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Examples of Learning Tasks
(1) Car Shopping Guide

?

What criteria form the basis of a decision?
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Examples of Learning Tasks
(2) Risk Analysis for Credit Approval

Customer 1
house owner yes
income (p.a.) 51 000 EUR
repayment (p.m.) 1 000 EUR
credit period 7 years
SCHUFA entry no
age 37
married yes
. . .

. . .

Customer n
house owner no
income (p.a.) 55 000 EUR
repayment (p.m.) 1 200 EUR
credit period 8 years
SCHUFA entry no
age ?
married yes
. . .
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Examples of Learning Tasks
(2) Risk Analysis for Credit Approval

Customer 1
house owner yes
income (p.a.) 51 000 EUR
repayment (p.m.) 1 000 EUR
credit period 7 years
SCHUFA entry no
age 37
married yes
. . .

. . .

Customer n
house owner no
income (p.a.) 55 000 EUR
repayment (p.m.) 1 200 EUR
credit period 8 years
SCHUFA entry no
age ?
married yes
. . .

Learned rules:

IF ( income>40000 AND credit_period<3 ) OR house_owner=yes
THEN credit_approval=yes

IF SCHUFA_entry=yes OR ( income<20000 AND repayment>800 )
THEN credit_approval=no

...
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Examples of Learning Tasks
(3) Image Analysis [Mitchell 1997, p.84]

[1992]

Sharp
left

Sharp
right

Straight
ahead

...

 Input retina
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Examples of Learning Tasks
(3) Image Analysis [Mitchell 1997, p.84]

[2018]

Sharp
left

Sharp
right

Straight
ahead

...

 Input retina
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Specification of Learning Tasks

Definition 1 (Machine Learning [Mitchell 1997, p.2])

A computer program is said to learn

q from experience
q with respect to some class of tasks and
q a performance measure,

if its performance at the tasks improves with the experience.
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Remarks:

q Example: chess

– task = playing chess
– performance measure = points scored in a tournament
– experience = possibility to do self play

q Example: optical character recognition

– task = isolation and classification of handwritten words in bitmaps
– performance measure = percentage of correctly classified words
– experience = collection of correctly classified, handwritten words

q In this context, the term “performance” refers to the effectiveness of the computer program to
solve the task correctly and not to its efficiency in terms of runtime.

q A data set (a corpus) with labeled examples forms a kind of “compiled experience”.

q Consider the different data sets that are developed and exploited for different learning tasks
in the Webis Group. [webis.de/data.html]
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Specification of Learning Tasks
Learning Paradigms

1. Supervised learning
Learn a function from a set of input-output-pairs. An important branch of
supervised learning is automated classification.
Example: optical character recognition

2. Unsupervised learning
Identify structures in data. Important subareas of unsupervised learning
include automated categorization (e.g., via cluster analysis), parameter
optimization (e.g., via expectation maximization), and feature extraction
(e.g., via factor analysis).
Example: intrusion detection in a network data stream

3. Reinforcement learning
Learn, adapt, or optimize a behavior strategy in order to maximize the own
benefit by interpreting feedback that is provided by the environment.
Example: development of behavior strategies in a hostile environment
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Specification of Learning Tasks
Learning Paradigms

1. Supervised learning
Learn a function from a set of input-output-pairs. An important branch of
supervised learning is automated classification.
Example: optical character recognition

2. Unsupervised learning
Identify structures in data. Important subareas of unsupervised learning
include automated categorization (e.g., via cluster analysis), parameter
optimization (e.g., via expectation maximization), and feature extraction
(e.g., via factor analysis).
Example: intrusion detection in a network data stream

3. Reinforcement learning
Learn, adapt, or optimize a behavior strategy in order to maximize the own
benefit by interpreting feedback that is provided by the environment.
Example: development of behavior strategies in a hostile environment
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Specification of Learning Tasks
(4) Example Chess: Kinds of Experience [Mitchell 1997, p.5]

1. Feedback

– direct: for each position, the best move is given.
– indirect: only the final result is given after a series of moves.
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Specification of Learning Tasks
(4) Example Chess: Kinds of Experience [Mitchell 1997, p.5]

1. Feedback

– direct: for each position, the best move is given.
– indirect: only the final result is given after a series of moves.

2. Sequence and distribution of examples

– A teacher presents important example problems along with a solution.
– The learner chooses from the examples; e.g., picks a position for which

the best move is unknown.

The selection of examples to learn from should follow the (expected)
distribution of future problem instances.
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Specification of Learning Tasks
(4) Example Chess: Kinds of Experience [Mitchell 1997, p.5]

1. Feedback

– direct: for each position, the best move is given.
– indirect: only the final result is given after a series of moves.

2. Sequence and distribution of examples

– A teacher presents important example problems along with a solution.
– The learner chooses from the examples; e.g., picks a position for which

the best move is unknown.

The selection of examples to learn from should follow the (expected)
distribution of future problem instances.

3. Relevance under a performance measure

– How far can we get with experience?
– Can we master situations in the wild?

(self play may not be enough for a human to become a grandmaster)
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Specification of Learning Tasks
(4) Example Chess: Ideal Target Function γ() [Mitchell 1997, p.7]

a) γ : Positions → Moves

b) γ : Positions → R
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Specification of Learning Tasks
(4) Example Chess: Ideal Target Function γ() [Mitchell 1997, p.7]

a) γ : Positions → Moves

b) γ : Positions → R

A recursive definition of γ(), following a kind of means-end analysis :

Let be o ∈ Positions.

1. γ(o) = 1, if o represents a final position that is won.

2. γ(o) = −1, if o represents a final position that is lost.

3. γ(o) = 0, if o represents a final position that is drawn.

4. γ(o) = γ(o∗), with γ(o∗) ∈ (−1; 1), otherwise.

o∗ denotes the best final state that can be reached if both sides play optimally.
Related: minimax strategy, α-β pruning. [Course on Search Algorithms]
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Specification of Learning Tasks
(4) Example Chess: Real World γ() → Model World y()

γ(o) → y
(
α(o)

)
≡ y(x) y() is called “model function”

α() is called “model formation function”
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Specification of Learning Tasks
(4) Example Chess: Real World γ() → Model World y()

γ(o) → y
(
α(o)

)
≡ y(x) y() is called “model function”

α() is called “model formation function”

y(x) = w0 + w1 · x1 + w2 · x2 + w3 · x3 + w4 · x4 + w5 · x5 + w6 · x6

where
x1, 2 = number of black / white pawns in position o
x3, 4 = number of black / white pieces in position o
x5, 6 = number of black / white pieces attacked in position o

D = {(x1, y1), . . . , (xn, yn)}, a multiset of positions xi with scores yi, yi ∈ [−1; 1].
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Specification of Learning Tasks
(4) Example Chess: Real World γ() → Model World y()

γ(o) → y
(
α(o)

)
≡ y(x) y() is called “model function”

α() is called “model formation function”

y(x) = w0 + w1 · x1 + w2 · x2 + w3 · x3 + w4 · x4 + w5 · x5 + w6 · x6

where
x1, 2 = number of black / white pawns in position o
x3, 4 = number of black / white pieces in position o
x5, 6 = number of black / white pieces attacked in position o

D = {(x1, y1), . . . , (xn, yn)}, a multiset of positions xi with scores yi, yi ∈ [−1; 1].

Other approaches to specify a model function:

q case base
q set of rules
q neural network
q higher order polynomial of board features
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Remarks:

q γ : O → R, o 7→ γ(o), is called ideal target function. The ideal target function interprets the
real world, say, a real-world object o, to “compute” γ(o). This “computation” can be done by a
human or by some other, even arcane mechanism of the real world.

q To simulate the interesting aspects of the real world by means of a computer, we consider a
model world. This model world is restricted to particular and typically easily measurable
features x, which are derived from o, with x = α(o). In the model world, y(x) is the abstracted
and formalized counterpart of γ(o).

q y : X→ R, x 7→ y(x), is called model function or model. The choice and computation of a
suitable model function is a central aspect in the field of machine learning.

q α : O → X, o 7→ α(o), is called model formation function. The development of a suitable
model formation function is often not treated as part of machine learning but “outsourced” to
respective domain experts. However, tackling advanced learning tasks such as autonomous
driving, automated debating, or playing chess requires a tight cooperation among the
developers of α() and y().

q The difference between an ideal target function γ() and a model function y() lies in the
complexity and the representation of their respective domains. Examples:

– A chess grandmaster assesses a position o in its entirety, both intuitively and
analytically; a chess program is restricted to particular features x, x = α(o).

– A human mushroom picker assesses a mushroom o with all her skills (intuitively,
analytically, by tickled senses); a classification program is restricted to a few surface
features x, x = α(o).
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Remarks: (continued)

q For automated chess playing a real-valued assessment is needed; such kind of tasks form
regression problems. If only a small set of values, here denoted as C, are to be considered
(e.g., school grades), we are given a classification problem. A regression problem can be
transformed into a classification problem by domain discretization.

q Regression problems and classification problems differ in the way how an achieved accuracy
or goodness of fit is assessed. For regression problems the sum of the squared residuals,
RSS, may be a sensible criterion; for classification problems the number of misclassified
examples is more relevant. Keywords: regression loss versus classification loss

q For classification problems, the ideal target function, γ : O → C, is also called ideal classifier;
analogously, the model function, y : X→ C, is called classifier.

q Decision problems are classification problems with two classes.

q The halting problem for Turing machines is an undecidable classification problem.
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Specification of Learning Tasks [model world]

Real World→ Model World

Setting of the real world:

q O is a set of objects. (example: emails)

q C is a set of classes. (example: spam versus ham)

q γ : O → C is the ideal classifier. (γ() is operationalized by a human expert)

Classification task:

q Given some o ∈ O, determine its class γ(o) ∈ C. (example: is an email spam?)
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Specification of Learning Tasks [model world]

Real World→ Model World

Setting of the real world:

q O is a set of objects. (example: emails)

q C is a set of classes. (example: spam versus ham)

q γ : O → C is the ideal classifier. (γ() is operationalized by a human expert)

Classification task:

q Given some o ∈ O, determine its class γ(o) ∈ C. (example: is an email spam?)

Acquisition of classification knowledge D :

1. Collect real-world examples of the form (o, γ(o)), o ∈ O.

2. Abstract the objects towards feature vectors x ∈ X, where x := α(o).

3. Form examples as (x, c), where x = α(o) and c := γ(o).
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Specification of Learning Tasks [real world]

Real World→ Model World (continued)

Setting of the model world:

q X is a multiset of feature vectors. (example: word frequency vectors)

q C is a set of classes. (as before: spam versus ham)

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit D using a suited model function y().
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Specification of Learning Tasks [real world]

Real World→ Model World (continued)

Setting of the model world:

q X is a multiset of feature vectors. (example: word frequency vectors)

q C is a set of classes. (as before: spam versus ham)

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit D using a suited model function y().

Machine learning:

1. Formulate a model function y : X→ C, x 7→ y(x) (y() needs to be fitted)

2. Apply statistics, theory, and algorithms from the field of machine learning to
maximize the goodness of fit between (x, c) and (x, y(x)), (x, c) ∈ D.
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Specification of Learning Tasks
Real World→ Model World (continued)

Objects

O
Classesγ(o)

C

Semantics:

γ(o) Ideal classifier (a human) for real-world objects.
α(o) Model formation function.
y(x) Classifier (model function) to be learned.

ML:I-37 Introduction © STEIN/LETTMANN 2023



Specification of Learning Tasks
Real World→ Model World (continued)

Objects

O
Classesγ(o)

C

X
Feature space

α(o)

Semantics:

γ(o) Ideal classifier (a human) for real-world objects.
α(o) Model formation function.
y(x) Classifier (model function) to be learned.
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Specification of Learning Tasks
Real World→ Model World (continued)

Objects

O
Classesγ(o)

C

X
Feature space

α(o)
y(x)

Semantics:

γ(o) Ideal classifier (a human) for real-world objects.
α(o) Model formation function.
y(x) Classifier (model function) to be learned.
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Remarks:

q Feature vectors x1,x2, . . ., are abstractions of (or “proxies” for) real-world objects o1, o2, . . ..

While the real-world objects can be considered as unique, the feature vectors are typically
not, as similar objects can be mapped onto the same feature vector. The set X thus actually
is a multiset, comprised of feature vectors resulting from the analysis of a sequence of
unique real-world objects.

q To be distinguished from the multiset X of feature vectors is the space X, which is the
Cartesian product of the domains of the different features (dimensions) of a feature vector x.

In the chess example, X is the N6, and, in the upcoming regression settings, X is the Rp.

q X is called input space, feature space, feature domain, domain, or similar. The
:::::::::::
structure

:::
of

::::
the

::::::::::
feature

::::::::
space (consider a pre-Hilbert space, a σ-algebra, or even no structure) is an

important determinant of the learning problem.

q Heads-up: Actually, we will distinguish between the two terms input space and feature space
(used synonymously in the item before) if an explicit feature transformation step is done such
as

:::::::
basis

:::::::::::::
expansion (regression),

::::::::::::
multilayer

:::::::::::::::
perceptron

:::::::::::::::
processing (neural networks), or

non-linear kernelization (support vector machines).
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Remarks (continued) :

q The model formation function α() determines the level of abstraction between o and x,
x = α(o). This means that α() determines the representation fidelity, exactness, quality, or
simplification.

A suitable “representation” x for an object o can also be algorithmically computed, with
embedding approaches for example. Keyword: representation learning

q The value c in an example (x, c), (x, c) ∈ D, is termed “target value”, “ground truth”, or
“observation” (for x and the underlying classification problem). Observe that these terms are
justified by the fact that c := γ(o).

q Note that, in the chess example, γ() defines the scores yi ∈ R only for three types of
positions (won, lost, drawn); γ() is unknown for all positions o that fall under Point (4) of the
recursive definition. This means that for most chess positions o, we cannot provide the
ground truth γ(o), say, we can neither give a statement whether o leads to a final position that
is won or lost if both sides play optimally nor provide the next optimum move.
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Specification of Learning Tasks
The LMS Algorithm for Fitting y(x) [algorithms: LMS,

::::::
BGDσ,

::::::
BGD,

::::
IGD,

:::
PT ]

Algorithm: LMS Least Mean Squares.
Input: D Training examples (x, c) with x ∈ Rp and target class c.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

LMS(D, η)

1. initialize_random_weights((w0, w1, . . . , wp)), t = 0

2. REPEAT

3. t = t+ 1

4. (x, c) = random_select(D)

5. y(x) = w0 + w1 · x1 + . . .+ wp · xp
(?)
= wTx

6. δ = c− y(x)

7. ∆w
(?)
= η · δ · x // −δ · x is the derivative of loss l2(c, y(x)) wrt.w.

8. w = w + ∆w

9. UNTIL(convergence(D, y(), t))

10. return((w0, w1, . . . , wp))
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Specification of Learning Tasks
The LMS Algorithm for Fitting y(x) [algorithms: LMS,

::::::
BGDσ,

::::::
BGD,

::::
IGD,

:::
PT ]

Algorithm: LMS Least Mean Squares.
Input: D Training examples (x, c) with x ∈ Rp and target class c.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

LMS(D, η)

1. initialize_random_weights((w0, w1, . . . , wp)), t = 0

2. REPEAT

3. t = t+ 1

4. (x, c) = random_select(D)

5. y(x) = w0 + w1 · x1 + . . .+ wp · xp
(?)
= wTx

6. δ = c− y(x)

7. ∆w
(?)
= η · δ · x // −δ · x is the derivative of loss l2(c, y(x)) wrt.w.

8. w = w + ∆w

9. UNTIL(convergence(D, y(), t))

10. return((w0, w1, . . . , wp))

Model function evaluation.

Calculation of residual.

Calculation of derivative of the loss.

Parameter vector update =̂ one gradient step down.
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Remarks:

q A hypothesis is a proposed explanation for a phenomenon. [Wikipedia]

Here, a hypothesis “explains” (= fits) the data D. Hence, a concrete model function y(), y(),
or, if the function type is clear from the context, its parameters w or θ are called “hypothesis”.
The variable name h (similarly: h1, h2, hi, h′, etc.) may be used to refer to a specific instance
of a model function or its parameters.

(?) We consider the feature vector x in its extended form when used as operand in a scalar
product with the weight vector, wTx, and consequently, when noted as argument of the
model function, y(x). I.e., x = (1, x1, . . . , xp)

T ∈ Rp+1, and x0 = 1.

q Line 7: The derivative of the pointwise squared loss l2(c, y(x)) is used to update the weight
vector. See section

:::::::::::
Gradient

::::::::::::
Descent

:::
in

::::::::
Detail of part Neural Networks for a derivation of the

update term.

q Line 9: The function convergence() can analyze the global loss quantified as sum of squared
residuals (RSS),

∑
(x,c)∈D (c− y(x))2, or the norm of the loss gradient, ||∇RSS ||, and

compare it to a small positive bound ε. Consider in this regard the vectors of observed and
computed classes, D|c and y(D|x) respectively. In addition, the function may check via t an
upper bound on the number of iterations.
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Remarks (continued):

q The LMS algorithm approximates the solution of a least squares problem. It is a
specialization of the SGD algorithm (stochastic gradient descent)—more specifically, an SGD
that uses a squared loss (cost) function.

The SGD algorithm, in turn, is a stochastic approximation of gradient descent optimization; it
replaces the true gradient (calculated from the entire data set) by an estimate thereof
(calculated from a randomly selected subset of the data).

q The LMS algorithm is hence very similar to the
:::::
IGD

:::::::::::::
algorithm (incremental gradient descent)

equipped with a squared loss (cost) function. They differ in their selection of examples:

[LMS] Line 4: (x, c) = random_select(D)

[
::::
IGD] Line 4: FOREACH (x, c) ∈ D DO

The IGD algorithm approximates the global direction of steepest loss descent as used by the
::::::
BGD

:::::::::::::
algorithm (batch gradient descent), for which more rigorous statements on convergence

are possible.

q The LMS algorithm was proposed in 1959 by Bernard Widrow and Ted Hoff.
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