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Advanced MLPs
:::::::
Loss

:::::::::::::::
Function: Cross-Entropy

Definition 2 (Cross-Entropy)

Let C be a random variable with distribution P and a finite number of realizations C.
Let Q be another distribution of C. Then, the cross-entropy of distribution Q relative
to the distribution P , denoted as H(P,Q), is defined as follows:

H(P,Q) = −
∑
c∈C

P (C=c) · log
(
Q(C=c)

)
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Advanced MLPs
:::::::
Loss

:::::::::::::::
Function: Cross-Entropy

Definition 2 (Cross-Entropy)

Let C be a random variable with distribution P and a finite number of realizations C.
Let Q be another distribution of C. Then, the cross-entropy of distribution Q relative
to the distribution P , denoted as H(P,Q), is defined as follows:

H(P,Q) = −
∑
c∈C

P (C=c) · log
(
Q(C=c)

)

q The cross-entropy H(P,Q) is the average number of total bits to represent an
event C=c under the distribution Q instead of under the distribution P .

q The relative entropy, also called Kullback-Leibler divergence, DKL(P || Q), is
the average number of additional bits to represent an event under Q instead
of under P .
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Remarks (cross-entropy, Kullback-Leibler divergence) :

q Cross-entropy = (self-)entropy + Kullback-Leibler divergence

H(p, q) = H(p) +DKL(p || q)

q Notation. The argument(s) of H() and DKL() vary in different definitions.

We use large letters to denote probability distributions (probability measures), whose
arguments in turn are events. For instance, Q(C=c) denotes the probability of the event C=c,
with random variable C and realization c; q(c) denotes the related probability mass function.
Both notations can be used interchangeably. See section

::::::::::::::
Evaluating

:::::::::::::::::
Effectiveness in part

Machine Learning Basics.

It is also common to use the random variable as argument of the entropy, i.e., C in our
example. Hence, one will find the expressions H(Q), H(q), and H(C) all of which denoting
the same entropy.
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Advanced MLPs
Output Normalization: Softmax [Wikipedia]

Definition 3 (Softmax)

The softmax function σ∆ : Rk → ∆k−1, ∆k−1 ⊂ Rk, generalizes the logistic (sigmoid)
function to k dimensions or k exclusive classes:

σ∆(z)|i =
ezi∑k
j=1 e

zj
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Output Normalization: Softmax [Wikipedia]
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Output Normalization: Softmax [Wikipedia]

Definition 3 (Softmax)
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c is one-hot encoded,
i.e., c∣i  ∈ {0, 1}.

-Σ   c∣i · log(ú∆(z)∣i)i=1
k

[interpretation]
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Remarks (softmax) :

q The standard k−1-simplex, denoted as ∆k−1, contains all k-tuples with non-negative
elements that sum to 1:

∆k−1 =
{

(p1, . . . , pk) ∈ Rk :
∑k

i=1 pi = 1 and pi ≥ 0 for all i
}

q The softmax function ensures
::::::::
Axiom

:
I
::::::::::::::
(positivity)

::::::
and

::::::::
Axiom

:::
II

:::::::::::::
(unitarity) of Kolmogorov.

q Note that the softmax operation increases the (relative) distances between the maximum
value and all other values, forcing a clear class decision. Hence a softmax normalization is
not suitable for multi-label classification where multiple nonexclusive labels may be assigned
to an instance.

q If not stated otherwise, log means log 2.

q |i ( in c|i as well as in σ∆(z)|i ) denotes the projection operator, which returns the ith vector
component (dimension) of c, c = (c1, . . . , ck), or of σ∆(z).
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Advanced MLPs
Relation to Logistic Regression

For two classes (k = 2), the scalar sigmoid output
:::::::
σ(z), determines both class

probabilities for x:

q
:::::::::::
p(1 | x) := σ(z)

q p(0 | x) := 1− σ(z)

The variable z is the dot product of the final layer’s weights with the previous layer’s
output; for networks with one active layer z = wTx, for d active layers z = wT

d yhd−1.

1
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Advanced MLPs
Relation to Logistic Regression

For two classes (k = 2), the scalar sigmoid output
:::::::
σ(z), determines both class

probabilities for x:

q
:::::::::::
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p(1|x8)= 0.8

p (0|x4) = 1-p (1|x4) = 0.95
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Remarks (softmax and logistic regression) :

q Compare (a) a single sigmoid output, which is interpreted as class 1 probability, and (b) two
sigmoid outputs, which are normalized via softmax and interpreted as class 1 and class 2
probabilities.

q The single output in the two-class setting, the class 1 probability σ(z), z = wTx, can be
rewritten as softmax vector that comprises both class probabilities:

x →
 σ(z)

1−σ(z)

 =:

=:

p(1 | x)

p(0 | x)

 =

 σ(z)

σ(−z)


z = z1−z2y

=

 1
1+ez2−z1

1
1+ez1−z2


expand by ez1 , ez2y

=

 ez1

ez1+ez2

ez2

ez2+ez1

 = σ∆(
(
z1

z2

)
) =:

p(1 | x)

p(0 | x)


The transformation shows the correspondence of the (a) logistic regression classifier and
(b) a k-class architecture with k = 2 that is normalized with the softmax function.
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Advanced MLPs
Cross-Entropy in Classification Settings [logistic loss:

::::::::::
definition,

:::::::::::
derivation]

The following expressions are per example (x, c) ∈ D and compute the same
quantity: the point-wise cross-entropy loss.

H(P,Q) = −
∑
c∈C

P (C=c) · log
(
Q(C=c)

)
q Random variable C denotes a class.
q Realizations of C: C = {c1, . . . , ck}.
q P,Q define distributions of C.

H(p, q) = −
∑
c∈C

p(c) · log
(
q(c)

)
q Probability functions p, q related to P,Q.
q Class labels C = {c1, . . . , ck}.
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Cross-Entropy in Classification Settings [logistic loss:

::::::::::
definition,

:::::::::::
derivation]

The following expressions are per example (x, c) ∈ D and compute the same
quantity: the point-wise cross-entropy loss.

H(P,Q) = −
∑
c∈C

P (C=c) · log
(
Q(C=c)

)
q Random variable C denotes a class.
q Realizations of C: C = {c1, . . . , ck}.
q P,Q define distributions of C.

H(p, q) = −
∑
c∈C

p(c) · log
(
q(c)

)
q Probability functions p, q related to P,Q.
q Class labels C = {c1, . . . , ck}.

lσ∆
(c,y(x)) = −

k∑
i=1

c|i · log
(
σ∆(z)|i

)
q k classes, one-hot encoded as cT ,

cT ∈ {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.
q Example with ground truth (x, c) ∈ D.
q Classifier output y(x) = σ∆(z), z = yhd.
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Advanced MLPs
Cross-Entropy in Classification Settings [logistic loss:

::::::::::
definition,

:::::::::::
derivation]

The following expressions are per example (x, c) ∈ D and compute the same
quantity: the point-wise cross-entropy loss.

H(P,Q) = −
∑
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P (C=c) · log
(
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)
q Random variable C denotes a class.
q Realizations of C: C = {c1, . . . , ck}.
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∑
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p(c) · log
(
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)
q Probability functions p, q related to P,Q.
q Class labels C = {c1, . . . , ck}.

lσ∆
(c,y(x)) = −

k∑
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c|i · log
(
σ∆(z)|i

)
q k classes, one-hot encoded as cT ,

cT ∈ {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.
q Example with ground truth (x, c) ∈ D.
q Classifier output y(x) = σ∆(z), z = yhd.

::::::::::::::
lσ(c, y(x)) = −c·log

(
σ(z)

)
−(1−c)·log

(
1−σ(z)

)
q 2 classes encoded as c, c ∈ {0, 1}.
q Example with ground truth (x, c) ∈ D.
q Classifier output y(x) = σ(z), z = wTx.
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Remarks (cross-entropy for classification) :

q In logistic regression, we derived the
:::::::::
logistic

::::::
loss (function) under the probabilistic framework

of maximum likelihood estimation; in the
::::::::::::
derivation, the log likelihood function is inverted and

becomes the negative log likelihood function (see Hint (3)).

Synonyms for the logistic loss function are logarithmic loss, log loss, and negative log
likelihood.

q Cross-entropy is not logistic loss, but both functions calculate the same quantity when used
as loss functions for classification problems.

Note that c (in the two-class setting) or c|i (in the general case) is either 0 or 1, which can be
interpreted as occurrence probability of the respective class (if no label noise is given); a
similar argument applies to the functions σ(z) and the elements of σ∆(z), which are
interpreted as class probabilities as well.

Under this interpretation, the logistic loss can be rewritten as cross-entropy (and vice versa):

lσ(c, y(x))
::::::::::::

= lσ(c, σ(z)) = −c · log(σ(z))− (1−c) · log(1−σ(z))

= −(c · log(σ(z)) + (1−c) · log(1−σ(z)))

= −(p(c1) · log(q(c1)) + p(c2) · log(q(c2)))

= −∑c∈C p(c) · log(q(c)) = H(p, q)

Hence, the cross-entropy loss in the MLP illustration can be (and is here) noted as logistic
loss.
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Advanced MLPs
Activation Function: Rectified Linear Unit (ReLU)

; BOARD

ML:IV-148 Neural Networks © STEIN/VÖLSKE 2024



Advanced MLPs
Regularization: Dropout

; BOARD
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Advanced MLPs
Learning Rate Adaptation: Momentum

Momentum principle: a weight adaptation in iteration t considers the adaptation in
iteration t−1 :

∆W o(t) = η · (δo ⊗ yh(x)|
1,...,l

) + α · ∆W o(t−1)

∆W h(t) = η · (δh ⊗ x) + α · ∆W h(t−1)

∆W hs(t) = η · (δhs ⊗ yhs−1(x)|
1,...,ls−1

) + α · ∆W hs(t−1), s = d, d−1, . . . , 2

∆W h1(t) = η · (δh1 ⊗ x) + α · ∆W h1(t−1)

The term α, 0 ≤ α < 1, is called “momentum”.
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Advanced MLPs
Learning Rate Adaptation: Momentum

Momentum principle: a weight adaptation in iteration t considers the adaptation in
iteration t−1 :

∆W o(t) = η · (δo ⊗ yh(x)|
1,...,l

) + α · ∆W o(t−1)

∆W h(t) = η · (δh ⊗ x) + α · ∆W h(t−1)

∆W hs(t) = η · (δhs ⊗ yhs−1(x)|
1,...,ls−1

) + α · ∆W hs(t−1), s = d, d−1, . . . , 2

∆W h1(t) = η · (δh1 ⊗ x) + α · ∆W h1(t−1)

The term α, 0 ≤ α < 1, is called “momentum”.

Effects:

q Due the “adaptation inertia” local minima can be overcome.

q If the direction of the descent does not change, the adaptation increment and,
as a consequence, the speed of convergence is increased.
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Remarks:

q
:::::::::
Recap. The symbol »⊗« denotes the dyadic product, also called outer product or tensor
product. The dyadic product takes two vectors and returns a second order tensor, called a
dyadic in this context: v ⊗w ≡ vwT . [Wikipedia]
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q Advanced MLPs
q Automatic Gradient Computation
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Automatic Gradient Computation
The IGD Algorithm

Algorithm: IGDMLP∗ IGD for the d-layer MLP with arbitrary model and objective functions.
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {0, 1}k.

η, l(), R(), λ Learning rate, loss and regularization functions and parameters.
Output: W h1, . . . ,W hd Weight matrices of the d layers. (= hypothesis)

1. FOR s = 1 TO d DO initialize_random_weights(W hs) ENDDO, t = 0

2. REPEAT

3. t = t+ 1

4. FOREACH (x, c) ∈ D DO

5. yh1(x) =
(

1
tanh(W h1 x)

)
// forward propagation; x is extended by x0 = 1

FOR s = 2 TO d−1 DO yhs(x) =
( 1
ReLU(W hs yhs−1(x))

)
ENDDO

y(x) = σ∆(W hd yhd−1(x))

6. δ = c− y(x)

7a. l(w) = l(δ) + λ
nR(w) // backpropagation (Steps 7a+7b)

∇l(w) = autodiff(l(),w)

7b. FOR s = 1 TO d DO ∆W hs = η · ∇hsl(w) ENDDO

8. FOR s = 1 TO d DO W hs = W hs + ∆W hs ENDDO

9. ENDDO

10. UNTIL(convergence(D,y( · ), t))
11. return(W h1, . . . ,W hd)
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Automatic Gradient Computation
The IGD Algorithm

Algorithm: IGDMLP∗ IGD for the d-layer MLP with arbitrary model and objective functions.
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {0, 1}k.

η, l(), R(), λ Learning rate, loss and regularization functions and parameters.
Output: W h1, . . . ,W hd Weight matrices of the d layers. (= hypothesis)

1. FOR s = 1 TO d DO initialize_random_weights(W hs) ENDDO, t = 0

2. REPEAT

3. t = t+ 1

4. FOREACH (x, c) ∈ D DO

5. yh1(x) =
(

1
tanh(W h1 x)

)
// forward propagation; x is extended by x0 = 1

FOR s = 2 TO d−1 DO yhs(x) =
( 1
ReLU(W hs yhs−1(x))

)
ENDDO

y(x) = σ∆(W hd yhd−1(x))

6. δ = c− y(x)

7a. l(w) = l(δ) + λ
nR(w) // backpropagation (Steps 7a+7b)

∇l(w) = autodiff(l(),w)

7b. FOR s = 1 TO d DO ∆W hs = η · ∇hsl(w) ENDDO

8. FOR s = 1 TO d DO W hs = W hs + ∆W hs ENDDO

9. ENDDO

10. UNTIL(convergence(D,y( · ), t))
11. return(W h1, . . . ,W hd)

Model function evaluation.

Calculation of residual vector.

Calculation of derivative of the loss.

Parameter vector update =̂ one gradient step down.
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Automatic Gradient Computation
Reverse-Mode Automatic Differentiation in Computational Graphs

Reverse-mode AD corresponds to a generalized backpropagation algorithm.

Let L(w1, . . . , wp) be the function to be differentiated.

q Consider L as a computational graph of elementary operations, assigning
each intermediate result to a variable vi with −p ≤ i ≤ m

(naming convention: v−p...0 for inputs, v1...m−1 for intermediate variables,
vm ≡ L for the output)

L(w)

v-p

v0

vm

w0

wp

.

.

. ...
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Automatic Gradient Computation
Reverse-Mode Automatic Differentiation in Computational Graphs (continued)

For each intermediate variable vi, an adjoint value ∇viL ≡ ∂L
∂vi

is computed based on
its descendants in the computation graph.

L(w)vm

...

...

L(w)

vj

vk

...vi

L(w)

vi

vj

vk

(1)

(2)

(3)

∇vmL ≡ ∂L
∂vm

=
∂vm
∂vm

= 1

∇viL ≡ ∂L
∂vi

=
∂L
∂vk
· ∂vk
∂vi

= ∇vkL · ∂vk
∂vi

∇vjL ≡ ∂L
∂vj

=
∂L
∂vk
· ∂vk
∂vj

= ∇vkL · ∂vk
∂vj

∇viL = ∇vjL · ∂vj
∂vi

+∇vkL · ∂vk
∂vi
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Remarks:

q Adjoints are computed in reverse, starting from ∇vmL.

q For any step vj = g(. . . , vi, . . .) in the graph, the local gradients ∂g
∂vi

must be computable.
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Automatic Gradient Computation
Autodiff Example: Setting

Consider the RSS loss for a simple logistic regression model and a very small
dataset.

Dataset: D = {((1, 1.5)T, 0), ((1.5,−1)T, 1)}

Model function: y(x) = σ(wTx)

Loss function: L(w) = L2(w) =
∑

(x,c)∈D (c− y(x))2

L(w) is the objective function to be minimized, and hence what we want to compute
the derivative of; everything except w is held constant.

Given the setting above, we can rewrite L as:
L(w) = (c1 − σ(wTx1))2 + (c2 − σ(wTx2))2

= (−σ(w0 + w1 + 1.5w2))2 + (1− σ(w0 + 1.5w1 − w2))2

Using reverse-mode automatic differentiation, we’ll simultaneously evaluate the loss
and its derivative at w = (−1, 1.5, 0.5)T .
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Automatic Gradient Computation
Autodiff Example: Computational Graph

L(w) =

v7︷ ︸︸ ︷
(−

v3︷ ︸︸ ︷
σ(w0 + w1 + 1.5w2︸ ︷︷ ︸

v1

)︸ ︷︷ ︸
v5

)2 +

v8︷ ︸︸ ︷
(1−

v4︷ ︸︸ ︷
σ(w0 + 1.5w1 − w2︸ ︷︷ ︸

v2

)︸ ︷︷ ︸
v6

)2

︸ ︷︷ ︸
v9

L2(w)

v-2

v-1

v0

v6v4v2

v7v5v3v1

v8

v9w1

w0

w2

wTx σ(...) c - ... (...)2 Σ ...
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Automatic Gradient Computation
Autodiff Example: Forward and Reverse Trace

L(w) =

v7︷ ︸︸ ︷
(−

v3︷ ︸︸ ︷
σ(w0 + w1 + 1.5w2︸ ︷︷ ︸

v1

)︸ ︷︷ ︸
v5

)2 +

v8︷ ︸︸ ︷
(1−

v4︷ ︸︸ ︷
σ(w0 + 1.5w1 − w2︸ ︷︷ ︸

v2

)︸ ︷︷ ︸
v6

)2

︸ ︷︷ ︸
v9

at w = (−1, 1.5, 0.5)T

Forward primal trace Reverse adjoint trace
v0 = w0 = −1 ∇w0L = ∂L

∂w0
= ∇v0L = 0.13

v−1 = w1 = 1.5 ∇w1L = ∂L
∂w1

= ∇v−1L = 0.06

v−2 = w2 = 0.5 ∇w2L = ∂L
∂w2

= ∇v−2L = 0.54

v1 = v0 + v−1 + 1.5 · v−2 = 1.25 ∇v−2L = ∇v−2L+∇v1L · 1.5 = 0.54
∇v−1L = ∇v−1L+∇v1L = 0.06
∇v0L = ∇v0L+∇v1L = 0.13

v2 = v0 + 1.5 · v−1 − v−2 = 0.75 ∇v−2L = ∇v2L · (−1) = 0.14
∇v−1L = ∇v2L · 1.5 = −0.28
∇v0L = ∇v2L = −0.14

v3 = σ(v1) = 0.78 ∇v1L = ∇v3L · σ(v1) · (1− σ(v1)) = 0.27
v4 = σ(v2) = 0.68 ∇v2L = ∇v4L · σ(v2) · (1− σ(v2)) = −0.14
v5 = 0− v3 = −0.78 ∇v3L = ∇v5L · (−1) = 1.55
v6 = 1− v4 = 0.32 ∇v4L = ∇v6L · (−1) = −0.64
v7 = v25 = 0.61 ∇v5L = ∇v7L · ∂v7

∂v5
= ∇v7L · 2v5 = −1.55

v8 = v26 = 0.1 ∇v6L = ∇v8L · ∂v8
∂v6

= ∇v8L · 2v6 = 0.64

v9 = v7 + v8 = 0.71 ∇v8L = ∇v9L · ∂v9
∂v8

= 1 · 1 = 1

∇v7L = ∇v9L · ∂v9
∂v7

= 1 · 1 = 1

L = v9 = 0.71 ∇v9L = ∂L
∂v9

= 1
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Automatic Gradient Computation
Autodiff Example: Forward and Reverse Trace
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∇v−1L = ∇v−1L+∇v1L = 0.06
∇v0L = ∇v0L+∇v1L = 0.13

v2 = v0 + 1.5 · v−1 − v−2 = 0.75 ∇v−2L = ∇v2L · (−1) = 0.14
∇v−1L = ∇v2L · 1.5 = −0.28
∇v0L = ∇v2L = −0.14

v3 = σ(v1) = 0.78 ∇v1L = ∇v3L · σ(v1) · (1− σ(v1)) = 0.27
v4 = σ(v2) = 0.68 ∇v2L = ∇v4L · σ(v2) · (1− σ(v2)) = −0.14
v5 = 0− v3 = −0.78 ∇v3L = ∇v5L · (−1) = 1.55
v6 = 1− v4 = 0.32 ∇v4L = ∇v6L · (−1) = −0.64
v7 = v25 = 0.61 ∇v5L = ∇v7L · ∂v7

∂v5
= ∇v7L · 2v5 = −1.55

v8 = v26 = 0.1 ∇v6L = ∇v8L · ∂v8
∂v6

= ∇v8L · 2v6 = 0.64

v9 = v7 + v8 = 0.71 ∇v8L = ∇v9L · ∂v9
∂v8

= 1 · 1 = 1

∇v7L = ∇v9L · ∂v9
∂v7

= 1 · 1 = 1

L = v9 = 0.71 ∇v9L = ∂L
∂v9

= 1
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Automatic Gradient Computation
Autodiff Example: Forward and Reverse Trace
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Automatic Gradient Computation
Autodiff Example: Forward and Reverse Trace
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= 1 · 1 = 1

∇v7L = ∇v9L · ∂v9
∂v7
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∂v9

= 1
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Automatic Gradient Computation
Autodiff Example: Forward and Reverse Trace

L(w) =

v7︷ ︸︸ ︷
(−

v3︷ ︸︸ ︷
σ(w0 + w1 + 1.5w2︸ ︷︷ ︸

v1

)︸ ︷︷ ︸
v5

)2 +

v8︷ ︸︸ ︷
(1−

v4︷ ︸︸ ︷
σ(w0 + 1.5w1 − w2︸ ︷︷ ︸

v2

)︸ ︷︷ ︸
v6

)2

︸ ︷︷ ︸
v9

at w = (−1, 1.5, 0.5)T

Forward primal trace Reverse adjoint trace
v0 = w0 = −1 ∇w0L = ∂L

∂w0
= ∇v0L = 0.13

v−1 = w1 = 1.5 ∇w1L = ∂L
∂w1

= ∇v−1L = 0.06

v−2 = w2 = 0.5 ∇w2L = ∂L
∂w2

= ∇v−2L = 0.54

v1 = v0 + v−1 + 1.5 · v−2 = 1.25 ∇v−2L = ∇v−2L+∇v1L · 1.5 = 0.54
∇v−1L = ∇v−1L+∇v1L = 0.06
∇v0L = ∇v0L+∇v1L = 0.13

v2 = v0 + 1.5 · v−1 − v−2 = 0.75 ∇v−2L = ∇v2L · (−1) = 0.14
∇v−1L = ∇v2L · 1.5 = −0.28
∇v0L = ∇v2L = −0.14

v3 = σ(v1) = 0.78 ∇v1L = ∇v3L · σ(v1) · (1− σ(v1)) = 0.27
v4 = σ(v2) = 0.68 ∇v2L = ∇v4L · σ(v2) · (1− σ(v2)) = −0.14
v5 = 0− v3 = −0.78 ∇v3L = ∇v5L · (−1) = 1.55
v6 = 1− v4 = 0.32 ∇v4L = ∇v6L · (−1) = −0.64
v7 = v25 = 0.61 ∇v5L = ∇v7L · ∂v7

∂v5
= ∇v7L · 2v5 = −1.55

v8 = v26 = 0.1 ∇v6L = ∇v8L · ∂v8
∂v6

= ∇v8L · 2v6 = 0.64

v9 = v7 + v8 = 0.71 ∇v8L = ∇v9L · ∂v9
∂v8

= 1 · 1 = 1

∇v7L = ∇v9L · ∂v9
∂v7

= 1 · 1 = 1

L = v9 = 0.71 ∇v9L = ∂L
∂v9

= 1

ML:IV-166 Neural Networks © STEIN/VÖLSKE 2024



Automatic Gradient Computation
Autodiff Example: Forward and Reverse Trace

L(w) =

v7︷ ︸︸ ︷
(−

v3︷ ︸︸ ︷
σ(w0 + w1 + 1.5w2︸ ︷︷ ︸

v1

)︸ ︷︷ ︸
v5

)2 +

v8︷ ︸︸ ︷
(1−

v4︷ ︸︸ ︷
σ(w0 + 1.5w1 − w2︸ ︷︷ ︸

v2

)︸ ︷︷ ︸
v6

)2

︸ ︷︷ ︸
v9

at w = (−1, 1.5, 0.5)T

Forward primal trace Reverse adjoint trace
v0 = w0 = −1 ∇w0L = ∂L

∂w0
= ∇v0L = 0.13

v−1 = w1 = 1.5 ∇w1L = ∂L
∂w1

= ∇v−1L = 0.06

v−2 = w2 = 0.5 ∇w2L = ∂L
∂w2

= ∇v−2L = 0.54

v1 = v0 + v−1 + 1.5 · v−2 = 1.25 ∇v−2L = ∇v−2L+∇v1L · 1.5 = 0.54
∇v−1L = ∇v−1L+∇v1L = 0.06
∇v0L = ∇v0L+∇v1L = 0.13

v2 = v0 + 1.5 · v−1 − v−2 = 0.75 ∇v−2L = ∇v2L · (−1) = 0.14
∇v−1L = ∇v2L · 1.5 = −0.28
∇v0L = ∇v2L = −0.14

v3 = σ(v1) = 0.78 ∇v1L = ∇v3L · σ(v1) · (1− σ(v1)) = 0.27
v4 = σ(v2) = 0.68 ∇v2L = ∇v4L · σ(v2) · (1− σ(v2)) = −0.14
v5 = 0− v3 = −0.78 ∇v3L = ∇v5L · (−1) = 1.55
v6 = 1− v4 = 0.32 ∇v4L = ∇v6L · (−1) = −0.64
v7 = v25 = 0.61 ∇v5L = ∇v7L · ∂v7

∂v5
= ∇v7L · 2v5 = −1.55

v8 = v26 = 0.1 ∇v6L = ∇v8L · ∂v8
∂v6
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v9 = v7 + v8 = 0.71 ∇v8L = ∇v9L · ∂v9
∂v8

= 1 · 1 = 1

∇v7L = ∇v9L · ∂v9
∂v7

= 1 · 1 = 1

L = v9 = 0.71 ∇v9L = ∂L
∂v9
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Automatic Gradient Computation
Autodiff Example: Forward and Reverse Trace
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Remarks:

q For brevity, in the example, we assumed that the derivative ∂
∂zσ(z) = σ(z) · (1− σ(z)) is

already known. We could also have decomposed σ(z) = 1
1+exp(−z) into e.g., v1 = −z,

v2 = exp(v1), v3 = 1 + v2, v4 = 1
v3

. In this case, only the four atomic derivatives would need to
be known.

q The function to be automatically differentiated need not have a closed-form representation; it
only has to be composed of computable and differentiable atomic steps. Thus, AD can also
compute derivatives for various algorithms that may take different branches depending on the
input.
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Automatic Gradient Computation
Reverse-mode Autodiff Algorithm for Scalar-valued Functions

Algorithm: autodiff Reverse-mode automatic differentiation
Input: f : Rp → R Function to differentiate.

(w1, . . . , wp)
T Point at which the gradient should be evaluated

Output: (w̄1, . . . , w̄p)
T Gradient of f at the point (w1, . . . , wp)

T .

1. w̄i = 0 for i in 1 . . . p // initialize gradients

2. v1, . . . , vk = operands(f)

3. ∂f
∂v1
, . . . , ∂f∂vk = gradients(f) // gradient of f wrt. its immediate operands

4. FOREACH j = 1, . . . , k DO

5. IF vj ∈ {w1, . . . , wp} THEN

6. v̄j += ∂f
∂vj

7. ELSE

8. (w̄1, . . . , w̄p)
T += ∂f

∂vj
· autodiff (vj, (w1, . . . , wp)

T )

9. RETURN (w̄1, . . . , w̄p)
T
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Remarks:

q There exists also a forward mode of automatic differentiation. One key difference is in the
runtime complexity; for a function f : Rn → Rm, to compute all n ·m partial derivatives in the
Jacobian matrix requires O(n) iterations in forward mode and O(m) iterations in reverse
mode. Reverse mode is usually preferred in machine learning, where we typically have
m = 1 (a scalar loss), and n arbitrarily large (e.g., billions of parameters of a deep neural
network). See also [Baydin et al., 2018].
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