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Elements of Machine Learning
(1) Model Formation: Real World→ Model World

Objects

O
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X
Feature space

α(o)
y(x)

Related questions:

q From what kind of experience should be learned?

q Which level of fidelity is sufficient to solve a certain task?

ML:I-47 Introduction © STEIN/VÖLSKE 2023



Elements of Machine Learning
(2) ML Stack:

:::::::
LMS [ML stack: LMS,

::::
log.

::::::::::::
regression,

::::
loss

:::::::
comp.,

::::::::::::::
regularization,

::::
GD ]

Optimization approach

Optimization objective
Loss function [ + Regularization ]

Model function ; Hypothesis space

4

Task

Data

Stochastic gradient descent (SGD)

q Objective: minimize squared loss (RSS)
q Regularization: none
q Loss: l2(c, y(x)) = (c− y(x))2, (x, c) ∈ D

q Hypothesis space: w ∈ Rp+1

q Linear model: y(x) = w0 +
∑p

i=1wixi

Binary classification

D = {(x1, c1), . . . , (xn, cn)} ⊆ X × {−1, 1}
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Related questions:

q What are useful classes of model functions?

q What are methods to fit (= learn) model functions?

q What are measures to assess the goodness of fit?

q How does (label) noise affect the learning process?

q How does the example number affect the learning process?

q How to deal with extreme class imbalance?
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Elements of Machine Learning
(3) Feature Space Structure

The feature space is an inner product space.

q An inner product space (also called pre-Hilbert space) is a vector space with
an operation called “inner product”.

q Example: Euclidean vector space equipped with the dot product.

q Enables algorithms such as gradient descent and support vector machines.
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Elements of Machine Learning
(3) Feature Space Structure

The feature space is an inner product space.

q An inner product space (also called pre-Hilbert space) is a vector space with
an operation called “inner product”.

q Example: Euclidean vector space equipped with the dot product.

q Enables algorithms such as gradient descent and support vector machines.

The feature space is a σ-algebra.

q A σ-algebra on a set Ω is a collection of subsets of Ω that includes Ω itself, is
closed under complement, and is closed under countable unions.

q Enables probability spaces and statistical learning, such as naive Bayes.
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Elements of Machine Learning
(3) Feature Space Structure

The feature space is an inner product space.

q An inner product space (also called pre-Hilbert space) is a vector space with
an operation called “inner product”.

q Example: Euclidean vector space equipped with the dot product.

q Enables algorithms such as gradient descent and support vector machines.

The feature space is a σ-algebra.

q A σ-algebra on a set Ω is a collection of subsets of Ω that includes Ω itself, is
closed under complement, and is closed under countable unions.

q Enables probability spaces and statistical learning, such as naive Bayes.

The feature space is a finite set of vectors with nominal dimensions.

q Requires concept learning via set splitting as done by decision trees.
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Remarks:

q The aforementioned examples of feature spaces are not meant to be complete. But, they
illustrate a broad range of structures underlying the example sets we want to learn from.

q The structure of a feature space constrains the applicable learning algorithm. Usually, this
structure is inherently determined by the application domain and cannot be chosen.
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Elements of Machine Learning
(4) Discriminative versus Generative Approach to Classification

q Discriminative classifiers (models) learn a boundary between classes.

q Generative classifiers exploit the distributions underlying the classes.
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Elements of Machine Learning
(4) Discriminative versus Generative Approach to Classification

q Discriminative classifiers (models) learn a boundary between classes.

q Generative classifiers exploit the distributions underlying the classes.

x2

x1

-

-
-

-
-

-
-

-

-
-

- -
-

-

-
--

-

-

-
-- -

-

+

+

+

+
+

+
+

+

+

+

+
+

+

+ +

+
+

+

+
+

+

+

x2

x1

-

-
-

-
-

-
-

-

-
-

- -
-

-

-
--

-

-

-
-- -

-

+

+

+

+
+

+
+

+

+

+

+
+

+

+ +

+
+

+

+
+

+

+

discriminative
; classification rule

generative
; class membership probability

ML:I-59 Introduction © STEIN/VÖLSKE 2023



Elements of Machine Learning
(4) Discriminative versus Generative Approach to Classification

q Discriminative classifiers (models) learn a boundary between classes.

q Generative classifiers exploit the distributions underlying the classes.
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Remarks:

q When classifying a new example x, then

(1) discriminative classifiers apply a decision rule that was learned via minimizing the
misclassification rate given training examples D, while

(2) generative classifiers maximize the probability of the combined event p(x, y), or, similarly,
the posterior probability p(y | x), y ∈ {	,⊕}.

q The LMS algorithm computes “only” a decision boundary, i.e., it constructs a discriminative
classifier. A Bayes classifier is an example for a generative model.

q Yoav Freund provides an excellent video illustrating the pros and cons of discriminative and
generative models respectively. [YouTube]

q Discriminative models may be further differentiated in models that also determine the
posterior class probabilities p(y | x) (without computing the joint probabilities p(x, y)) and
those that do not. In the latter case, only a so-called “discriminant function” is computed.
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Elements of Machine Learning
(5) Frequentist versus Subjectivist Paradigm to Learning

Frequentist:

q There is a hidden, unique mechanism that generated the data D.

q Consider a model for this mechanism, such as a family of distributions or a
model function, parameterized by θ, θ, w, or similar. The considered
parameter values (or vectors) form the hypothesis space H.

q Select for the unknown parameter (vector) that element from H such that the
observed data D becomes most probable. The chosen element (our
hypothesis), hML, is called maximum likelihood hypothesis.

θ∗,θ∗ or w∗ ; D, hML = argmax
h∈H

p(D;h)
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Elements of Machine Learning
(5) Frequentist versus Subjectivist Paradigm to Learning

Frequentist:

q There is a hidden, unique mechanism that generated the data D.

q Consider a model for this mechanism, such as a family of distributions or a
model function, parameterized by θ, θ, w, or similar. The considered
parameter values (or vectors) form the hypothesis space H.

q Select for the unknown parameter (vector) that element from H such that the
observed data D becomes most probable. The chosen element (our
hypothesis), hML, is called maximum likelihood hypothesis.

θ∗,θ∗ or w∗ ; D, hML = argmax
h∈H

p(D;h)

θML = argmax
θ∈[0;1]

p(D; θ) = argmax
θ∈[0;1]

(
n

k

)
· θk · (1− θ)n−k
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Remarks:

q Frequentist = Let the (large amount of) data speak.

q Likelihood is the hypothetical probability that an event that has already occurred (here: a coin
flip experiment parameterized by θ) would yield a specific outcome (here: a sequence D of
heads and tails).

The concept differs from that of a probability in that a probability refers to the occurrence of
future events, while a likelihood refers to past events with known outcomes. I.e., p(D; θ) is
called likelihood since we reason about a past coin flip experiment. [Mathworld]

q The unknown parameter value (vector) of the data generation mechanism, θ∗, θ∗, w∗, etc.,
has some value from H. In particular, θ, θ, or h in the argmax-expression is not the
realization of a random variable or random vector—which would come along with a
distribution and an expected value—but an exogenous parameter (vector), which we vary to
find the maximum of p(D; θ), p(D;θ), p(D;w), or, in general, p(D;h).

The fact that h is a given, unique parameter (though it needs to be searched) and not a
random variable is reflected by the notation, which uses a »;« instead of a »|« in p().

q In the experiment of flipping a coin, we assume a Laplace experiment and apply the binomial
distribution, B(n, p), with exactly k successes in n independent Bernoulli trials.

q A general method for finding the maximum likelihood estimate of the parameters of an
underlying distribution from a given data set D (even if the data is incomplete) is the
Expectation-Maximization (EM) algorithm. [Bilmes 1998]
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Elements of Machine Learning
(5) Frequentist versus Subjectivist Paradigm to Learning (continued)

Subjectivist:

q We consider alternative mechanisms that could have generated the data D.

q As before, consider a model for the mechanisms. Moreover, we have beliefs
(prior probabilities) p(h) for the elements (alternative mechanisms) in H.

q Select the most probable hypothesis hMAP ∈ H by weighting the likelihoods
p(D | h), h ∈ H, with the priors. hMAP is called maximum posterior hypothesis.

Belief/Prior 1: P (Θ= 0.5︸︷︷︸
θ1

) = 0.95 Belief/Prior 2: P (Θ= 0.75︸︷︷︸
θ2

) = 0.05
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Elements of Machine Learning
(5) Frequentist versus Subjectivist Paradigm to Learning (continued)

Subjectivist:

q We consider alternative mechanisms that could have generated the data D.

q As before, consider a model for the mechanisms. Moreover, we have beliefs
(prior probabilities) p(h) for the elements (alternative mechanisms) in H.

q Select the most probable hypothesis hMAP ∈ H by weighting the likelihoods
p(D | h), h ∈ H, with the priors. hMAP is called maximum posterior hypothesis.

Belief/Prior 1: P (Θ= 0.5︸︷︷︸
θ1

) = 0.95 Belief/Prior 2: P (Θ= 0.75︸︷︷︸
θ2

) = 0.05
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Elements of Machine Learning
(5) Frequentist versus Subjectivist Paradigm to Learning (continued)

Subjectivist:

q We consider alternative mechanisms that could have generated the data D.

q As before, consider a model for the mechanisms. Moreover, we have beliefs
(prior probabilities) p(h) for the elements (alternative mechanisms) in H.

q Select the most probable hypothesis hMAP ∈ H by weighting the likelihoods
p(D | h), h ∈ H, with the priors. hMAP is called maximum posterior hypothesis.

Belief/Prior 1: P (Θ= 0.5︸︷︷︸
θ1

) = 0.95 Belief/Prior 2: P (Θ= 0.75︸︷︷︸
θ2

) = 0.05

θ1 + D → p(D | θ1)

θ2 + D → p(D | θ2)
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Elements of Machine Learning
(5) Frequentist versus Subjectivist Paradigm to Learning (continued)

Subjectivist:

q We consider alternative mechanisms that could have generated the data D.

q As before, consider a model for the mechanisms. Moreover, we have beliefs
(prior probabilities) p(h) for the elements (alternative mechanisms) in H.

q Select the most probable hypothesis hMAP ∈ H by weighting the likelihoods
p(D | h), h ∈ H, with the priors. hMAP is called maximum posterior hypothesis.

Belief/Prior 1: P (Θ= 0.5︸︷︷︸
θ1

) = 0.95 Belief/Prior 2: P (Θ= 0.75︸︷︷︸
θ2

) = 0.05

θ1 + D → p(D | θ1)

θ2 + D → p(D | θ2)

 θMAP = argmax
θ∈{θ1,θ2}

p(θ | D) = argmax
θ∈{θ1,θ2}

p(D | θ) · p(θ)

p(D)
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Elements of Machine Learning
(5) Frequentist versus Subjectivist Paradigm to Learning (continued)

Subjectivist:

q We consider alternative mechanisms that could have generated the data D.

q As before, consider a model for the mechanisms. Moreover, we have beliefs
(prior probabilities) p(h) for the elements (alternative mechanisms) in H.

q Select the most probable hypothesis hMAP ∈ H by weighting the likelihoods
p(D | h), h ∈ H, with the priors. hMAP is called maximum posterior hypothesis.

Belief/Prior 1: P (Θ= 0.5︸︷︷︸
θ1

) = 0.95 Belief/Prior 2: P (Θ= 0.75︸︷︷︸
θ2

) = 0.05

θ1 + D → p(D | θ1)

θ2 + D → p(D | θ2)

 θMAP = argmax
θ∈{θ1,θ2}

p(θ | D) = argmax
θ∈{θ1,θ2}

(nk)· θk·(1−θ)n−k · p(θ)

p(D)
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Elements of Machine Learning
(5) Frequentist versus Subjectivist Paradigm to Learning (continued)

Subjectivist:

q We consider alternative mechanisms that could have generated the data D.

q As before, consider a model for the mechanisms. Moreover, we have beliefs
(prior probabilities) p(h) for the elements (alternative mechanisms) in H.

q Select the most probable hypothesis hMAP ∈ H by weighting the likelihoods
p(D | h), h ∈ H, with the priors. hMAP is called maximum posterior hypothesis.

Belief/Prior 1: P (Θ= 0.5︸︷︷︸
θ1

) = 0.95 Belief/Prior 2: P (Θ= 0.75︸︷︷︸
θ2

) = 0.05

θ1 + D → p(D | θ1)

θ2 + D → p(D | θ2)

 θMAP = argmax
θ∈{θ1,θ2}

p(θ | D) = argmax
θ∈{θ1,θ2}

(
n

k

)
· θk · (1−θ)n−k ·p(θ)

ML:I-71 Introduction © STEIN/VÖLSKE 2023



Remarks:

q Subjectivist = Let (also) the knowledge (about priors, prevalences) speak.

q The elements in H (here: θ1, θ2) are realizations of a random variable Θ, and there is
(subjective) knowledge about the distribution of Θ (= the prior probability model). Θ models
the parameter p of the binomial distribution and defines the success probability for each trial.

– Belief in θ1 (Θ=0.5): With probability 0.95 the coin is fair, i.e., sides are equally likely.
– Belief in θ2 (Θ=0.75): With probability 0.05 the odds of preferring one side is 3:1.

We compute for each element in H the likelihood of the observed data D, i.e., p(D | θ1) and
p(D | θ2) under the binomial distribution. We then compute the respective values for p(θ1 | D)
and p(θ2 | D) with Bayes’s rule, and finally select θMAP.

The fact that h is the realization of a random variable (and not an exogenous parameter) is
reflected by the notation, which uses a »|« in p() (and not a »;«).

q The subjectivist paradigm is powerful, if we can consider knowledge about H in combination
with data D. The subjectivist paradigm is necessary, if we have no data D at all to optimize,
e.g., if we reason about “one time events”. If all hypotheses are equally likely (a uniform
prior), ML optimization and MAP optimization are equivalent.

If the prior probabilities (here: p(θ1), p(θ2)) are estimated from D as well, we still apply the
Bayes calculation rule for a “MAP hypothesis”. However, we are not subjective anymore but
follow the frequentist paradigm.

q The subjectivist paradigm is also called Bayesian interpretation of probability. It enables by
design the integration of prior knowledge or human expertise about alternative mechanisms
one of which generated D. [Wikipedia: Bayesian interpretation, probability interpretations]
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