective hypothesis spaces are the same.

Hence, the expressiveness, i.e., the complexity of classification problems that can be tackled
(or, the effectiveness at which classification problems can be decided) is identical for the two
regression approaches.

q Linear regression and logistic regression differ in the way how the model function parameters,
w, are determined. In both cases the optimum w is the result of a loss minimization problem.

Recall that “loss” means “
:::::::::::::::::
interpretation

:::
of

::::::::::::
residuals.” Linear regression and logistic

regression differ with respect to this interpretation: While the former simply squares the
residuals, this way putting a high weight onto outliers, the latter models an increasing
confidence in class membership probability with increasing hyperplane distance. This
different interpretation will usually lead to a different parameter vector w, i.e., a different
hyperplane.

ML:III-47 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#definition-residual

Chapter ML:III

III. Linear Models
q Logistic Regression
q Loss Computation in Detail
q Overfitting
q Regularization
q Gradient Descent in Detail

ML:III-48 Linear Models © STEIN 2023

Loss Computation in Detail
ML Stack: Loss Computation [ML stack:

:::::
LMS, log. regression, loss comp.,

::::::::::::::
regularization,

::::
GD]

Optimization approach

Optimization objective
Loss function [+ Regularization]

Model function ; Hypothesis space

4

Task

Data

...

q Objective: minimize loss
q Regularization: none
q Loss: 0/1 loss,

squared loss,
logistic loss,
hinge loss

...

...

ML:III-49 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#ml-stack-lms
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regularization.pdf#ml-stack-regularization
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#ml-stack-gd

Remarks (loss function) :

q Given a hypothesis w, its (global) loss, L(w), tells us something about the effectiveness of w.
When used as sole criterion (e.g., no regularization is applied) we select from two hypotheses
that with the smaller loss. I.e., the most effective hypothesis is found by loss minimization.

Conversely, we call a function, whose minimization determines the most effective hypothesis,
a loss function.

q Loss functions can be distinguished with respect to the problem class they are typically
applied to: regression versus classification. Keep in mind that this distinction is not unique
since loss functions with continuous output are applied to classification problems as well.

q Furthermore, we distinguish the

1. pointwise loss l(c, y(x)), which is computed for a single x, and the

2. global loss L(w), which accumulates the pointwise losses of all x ∈ X for the weight
vector w used in a specific y():

L(w) =
∑

(x,c)∈D

l(c, y(x))

The pointwise loss is also called per-example loss. [p.268, Goodfellow/Bengio/Courville 2016]

q Instead of “loss” (function, computation) also the terms “error” (function, computation), “cost”
(function, computation), or “performance” (function, computation) are used, usually with the
same semantics as introduced here. We will use the term “error” for classification problems
and the term “loss” for both classification and regression problems.

ML:III-50 Linear Models © STEIN 2023

Remarks (different roles of loss functions) :

q Observe that loss functions are employed at two places (in two roles) in an optimization
approach:

1. For the fitting of the data (i.e., the parameter update during regression / optimization /
hyperplane search), where a new position of the hyperplane is computed.

Example: Lines 6+7 in the BGDσ Algorithm, which is illustrated here over the hyperplane
distance (red curve in the figure at the bottom right).

2. For the evaluation of the effectiveness of a hypothesis, where the proportion of correctly
and misclassified examples is analyzed.

Example: Line 10 in the BGDσ Algorithm.
General: section

:::::::::::::
Evaluating

::::::::::::::::::
Effectiveness of part Machine Learning Basics.

Typically, (1) fitting (optimization) and (2) effectiveness evaluation are done with different loss
functions. E.g., logistic regression uses Lσ and L0/1 for fitting and evaluation respectively.
However, linear regression (not classification) uses RSS (the L2 loss) for both fitting and
evaluation. The basic perceptron learning algorithm uses the misclassification information
(the L0/1 loss) for both fitting and evaluation.

ML:III-51 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#true-misclassification-rate

Loss Computation in Detail
(1) Linear Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y() and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

ML:III-52 Linear Models © STEIN 2023

Loss Computation in Detail
(1) Linear Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y() and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

ML:III-53 Linear Models © STEIN 2023

Loss Computation in Detail
(1) Linear Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y() and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

Illustration for a particular w:

Input space: y() over hyperplane distance: Loss over hyperplane distance:

x2

x1

-

+
+
+

+
+

+

+

+

++ +

+
+

-

-

-
-
-

-

-
- -

-
-

+

wTx = 0

+ +

wTx

y(x) = wTx

-1 - --

++ +

+

-

1

y(x)

0

ML:III-54 Linear Models © STEIN 2023

Loss Computation in Detail
(1) Linear Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y() and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

Illustration for a particular w:

Input space: y() over hyperplane distance: Loss over hyperplane distance:

x2

x1

-

+
+
+

+
+

+

+

+

++ +

+
+

-

-

-
-
-

-

-
- -

-
-

+

wTx = 0

+ +

wTx

y(x) = wTx

-1 - --

++ +

+

-

1

y(x)

0

90°

45°

w
→

ML:III-55 Linear Models © STEIN 2023

Loss Computation in Detail
(1) Linear Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y() and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

Illustration for a particular w:

Input space: y() over hyperplane distance: Loss over hyperplane distance:

x2

x1

-

+
+
+

+
+

+

+

+

++ +

+
+

-

-

-
-
-

-

-
- -

-
-

+

wTx = 0

+ +

wTx

y(x) = wTx

-1 - --

++ +

+

-

1

y(x)

0w
→

wTx0

1

l(1, y(x))

wTx = 0 wTx = 1

0/1 loss

ML:III-56 Linear Models © STEIN 2023

Loss Computation in Detail
(1) Linear Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y() and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

Illustration for a particular w:

Input space: y() over hyperplane distance: Loss over hyperplane distance:

x2

x1

-

+
+
+

+
+

+

+

+

++ +

+
+

-

-

-
-
-

-

-
- -

-
-

+

wTx = 0

+ +

wTx

y(x) = wTx

-1 - --

++ +

+

-

1

y(x)

0w
→

wTx0

1

l(1, y(x))

wTx = 0 wTx = 1

0/1 loss
Squared loss

ML:III-57 Linear Models © STEIN 2023

Loss Computation in Detail
(1) Linear Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y() and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

Illustration for a particular w:

Input space: y() over hyperplane distance: Loss over hyperplane distance:

x2

x1

-

+
+
+

+
+

+

+

+

++ +

+
+

-

-

-
-
-

-

-
- -

-
-

+

wTx = 0

+ +

wTx

y(x) = wTx

-1 - --

++ +

+

-

1

y(x)

0w
→

wTx

1

l(0, y(x))

wTx = -1 wTx = 0

0/1 loss
Squared loss

0

ML:III-58 Linear Models © STEIN 2023

Remarks:

q The 0/1 loss computes the misclassification error. Recall in this regard the definition of the

:::::
true

::::::::::::::::::::::
misclassification

:::::
rate.

q The pointwise squared loss computes the squared residual. The global squared loss,
L2(w) =

∑
(x,c)∈D l2(c, y(x)), hence computes the

::::::::::
residual

::::::
sum

:::
of

:::::::::::
squares (RSS) related to

some w.

q I6= is an indicator function that returns 1 if its arguments are unequal (and 0 if its arguments
are equal).

q
::::::::
Recap. We label y(0) with the “positive” class and define sign(0) = 1 here.

q Regarding the illustration: wTx is the hyperplane distance in relation to ||w||, the length of w.
By scaling w such that ||w|| = 1 the hyperplane distance wTx is normalized and is also
called

::::::::::::::
“geometric

::::::::::::
distance”.

ML:III-59 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#true-misclassification-rate
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#equation-regression-rss
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#convention-sign-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#geometric-distance-hyperplane

Loss Computation in Detail
(2) Logistic Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y() and the true class, c, of x.

q For y(x) = σ(wTx) = 1

1+e−wT x
we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, by(x) + 0.5c) [decision rule]

– Logistic loss. lσ(c, y(x)) =

{
− log(y(x)) if c = 1

− log(1− y(x)) if c = 0 [derivation]

ML:III-60 Linear Models © STEIN 2023

Loss Computation in Detail
(2) Logistic Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y() and the true class, c, of x.

q For y(x) = σ(wTx) = 1

1+e−wT x
we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, by(x) + 0.5c) [decision rule]

– Logistic loss. lσ(c, y(x)) =

{
− log(y(x)) if c = 1

− log(1− y(x)) if c = 0 [derivation]

ML:III-61 Linear Models © STEIN 2023

Loss Computation in Detail
(2) Logistic Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y() and the true class, c, of x.

q For y(x) = σ(wTx) = 1

1+e−wT x
we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, by(x) + 0.5c) [decision rule]

– Logistic loss. lσ(c, y(x)) =

{
− log(y(x)) if c = 1

− log(1− y(x)) if c = 0 [derivation]

Illustration for a particular w:

Input space: y() over hyperplane distance: Loss over hyperplane distance:

x2

x1

-

+
+
+

+
+

+

+

+

++ +

+
+

-

-

-
-
-

-

-
- -

-
-

+
w
→

+ +

wTx0 - --

++ +

+

-

1

y(x)

0.5

y(x) =
-wTx1 + e

1

wTx = 0

ML:III-62 Linear Models © STEIN 2023

Loss Computation in Detail
(2) Logistic Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y() and the true class, c, of x.

q For y(x) = σ(wTx) = 1

1+e−wT x
we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, by(x) + 0.5c) [decision rule]

– Logistic loss. lσ(c, y(x)) =

{
− log(y(x)) if c = 1

− log(1− y(x)) if c = 0 [derivation]

Illustration for a particular w:

Input space: y() over hyperplane distance: Loss over hyperplane distance:

x2

x1

-

+
+
+

+
+

+

+

+

++ +

+
+

-

-

-
-
-

-

-
- -

-
-

+
w
→

+ +

wTx0 - --

++ +

+

-

1

y(x)

0.5

y(x) =
-wTx1 + e

1

wTx = 0

wTx = 1

wTx0

1

l(1, y(x))

wTx = 0

0/1 loss
Logistic loss

ML:III-63 Linear Models © STEIN 2023

Remarks:

q As before, the 0/1 loss computes the misclassification error.

q The pointwise logistic loss can be rewritten by combining the two cases algebraically:

lσ(c, y(x)) = −c · log(y(x))− (1− c) · log(1− y(x))

Lσ(w) =
∑

(x,c)∈D

lσ(c, y(x)) computes the global logistic loss related to some w.

q Recall from the derivation of the logistic loss Lσ(w) that its minimization determines wML, the
most probable hypothesis in Rp+1 under the logistic regression model.

q Recap. I6= is an indicator function that returns 1 if its arguments are unequal (and 0 if its
arguments are equal).

q
::::::::
Recap. We label y(0) with the “positive” class, which is consistent with the definition of the
floor function, since by(0) + 0.5c = 1.

q Q. Why not use mean squared error (MSE) as a loss function for logistic regression?
A. MSE is not convex as loss function for logistic regression. [ai.stackexchange] [Varma 2018]
[Nabert 2021] [DeLuca 2023]

ML:III-64 Linear Models © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-regression-for-classification.pdf#convention-sign-function
https://mathworld.wolfram.com/FloorFunction.html
https://ai.stackexchange.com/questions/14290/why-not-use-the-mse-instead-of-the-current-logistic-regression
https://rohanvarma.me/Loss-Functions/
https://www.youtube.com/watch?v=m0ZeT1EWjjI
https://www.baeldung.com/cs/cost-function-logistic-regression-logarithmic-expr

