Chapter ML:IV #### IV. Neural Networks - Perceptron Learning - □ Multilayer Perceptron Basics - □ Multilayer Perceptron with Two Layers - Multilayer Perceptron at Arbitrary Depth - □ Advanced MLPs - □ Automatic Gradient Computation ML:IV-53 Neural Networks © STEIN/VÖLSKE 2024 ### **Definition 1 (Linear Separability)** Two sets of feature vectors, X_0 , X_1 , sampled from a p-dimensional feature space \mathbf{X} , are called linearly separable if p+1 real numbers, w_0, w_1, \ldots, w_p , exist such that the following conditions holds: - 1. $\forall \mathbf{x} \in X_0$: $\sum_{j=0}^p w_j x_j < 0$ - **2.** $\forall \mathbf{x} \in X_1$: $\sum_{j=0}^{p} w_j x_j \ge 0$ ML:IV-54 Neural Networks © STEIN/VÖLSKE 2024 ### **Definition 1 (Linear Separability)** Two sets of feature vectors, X_0 , X_1 , sampled from a p-dimensional feature space \mathbf{X} , are called linearly separable if p+1 real numbers, w_0, w_1, \ldots, w_p , exist such that the following conditions holds: 1. $$\forall \mathbf{x} \in X_0$$: $\sum_{j=0}^p w_j x_j < 0$ **2.** $$\forall \mathbf{x} \in X_1$$: $\sum_{j=0}^{p} w_j x_j \ge 0$ ML:IV-55 Neural Networks © STEIN/VÖLSKE 2024 Linear Separability (continued) The *XOR* function defines two sets in the \mathbb{R}^2 that are not linearly separable: | | x_1 | x_2 | XOR | c | |----------------|-------|-------|-----|---| | \mathbf{x}_1 | 0 | 0 | 0 | _ | | \mathbf{x}_2 | 1 | 0 | 1 | + | | \mathbf{x}_3 | 0 | 1 | 1 | + | | \mathbf{x}_4 | 1 | 1 | 0 | _ | ML:IV-56 Neural Networks © STEIN/VÖLSKE 2024 Linear Separability (continued) The *XOR* function defines two sets in the \mathbb{R}^2 that are not linearly separable: | | x_1 | x_2 | XOR | c | |----------------|-------|-------|-----|---| | \mathbf{x}_1 | 0 | 0 | 0 | _ | | \mathbf{x}_2 | 1 | 0 | 1 | + | | \mathbf{x}_3 | 0 | 1 | 1 | + | | \mathbf{x}_4 | 1 | 1 | 0 | _ | - → Specification of several hyperplanes. - Layered combination of several perceptrons: the multilayer perceptron. ML:IV-57 Neural Networks © STEIN/VÖLSKE 2024 ### (1) Overcoming the Linear Separability Restriction A minimum multilayer perceptron $y(\mathbf{x})$ that can handle the *XOR* problem: ML:IV-58 Neural Networks © STEIN/VÖLSKE 2024 ### (1) Overcoming the Linear Separability Restriction A minimum multilayer perceptron $y(\mathbf{x})$ that can handle the *XOR* problem: ML:IV-59 Neural Networks © STEIN/VÖLSKE 2024 ### (1) Overcoming the Linear Separability Restriction A minimum multilayer perceptron y(x) that can handle the *XOR* problem: ### (1) Overcoming the Linear Separability Restriction A minimum multilayer perceptron $y(\mathbf{x})$ that can handle the *XOR* problem: $$W^{h} = \begin{bmatrix} -0.5 & -1 & 1 \\ 0.5 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$ ### (1) Overcoming the Linear Separability Restriction A minimum multilayer perceptron $y(\mathbf{x})$ that can handle the *XOR* problem: $$W^{\mathsf{h}} = \begin{bmatrix} -0.5 & -1 & 1 \\ 0.5 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$ ML:IV-62 Neural Networks © STEIN/VÖLSKE 2024 (1) Overcoming the Linear Separability Restriction A minimum multilayer perceptron $y(\mathbf{x})$ that can handle the *XOR* problem: $$y(\mathbf{x}) = \mathit{heaviside}\left(W^{\mathsf{o}}\left(\begin{smallmatrix} 1 \\ \mathit{Heaviside}\left(W^{\mathsf{h}}\,\mathbf{x}\right) \end{smallmatrix} \right) \right)$$ $$W^{\mathsf{h}} = \begin{bmatrix} -0.5 & -1 & 1 \\ 0.5 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$ $$W^{\mathsf{o}} = \begin{bmatrix} 0.5 & 1 & -1 \end{bmatrix}$$ ML:IV-63 Neural Networks #### Remarks: - The first, second, and third layer of the shown multilayer perceptron are called input, hidden, and output layer respectively. Here, in the example, the input layer is comprised of p+1=3 units, the hidden layer contains l+1=3 units, and the output layer consists of k=1 unit. - Each input unit is connected via a weighted edge to all hidden units (except to the topmost hidden unit, which has a constant input $y_0^h = 1$), resulting in six weights, organized as 2×3 -matrix W^h . Each hidden unit is connected via a weighted edge to the output unit, resulting in three weights, organized as 1×3 -matrix W^o . - The input units perform no computation but only distribute the values x_0, x_1, x_2 to the next layer. The hidden units (again except the topmost unit) and the output unit apply the *heaviside* function to the sum of their weighted inputs and propagate the result. - The nine weights $\mathbf{w} = (w_{10}^{\mathsf{h}}, \dots, w_{22}^{\mathsf{h}}, w_1^{\mathsf{o}}, w_2^{\mathsf{o}}, w_3^{\mathsf{o}})$, organized as W^{h} and W^{o} , specify the multilayer perceptron (model function) $y(\mathbf{x})$ completely: $y(\mathbf{x}) = \textit{heaviside}(W^{\mathsf{o}} \begin{pmatrix} 1 \\ \textit{Heaviside}(W^{\mathsf{h}} \mathbf{x}) \end{pmatrix})$ - ☐ The function *Heaviside* (with capital H) denotes the extension of the scalar *heaviside* function to vectors. - For $\mathbf{z} \in \mathbf{R}^d$ the function $Heaviside(\mathbf{z})$ is defined as $(heaviside(z_1), \dots, heaviside(z_d))^T$. ML:IV-64 Neural Networks © STEIN/VÖLSKE 2024 #### Remarks (history): - □ The multilayer perceptron was presented by Rumelhart and McClelland in 1986. Earlier, but unnoticed, was a similar research work of Werbos and Parker [1974, 1982]. - Compared to a single perceptron, the multilayer perceptron poses a significantly more challenging training (= learning) problem, which requires continuous (and non-linear) threshold functions along with sophisticated learning strategies. - ☐ Marvin Minsky and Seymour Papert in 1969 used the *XOR* problem to show the limitations of single perceptrons. Moreover, they assumed that extensions of the perceptron architecture (such as the multilayer perceptron) would be similarly limited as a single perceptron. A fatal mistake. In fact, they brought the research in this field to a halt that lasted 17 years. [Berkeley] [Marvin Minsky: MIT Media Lab, Wikipedia] ML:IV-65 Neural Networks © STEIN/VÖLSKE 2024 (2) Overcoming the Non-Differentiability Restriction The sigmoid function $\sigma()$ as threshold function: $$\sigma(z) = \frac{1}{1 + e^{-z}}, \qquad \frac{d\sigma(z)}{dz} = \sigma(z) \cdot (1 - \sigma(z))$$ → A perceptron with a non-linear and differentiable threshold function: ML:IV-66 Neural Networks © STEIN/VÖLSKE 2024 (2) Overcoming the Non-Differentiability Restriction (continued) Computation of the perceptron output $y(\mathbf{x})$ with the sigmoid function $\sigma()$: $$y(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$ An alternative to the sigmoid function is the tanh() function: $$\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}} = \frac{e^{2z} - 1}{e^{2z} + 1}$$ © STEIN/VÖLSKE 2024 ML:IV-67 Neural Networks #### Remarks: - Employing a nonlinear function as threshold function in the perceptron, such as sigmoid or heaviside, is a prerequisite to synthesize complex nonlinear functions via layered composition. - Note that a single perceptron with sigmoid activation is identical with the logistic regression model function. - \Box The derivative of $\sigma()$ has a canonical form. It plays a central role for the computation of the gradient of the loss function in multilayer perceptrons. Derivation: $$\frac{d\sigma(z)}{dz} = \frac{d}{dz} \frac{1}{1+e^{-z}} = \frac{d}{dz} (1+e^{-z})^{-1}$$ $$= -1 \cdot (1+e^{-z})^{-2} \cdot e^{-z} \cdot (-1)$$ $$= \sigma(z) \cdot \sigma(z) \cdot e^{-z}$$ $$= \sigma(z) \cdot \sigma(z) \cdot (1+e^{-z}-1)$$ $$= \sigma(z) \cdot \sigma(z) \cdot (\sigma(z)^{-1}-1)$$ $$= \sigma(z) \cdot (1-\sigma(z))$$ ML:IV-68 Neural Networks © STEIN/VÖLSKE 2024 (2) Overcoming the Non-Differentiability Restriction (continued) Linear activation ML:IV-69 Neural Networks © STEIN/VÖLSKE 2024 (2) Overcoming the Non-Differentiability Restriction (continued) Linear activation Linear regression Heaviside activation Perceptron algorithm ML:IV-70 Neural Networks © STEIN/VÖLSKE 2024 (2) Overcoming the Non-Differentiability Restriction (continued) Linear activation Linear regression Heaviside activation Perceptron algorithm Sigmoid activation Logistic regression ML:IV-71 Neural Networks © STEIN/VÖLSKE 2024 (2) Overcoming the Non-Differentiability Restriction (continued) Network with linear units No decision power beyond a single hyperplane Network with heaviside units Nonlinear decision boundaries but no gradient information Network with sigmoid units Nonlinear decision boundaries and gradient information ML:IV-72 Neural Networks © STEIN/VÖLSKE 2024 #### Remarks (limitation of linear thresholds): - A multilayer perceptron with linear threshold functions can be expressed as a single linear function and hence is equivalent to the power of a single perceptron only. - \Box Consider the following exemplary composition of three linear functions as a multilayer perceptron with p input units, two hidden units, and one output unit: $y(\mathbf{x}) = W^{\mathsf{o}}[W^{\mathsf{h}}\mathbf{x}]$ The weight matrices are as follows: $$W^{\mathsf{h}} = \begin{bmatrix} w_{11}^{\mathsf{h}} & \dots & w_{1p}^{\mathsf{h}} \\ w_{21}^{\mathsf{h}} & \dots & w_{1p}^{\mathsf{h}} \end{bmatrix}, \qquad W^{\mathsf{o}} = \begin{bmatrix} w_1^{\mathsf{o}} & w_2^{\mathsf{o}} \end{bmatrix}$$ A straightforward derivation then yields: $$y(\mathbf{x}) = W^{\mathsf{o}} [W^{\mathsf{h}} \mathbf{x}] = \begin{bmatrix} w_1^{\mathsf{o}} & w_2^{\mathsf{o}} \end{bmatrix} \begin{bmatrix} w_{11}^{\mathsf{h}} x_1 + \dots + w_{1p}^{\mathsf{h}} x_p \\ w_{21}^{\mathsf{h}} x_1 + \dots + w_{1p}^{\mathsf{h}} x_p \end{bmatrix}$$ $$= w_1^{\mathsf{o}} w_{11}^{\mathsf{h}} x_1 + \dots + w_1^{\mathsf{o}} w_{1p}^{\mathsf{h}} x_p + w_2^{\mathsf{o}} w_{21}^{\mathsf{h}} x_1 + \dots + w_2^{\mathsf{o}} w_{1p}^{\mathsf{h}} x_p$$ $$= (w_1^{\mathsf{o}} w_{11}^{\mathsf{h}} +
w_2^{\mathsf{o}} w_{21}^{\mathsf{h}}) x_1 + \dots + (w_1^{\mathsf{o}} w_{1p}^{\mathsf{h}} + w_2^{\mathsf{o}} w_{1p}^{\mathsf{h}}) x_p$$ $$= w_1 x_1 + \dots + w_n x_n = \mathbf{w}^T \mathbf{x}$$ ML:IV-73 Neural Networks © STEIN/VÖLSKE 2024 **Unrestricted Classification Problems** ### Setting: - \square X is a multiset of feature vectors from an inner product space \mathbf{X} , $\mathbf{X} \subseteq \mathbf{R}^p$. - $C = \{0,1\}^k$ is the set of all multiclass labelings for k classes. - $D = \{(\mathbf{x}_1, \mathbf{c}_1), \dots, (\mathbf{x}_n, \mathbf{c}_n)\} \subseteq X \times C$ is a multiset of examples. ### Learning task: floor Fit D using a multilayer perceptron f y() with a sigmoid activation function. ML:IV-74 Neural Networks © STEIN/VÖLSKE 2024 ### Unrestricted Classification Problems: Illustration #### Two-class classification problem: ### Separated classes: ML:IV-75 Neural Networks © STEIN/VÖLSKE 2024 ### Unrestricted Classification Problems: Illustration Two-class classification problem: #### Separated classes: ML:IV-76 Neural Networks © STEIN/VÖLSKE 2024 # **Chapter ML:IV** #### IV. Neural Networks - Perceptron Learning - □ Multilayer Perceptron Basics - □ Multilayer Perceptron with Two Layers - Multilayer Perceptron at Arbitrary Depth - □ Advanced MLPs - Automatic Gradient Computation ML:IV-77 Neural Networks © STEIN/VÖLSKE 2024 ### **Network Architecture** ### A single perceptron $y(\mathbf{x})$: ML:IV-78 Neural Networks © STEIN/VÖLSKE 2024 #### **Network Architecture** Multilayer perceptron y(x) with a hidden layer and k-dimensional output layer: ML:IV-79 Neural Networks © STEIN/VÖLSKE 2024 ### **Network Architecture** Multilayer perceptron y(x) with a hidden layer and k-dimensional output layer: ML:IV-80 Neural Networks © STEIN/VÖLSKE 2024 #### **Network Architecture** Multilayer perceptron y(x) with a hidden layer and k-dimensional output layer: ML:IV-81 Neural Networks © STEIN/VÖLSKE 2024 (1) Forward Propagation [mlp arbitrary depth] Multilayer perceptron y(x) with a hidden layer and k-dimensional output layer: Model function evaluation (= forward propagation): $$\mathbf{y}(\mathbf{x}) = \boldsymbol{\sigma} \left(W^{\mathsf{o}} \mathbf{y}^{\mathsf{h}}(\mathbf{x}) \right) = \boldsymbol{\sigma} \left(W^{\mathsf{o}} \begin{pmatrix} 1 \\ \boldsymbol{\sigma} (W^{\mathsf{h}} \mathbf{x}) \end{pmatrix} \right)$$ ML:IV-82 Neural Networks © STEIN/VÖLSKE 2024 #### Remarks: - Each input unit is connected to the hidden units $1, \ldots, l$, resulting in $l \cdot (p+1)$ weights, organized as matrix $W^h \in \mathbf{R}^{l \times (p+1)}$. Each hidden unit is connected to the output units $1, \ldots, k$, resulting in $k \cdot (l+1)$ weights, organized as matrix $W^o \in \mathbf{R}^{k \times (l+1)}$. - The hidden units and the output unit(s) apply the (vectorial) sigmoid function, σ , to the sum of their weighted inputs and propagate the result as \mathbf{y}^h and \mathbf{y} respectively. For $\mathbf{z} \in \mathbf{R}^d$ the vectorial sigmoid function $\sigma(\mathbf{z})$ is defined as $(\sigma(z_1), \dots, \sigma(z_d))^T$. - The parameter vector $\mathbf{w} = (w_{10}^{\mathsf{h}}, \dots, w_{lp}^{\mathsf{h}}, w_{10}^{\mathsf{o}}, \dots, w_{kl}^{\mathsf{o}})$, organized as matrices W^{h} and W^{o} , specifies the multilayer perceptron (model function) $\mathbf{y}(\mathbf{x})$ completely: $\mathbf{y}(\mathbf{x}) = \boldsymbol{\sigma}(W^{\mathsf{o}} \begin{pmatrix} 1 \\ \boldsymbol{\sigma}(W^{\mathsf{h}} \mathbf{x}) \end{pmatrix})$. - The shown architecture with k output units allows for the distinction of k classes, either within an exclusive class assignment setting or within a multi-label setting. In the former setting a so-called "softmax layer" can be added subsequent to the output layer to directly return the class label $1, \ldots, k$. - □ The non-linear characteristic of the sigmoid function allows for networks that approximate every (computable) function. For this capability only three "active" layers are required, i.e., two layers with hidden units and one layer with output units. Keyword: universal approximator [Kolmogorov theorem, 1957] - Multilayer perceptrons are also called multilayer networks or (artificial) neural networks, ANN for short. ML:IV-83 Neural Networks © STEIN/VÖLSKE 2024 - (1) Forward Propagation (continued) [network architecture] - (a) Propagate x from input to hidden layer: [IGD_{MLP2} algorithm, Line 5] $$W^{\mathsf{h}} \in \mathbf{R}^{l \times (p+1)} \quad \mathbf{x} \in \mathbf{R}^{p+1}$$ $$\sigma \left(\begin{bmatrix} w_{10}^{\mathsf{h}} & \dots & w_{1p}^{\mathsf{h}} \\ \vdots & & \\ w_{l0}^{\mathsf{h}} & \dots & w_{lp}^{\mathsf{h}} \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_p \end{bmatrix} \right) = \begin{bmatrix} y_1^{\mathsf{h}} \\ \vdots \\ y_l^{\mathsf{h}} \end{bmatrix}$$ ML:IV-84 Neural Networks © STEIN/VÖLSKE 2024 - (1) Forward Propagation (continued) [network architecture] - (a) Propagate x from input to hidden layer: [IGD_{MLP2} algorithm, Line 5] $$W^{\mathsf{h}} \in \mathbf{R}^{l \times (p+1)} \quad \mathbf{x} \in \mathbf{R}^{p+1}$$ $$\sigma \left(\begin{bmatrix} w_{10}^{\mathsf{h}} & \dots & w_{1p}^{\mathsf{h}} \\ \vdots & & \vdots \\ w_{l0}^{\mathsf{h}} & \dots & w_{lp}^{\mathsf{h}} \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_p \end{bmatrix} \right) = \begin{bmatrix} y_1^{\mathsf{h}} \\ \vdots \\ y_l^{\mathsf{h}} \end{bmatrix}$$ (b) Propagate y^h from hidden to output layer: [IGD_{MLP2} algorithm, Line 5] $$egin{aligned} oldsymbol{W}^{f o} &\in \mathbf{R}^{k imes (l+1)} & \mathbf{y}^{f h} \in \mathbf{R}^{l+1} & \mathbf{y} \in \mathbf{R}^{k} \ oldsymbol{\sigma} & \left[egin{aligned} w_{10}^{f o} & \dots & w_{1l}^{f o} \\ & draverset \\ w_{k0}^{f o} & \dots & w_{kl}^{f o} \end{bmatrix} & \left[egin{aligned} 1 \\ y_{1}^{f h} \\ draverset \\ y_{l}^{f h} \end{bmatrix} ight) &= & \left[egin{aligned} y_{1} \\ draverset \\ y_{k} \end{array} \right] \end{aligned}$$ ML:IV-85 Neural Networks © STEIN/VÖLSKE 2024 - (1) Forward Propagation: Batch Mode [network architecture] - (a) Propagate x from input to hidden layer: [IGD_{MLP2} algorithm, Line 5] $$\boldsymbol{\sigma} \begin{pmatrix} \begin{bmatrix} w_{10}^{\mathsf{h}} & \dots & w_{1p}^{\mathsf{h}} \\ \vdots & \vdots & \vdots \\ w_{l0}^{\mathsf{h}} & \dots & w_{lp}^{\mathsf{h}} \end{bmatrix} \begin{bmatrix} 1 & \dots & 1 \\ x_{11} & \dots & x_{1n} \\ \vdots & \vdots & \vdots \\ x_{p1} & \dots & x_{pn} \end{bmatrix} \end{pmatrix} = \begin{bmatrix} y_{11}^{\mathsf{h}} & \dots & y_{1n}^{\mathsf{h}} \\ \vdots & \vdots & \vdots \\ y_{l1}^{\mathsf{h}} & \dots & y_{ln}^{\mathsf{h}} \end{bmatrix}$$ (b) Propagate y^h from hidden to output layer: [IGD_{MLP2} algorithm, Line 5] $$W^{f o} \in \mathbf{R}^{k imes (l+1)}$$ $$oldsymbol{\sigma} \left(\left[egin{array}{cccc} w_{10}^{oldsymbol{o}} & \ldots & w_{1l}^{oldsymbol{o}} \\ & dots \\ w_{k0}^{oldsymbol{o}} & \ldots & w_{kl}^{oldsymbol{o}} \end{array} ight] \left[egin{array}{cccc} 1 & \ldots & 1 \\ y_{11}^{oldsymbol{h}} & \ldots & y_{1n}^{oldsymbol{h}} \\ & dots \\ y_{l1}^{oldsymbol{h}} & \ldots & y_{ln}^{oldsymbol{h}} \end{array} ight] ight) & = & \left[egin{array}{cccc} y_{11} & \ldots & y_{1n} \\ & dots \\ y_{k1} & \ldots & y_{kn} \end{array} ight] ight.$$ ML:IV-86 Neural Networks © STEIN/VÖLSKE 2024 (2) Backpropagation [linear regression] [mlp arbitrary depth] The considered multilayer perceptron y(x): ML:IV-87 Neural Networks © STEIN/VÖLSKE 2024 (2) Backpropagation [linear regression] [mlp arbitrary depth] The considered multilayer perceptron y(x): Calculation of derivatives (= backpropagation) wrt. the global squared loss: $$L_2(\mathbf{w}) = \frac{1}{2} \cdot \mathsf{RSS}(\mathbf{w}) = \frac{1}{2} \cdot \sum_{(\mathbf{x}, \mathbf{c}) \in D} \sum_{u=1}^k (c_u - y_u(\mathbf{x}))^2$$ ML:IV-88 Neural Networks © STEIN/VÖLSKE 2024 (2) Backpropagation (continued) $L_2(\mathbf{w})$ usually contains various local minima: $$\underline{\mathbf{y}}(\mathbf{x}) = \boldsymbol{\sigma} \left(W^{\mathsf{o}} \left(\frac{1}{\boldsymbol{\sigma}(W^{\mathsf{h}} \mathbf{x})} \right) \right)$$ $$L_2(\mathbf{w}) = \frac{1}{2} \sum_{(\mathbf{x}, \mathbf{c}) \in D} \sum_{u=1}^k (c_u - y_u(\mathbf{x}))^2$$ ML:IV-89 Neural Networks © STEIN/VÖLSKE 2024 (2) Backpropagation (continued) $L_2(\mathbf{w})$ usually contains various local minima: $$\mathbf{y}(\mathbf{x}) = \boldsymbol{\sigma} \left(W^{\mathsf{o}} \left(\frac{1}{\boldsymbol{\sigma}(W^{\mathsf{h}} \mathbf{x})} \right) \right)$$ $$L_2(\mathbf{w}) = \frac{1}{2} \sum_{(\mathbf{x}, \mathbf{c}) \in D} \sum_{u=1}^k (c_u - y_u(\mathbf{x}))^2$$ $$\nabla L_2(\mathbf{w}) = \left(\frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathbf{o}}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{kl}^{\mathbf{o}}}, \frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathbf{h}}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{ln}^{\mathbf{h}}}\right)^T$$ ML:IV-90 Neural Networks © STEIN/VÖLSKE 2024 (2) Backpropagation (continued) $L_2(\mathbf{w})$ usually contains various local minima: $$\mathbf{y}(\mathbf{x}) = \boldsymbol{\sigma} \left(W^{\mathsf{o}} \left(\mathbf{\sigma}^{1}_{(W^{\mathsf{h}} \mathbf{x})} \right) \right)$$ $$L_2(\mathbf{w}) = \frac{1}{2} \sum_{(\mathbf{x}, \mathbf{c}) \in D} \sum_{u=1}^k (c_u - y_u(\mathbf{x}))^2$$ $$\nabla L_2(\mathbf{w}) = \left(\frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{o}}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{kl}^{\mathsf{o}}}, \frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{h}}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{ln}^{\mathsf{h}}}\right)^T$$ (a) Gradient in direction of $$W^{o}$$, written as matrix: $$\begin{bmatrix} \frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathbf{o}}} & \cdots & \frac{\partial L_2(\mathbf{w})}{\partial w_{1l}^{\mathbf{o}}} \\ \vdots & \vdots & \\ \frac{\partial L_2(\mathbf{w})}{\partial w_{k0}^{\mathbf{o}}} & \cdots & \frac{\partial
L_2(\mathbf{w})}{\partial w_{kl}^{\mathbf{o}}} \end{bmatrix} \equiv \nabla^{\mathbf{o}} L_2(\mathbf{w})$$ (b) Gradient in direction of W^{h} : $$\begin{bmatrix} \frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{h}}} & \cdots & \frac{\partial L_2(\mathbf{w})}{\partial w_{1p}^{\mathsf{h}}} \\ \vdots & & \\ \frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{h}}} & \cdots & \frac{\partial L_2(\mathbf{w})}{\partial w_{1p}^{\mathsf{h}}} \end{bmatrix} \equiv \nabla^{\mathsf{h}} L_2(\mathbf{w})$$ #### Remarks: - "Backpropagation" is short for "backward propagation of errors". Backpropagation is a method of calculating the derivatives (the gradient). - Basically, the computation of the gradient $\nabla L_2(\mathbf{w})$ is independent of the organization of the weights in matrices W^h and W^o of a network (model function) $\mathbf{y}(\mathbf{x})$. Adopt the following view instead: To calculate $\nabla L_2(\mathbf{w})$ one has to calculate each of its components $\partial L_2(\mathbf{w})/\partial w$, $w \in \mathbf{w}$, since each weight (parameter) has a certain impact on the global loss $L_2(\mathbf{w})$ of the network. This impact—as well as the computation of this impact—is different for different weights, but it is canonical for all weights of the same layer though: observe that each weight w influences "only" its direct and indirect successor nodes, and that the structure of the influenced successor graph is identical for all weights of the same layer. Hence it is convenient, but not necessary, to process the components of the gradient layer-wise (matrix-wise), as $\nabla^{\mathbf{o}} L_2(\mathbf{w})$ and $\nabla^{\mathbf{h}} L_2(\mathbf{w})$ respectively. Even more, due to the network structure of the model function $\mathbf{y}(\mathbf{x})$ only two cases need to be distinguished when deriving the partial derivative $\partial L_2(\mathbf{w})/\partial w$ of an arbitrary weight $w \in \mathbf{w}$: (a) w belongs to the output layer, or (b) w belongs to some hidden layer. ☐ The derivation of the gradient for the two-layer MLP (and hence the weight update processed in the IGD algorithm) is given in the following, as special case of the derivation of the gradient for MLPs at arbitrary depth. ML:IV-92 Neural Networks © STEIN/VÖLSKE 2024 (2) Backpropagation (continued) [linear regression] [mlp arbitrary depth] (a) Update of weight matrix W^{o} : [IGD_{MLP2} algorithm, Lines 7+8] $$W^{\mathbf{0}} = W^{\mathbf{0}} + \Delta W^{\mathbf{0}},$$ using the ∇^{o} -gradient of the loss function $L_{2}(\mathbf{w})$ to take the steepest descent: $$\Delta W^{\mathsf{o}} = -\eta \cdot \nabla^{\mathsf{o}} L_2(\mathbf{w})$$ ML:IV-93 Neural Networks © STEIN/VÖLSKE 2024 (2) Backpropagation (continued) [linear regression] [mlp arbitrary depth] (a) Update of weight matrix W^{o} : [IGD_{MLP2} algorithm, Lines 7+8] $$W^{\rm o}=W^{\rm o}+\Delta W^{\rm o},$$ using the ∇^{o} -gradient of the loss function $L_{2}(\mathbf{w})$ to take the steepest descent: $$\Delta W^{\mathsf{o}} = -\eta \cdot \nabla^{\mathsf{o}} L_2(\mathbf{w})$$ $$= -\eta \cdot \begin{bmatrix} \frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathbf{o}}} & \cdots & \frac{\partial L_2(\mathbf{w})}{\partial w_{1l}^{\mathbf{o}}} \\ \vdots & \vdots & \\ \frac{\partial L_2(\mathbf{w})}{\partial w_{k0}^{\mathbf{o}}} & \cdots & \frac{\partial L_2(\mathbf{w})}{\partial w_{kl}^{\mathbf{o}}} \end{bmatrix}$$: [derivation] $$= \eta \cdot \sum_{D} \left[(\mathbf{c} - \mathbf{y}(\mathbf{x})) \odot \mathbf{y}(\mathbf{x}) \odot (1 - \mathbf{y}(\mathbf{x})) \right] \otimes \mathbf{y}^{\mathsf{h}}$$ ML:IV-94 Neural Networks © STEIN/VÖLSKE 2024 (2) Backpropagation (continued) [mlp arbitrary depth] (b) Update of weight matrix W^{h} : [IGD_{MLP2} algorithm, Lines 7+8] $$W^{\mathsf{h}} = W^{\mathsf{h}} + \Delta W^{\mathsf{h}},$$ using the ∇^h -gradient of the loss function $L_2(\mathbf{w})$ to take the steepest descent: $$\Delta W^{\mathsf{h}} = -\eta \cdot \nabla^{\mathsf{h}} L_2(\mathbf{w})$$ $$= -\eta \cdot \begin{bmatrix} \frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{h}}} & \cdots & \frac{\partial L_2(\mathbf{w})}{\partial w_{1p}^{\mathsf{h}}} \\ \vdots & \vdots & \\ \frac{\partial L_2(\mathbf{w})}{\partial w_{l0}^{\mathsf{h}}} & \cdots & \frac{\partial L_2(\mathbf{w})}{\partial w_{lp}^{\mathsf{h}}} \end{bmatrix}$$: [derivation] $$= \eta \cdot \sum_{D} \underbrace{\left[\left(\left(W^{\mathsf{o}}\right)^{T} \boldsymbol{\delta}^{\mathsf{o}}\right) \odot \mathbf{y}^{\mathsf{h}}(\mathbf{x}) \odot \left(1 - \mathbf{y}^{\mathsf{h}}(\mathbf{x})\right)\right]_{1,\dots,l} \otimes \mathbf{x}}_{\boldsymbol{\delta}^{\mathsf{h}}}$$ ML:IV-95 Neural Networks © STEIN/VÖLSKE 2024 ### The IGD Algorithm Algorithm: IGD_{MLP_2} Incremental Gradient Descent for the two-layer MLP. Input: D Multiset of examples (\mathbf{x}, \mathbf{c}) with $\mathbf{x} \in \mathbf{R}^p$, $\mathbf{c} \in \{0, 1\}^k$. Learning rate, a small positive constant. Output: W^h, W^o Weights of $l \cdot (p+1)$ hidden and $k \cdot (l+1)$ output layer units. (= hypothesis) ``` 1. initialize_random_weights(W^h, W^o), t = 0 ``` - 2. **REPEAT** - 3. t = t + 1 - 4. FOREACH $(\mathbf{x}, \mathbf{c}) \in D$ DO - 5. - 6. - 7a. 8. 7b. - 9. ENDDO - 10. $\mathbf{UNTIL}(\mathit{convergence}(D,\mathbf{y}(),t))$ - 11. $return(W^h, W^o)$ The IGD Algorithm (continued) [mlp arbitrary depth] Algorithm: IGD_{MLP_2} Incremental Gradient Descent for the two-layer MLP. Input: D Multiset of examples (\mathbf{x}, \mathbf{c}) with $\mathbf{x} \in \mathbf{R}^p$, $\mathbf{c} \in \{0, 1\}^k$. Learning rate, a small positive constant. Output: W^h, W^o Weights of $l \cdot (p+1)$ hidden and $k \cdot (l+1)$ output layer units. (= hypothesis) ``` 1. initialize_random_weights(W^h, W^o), t = 0 ``` 2. REPEAT 3. t = t + 1 - 4 FOREZ GIL (-- -) C D DC - 4. FOREACH $(\mathbf{x}, \mathbf{c}) \in D$ DO - 5. $\mathbf{y}^{\mathsf{h}}(\mathbf{x}) = \begin{pmatrix} 1 \\ \boldsymbol{\sigma}(W^{\mathsf{h}}\mathbf{x}) \end{pmatrix}$ // forward propagation; \mathbf{x} is extended by $x_0 = 1$ $\mathbf{v}(\mathbf{x}) = \boldsymbol{\sigma}(W^{\mathsf{o}}\mathbf{v}^{\mathsf{h}}(\mathbf{x}))$ - $\mathbf{y}(\mathbf{x}) = \mathbf{0}(\mathbf{w} \cdot \mathbf{y} \cdot (\mathbf{x}))$ - 6. 7a. 8. 7b. - 9. ENDDO - 10. $\mathbf{UNTIL}(\mathbf{convergence}(D,\mathbf{y}(),t))$ - 11. $return(W^h, W^o)$ The IGD Algorithm (continued) [mlp arbitrary depth] Algorithm: $\mathsf{IGD}_{\mathsf{MLP}_2}$ Incremental Gradient Descent for the two-layer MLP. Input: D Multiset of examples (\mathbf{x}, \mathbf{c}) with $\mathbf{x} \in \mathbf{R}^p$, $\mathbf{c} \in \{0, 1\}^k$. Learning rate, a small positive constant. Output: W^h, W^o Weights of $l \cdot (p+1)$ hidden and $k \cdot (l+1)$ output layer units. (= hypothesis) ``` 1. initialize_random_weights(W^h, W^o), t = 0 ``` - 2. **REPEAT** - 3. t = t + 1 - 4. FOREACH $(\mathbf{x}, \mathbf{c}) \in D$ DO - 5. $\mathbf{y}^{h}(\mathbf{x}) = \begin{pmatrix} 1 \\ \boldsymbol{\sigma}(W^{h}\mathbf{x}) \end{pmatrix}$ // forward propagation; \mathbf{x} is extended by $x_0 = 1$ $\mathbf{y}(\mathbf{x}) = \boldsymbol{\sigma}(W^{0}\mathbf{y}^{h}(\mathbf{x}))$ - 6. $\delta = \mathbf{c} \mathbf{y}(\mathbf{x})$ - 7a. 7b. 8. - 9. ENDDO - 10. $\mathbf{UNTIL}(\mathbf{convergence}(D,\mathbf{y}(),t))$ - 11. $return(W^h, W^o)$ The IGD Algorithm (continued) [mlp arbitrary depth] Algorithm: Incremental Gradient Descent for the two-layer MLP. $\mathsf{IGD}_{\mathsf{MLP}_2}$ Input: Multiset of examples (\mathbf{x}, \mathbf{c}) with $\mathbf{x} \in \mathbf{R}^p$, $\mathbf{c} \in \{0, 1\}^k$. DLearning rate, a small positive constant. η W^h, W^o Weights of $l \cdot (p+1)$ hidden and $k \cdot (l+1)$ output layer units. (= hypothesis) Output: ``` initialize_random_weights(W^h, W^o), t=0 1. ``` 2. REPEAT 3. t = t + 1 - 4. FOREACH $(\mathbf{x}, \mathbf{c}) \in D$ DO - 5. $\mathbf{y}^{\mathsf{h}}(\mathbf{x}) = \begin{pmatrix} 1 \\ \sigma(W^{\mathsf{h}}\mathbf{x}) \end{pmatrix}$ // forward propagation; \mathbf{x} is extended by $x_0 = 1$ - $\mathbf{y}(\mathbf{x}) = \boldsymbol{\sigma}(W^{\mathsf{o}} \mathbf{y}^{\mathsf{h}}(\mathbf{x}))$ - 6. $\delta = \mathbf{c} \mathbf{v}(\mathbf{x})$ - $\boldsymbol{\delta}^0 = \boldsymbol{\delta} \odot \mathbf{y}(\mathbf{x}) \odot (\mathbf{1} \mathbf{y}(\mathbf{x}))$ // backpropagation (Steps 7a+7b) 7a. $\boldsymbol{\delta}^{\mathsf{h}} = [((W^{\mathsf{o}})^T \boldsymbol{\delta}^{\mathsf{o}}) \odot \mathbf{y}^{\mathsf{h}} \odot (\mathbf{1} - \mathbf{y}^{\mathsf{h}})],$ - $_{\Delta}W^{\mathsf{h}} = \eta \cdot (\boldsymbol{\delta}^{\mathsf{h}} \otimes \mathbf{x})$ 7b. $_{\Delta}W^{\mathsf{o}} = \eta \cdot (\boldsymbol{\delta}^{\mathsf{o}} \otimes \mathbf{v}^{\mathsf{h}}(\mathbf{x}))$ - 9. **ENDDO** 8. 11. - $\mathbf{UNTIL}(\mathbf{convergence}(D, \mathbf{y}(), t))$ 10. - $return(W^h, W^o)$ The IGD Algorithm (continued) [mlp arbitrary depth] Algorithm: IGD_{MLP_2} Incremental Gradient Descent for the two-layer MLP. Input: D Multiset of examples (\mathbf{x}, \mathbf{c}) with $\mathbf{x} \in \mathbf{R}^p, \ \mathbf{c} \in \{0, 1\}^k$. Learning rate, a small positive constant. Output: W^h, W^o Weights of $l \cdot (p+1)$ hidden and $k \cdot (l+1)$ output layer units. (= hypothesis) ``` 1. initialize_random_weights(W^h, W^o), t = 0 ``` - 2. **REPEAT** - 3. t = t + 1 - 4. FOREACH $(\mathbf{x}, \mathbf{c}) \in D$ DO - 5. $\mathbf{y}^{\mathsf{h}}(\mathbf{x}) = \begin{pmatrix} 1 \\ \boldsymbol{\sigma}(W^{\mathsf{h}}\mathbf{x}) \end{pmatrix}$ // forward propagation; \mathbf{x} is extended by $x_0 = 1$ $\mathbf{y}(\mathbf{x}) = \boldsymbol{\sigma}(W^{\mathsf{o}}\mathbf{y}^{\mathsf{h}}(\mathbf{x}))$ - 6. $\delta = \mathbf{c} \mathbf{y}(\mathbf{x})$ - 7a. $\delta^{0} = \delta \odot \mathbf{y}(\mathbf{x}) \odot (\mathbf{1} \mathbf{y}(\mathbf{x})) \text{ // backpropagation (Steps 7a+7b)}$ $\delta^{h} = \left[((W^{0})^{T} \delta^{0}) \odot \mathbf{y}^{h} \odot (\mathbf{1}
\mathbf{y}^{h}) \right]_{1,\dots,l}$ 7b. $\Delta W^{h} = n \cdot (\delta^{h} \otimes \mathbf{x})$ - $_{\Delta}W^{\mathsf{o}} = \eta \cdot (\boldsymbol{\delta}^{\mathsf{o}} \otimes \mathbf{y}^{\mathsf{h}}(\mathbf{x}))$ - 8. $W^{\mathsf{h}} = W^{\mathsf{h}} + {}_{\Delta}W^{\mathsf{h}}, \quad W^{\mathsf{o}} = W^{\mathsf{o}} + {}_{\Delta}W^{\mathsf{o}}$ - 9. ENDDO - 10. $\mathbf{UNTIL}(\mathbf{convergence}(D,\mathbf{y}(),t))$ - 11. $return(W^h, W^o)$ The IGD Algorithm (continued) [mlp arbitrary depth] Algorithm: IGD_{MLP2} Incremental Gradient Descent for the two-layer MLP. Input: D Multiset of examples (\mathbf{x}, \mathbf{c}) with $\mathbf{x} \in \mathbf{R}^p$, $\mathbf{c} \in \{0, 1\}^k$. η Learning rate, a small positive constant. Output: W^h, W^o Weights of $l \cdot (p+1)$ hidden and $k \cdot (l+1)$ output layer units. (= hypothesis) - 1. initialize_random_weights $(W^{\mathsf{h}},W^{\mathsf{o}})$, t=0 - 2. REPEAT - 3. t = t + 1 - 4. FOREACH $(\mathbf{x}, \mathbf{c}) \in D$ DO - 4. FOREACH $(\mathbf{X}, \mathbf{C}) \in D$ DO - 5. Model function evaluation. - 6. Calculation of residual vector. - 7a. - Calculation of derivative of the loss. - 8. Parameter vector update $\hat{=}$ one gradient step down. - 9. ENDDO - 10. UNTIL(convergence $(D, \mathbf{y}(), t)$) - 11. $return(W^h, W^o)$ #### Remarks: - □ The symbol »⊙« denotes the Hadamard product, also known as the element-wise or the Schur product. It is a binary operation that takes two matrices of the same dimensions and produces another matrix of the same dimension as the operands, where each element is the product of the respective elements of the two original matrices. [Wikipedia] - The symbol » \otimes « denotes the dyadic product, also called outer product or tensor product. The dyadic product takes two vectors and returns a second order tensor, called a dyadic in this context: $\mathbf{v} \otimes \mathbf{w} \equiv \mathbf{v} \mathbf{w}^T$. [Wikipedia] - \square $[W]_{1,\dots,l}$ denotes the projection operator, which returns the rows 1 through l of matrix W as a new matrix. - $\triangle W$ and $\triangle W$ indicate an update of the weight matrix per batch, D, or per instance, $(\mathbf{x}, \mathbf{c}) \in D$, respectively. ML:IV-102 Neural Networks © STEIN/VÖLSKE 2024 ## **Chapter ML:IV** #### IV. Neural Networks - Perceptron Learning - □ Multilayer Perceptron Basics - □ Multilayer Perceptron with Two Layers - Multilayer Perceptron at Arbitrary Depth - Advanced MLPs - □ Automatic Gradient Computation ML:IV-103 Neural Networks © STEIN/VÖLSKE 2024 Network Architecture [mlp two layers] Multilayer perceptron y(x) with d layers and k-dimensional output: ML:IV-104 Neural Networks © STEIN/VÖLSKE 2024 (1) Forward Propagation [mlp two layers] Multilayer perceptron y(x) with d layers and k-dimensional output: Model function evaluation (= forward propagation): $$\mathbf{y}^{\mathsf{h}_d}(\mathbf{x}) \equiv \mathbf{y}(\mathbf{x}) = \boldsymbol{\sigma} \left(W^{\mathsf{h}_d} \, \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x}) \right) = \ldots = \boldsymbol{\sigma} \left(W^{\mathsf{h}_d} \begin{pmatrix} 1 \\ \boldsymbol{\sigma} \left(\ldots \begin{pmatrix} 1 \\ \boldsymbol{\sigma}(W^{\mathsf{h}_1} \, \mathbf{x}) \end{pmatrix} \ldots \right) \right) \right)$$ ML:IV-105 Neural Networks © STEIN/VÖLSKE 2024 (2) Backpropagation [mlp two layers] The considered multilayer perceptron y(x): Calculation of derivatives (= backpropagation) wrt. the global squared loss: $$L_2(\mathbf{w}) = \frac{1}{2} \cdot \mathsf{RSS}(\mathbf{w}) = \frac{1}{2} \cdot \sum_{(\mathbf{x}, \mathbf{c}) \in D} \sum_{u=1}^k (c_u - y_u(\mathbf{x}))^2$$ (2) Backpropagation (continued) [mlp two layers] $$\nabla L_2(\mathbf{w}) = \left(\frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{h}_1}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{l_1p}^{\mathsf{h}_1}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{h}_d}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{kl_{d-1}}^{\mathsf{h}_d}}\right)^T \text{ where } l_s = \textit{no._rows}(W^{\mathsf{h}_s})$$ ML:IV-107 Neural Networks © STEIN/VÖLSKE 2024 (2) Backpropagation (continued) [mlp two layers] $$\nabla L_2(\mathbf{w}) = \left(\frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{h}_1}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{l_1p}^{\mathsf{h}_1}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{h}_d}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{kl_{d-1}}^{\mathsf{h}_d}}\right)^T \text{ where } l_s = \textit{no._rows}(W^{\mathsf{h}_s})$$ Update of weight matrix W^{h_s} , $1 \le s \le d$: [IGD_{MLP, algorithm}, Lines 7+8] $$W^{\mathsf{h}_s} = W^{\mathsf{h}_s} + \Delta W^{\mathsf{h}_s},$$ using the ∇^{h_s} -gradient of the loss function $L_2(\mathbf{w})$ to take the steepest descent: $$\Delta W^{\mathsf{h}_s} = -\eta \cdot \nabla^{\mathsf{h}_s} L_2(\mathbf{w})$$ (2) Backpropagation (continued) [mlp two layers] $$\nabla L_2(\mathbf{w}) = \left(\frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{h}_1}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{l_1p}^{\mathsf{h}_1}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{h}_d}}, \dots, \frac{\partial L_2(\mathbf{w})}{\partial w_{kl_{d-1}}^{\mathsf{h}_d}}\right)^T \text{ where } l_s = \textit{no._rows}(W^{\mathsf{h}_s})$$ Update of weight matrix W^{h_s} , $1 \le s \le d$: [IGD_{MLP,d} algorithm, Lines 7+8] $$W^{\mathsf{h}_s} = W^{\mathsf{h}_s} + \Delta W^{\mathsf{h}_s}$$ using the $\nabla^{\mathbf{h}_s}$ -gradient of the loss function $L_2(\mathbf{w})$ to take the steepest descent: $$\Delta W^{\mathsf{h}_s} = -\eta \cdot \nabla^{\mathsf{h}_s} L_2(\mathbf{w})$$ $$= -\eta \cdot \begin{bmatrix} \frac{\partial L_2(\mathbf{w})}{\partial w_{10}^{\mathsf{h}_s}} & \cdots & \frac{\partial L_2(\mathbf{w})}{\partial w_{1l_{s-1}}^{\mathsf{h}_s}} \\ & \vdots & & \\ \frac{\partial L_2(\mathbf{w})}{\partial w_{ls0}^{\mathsf{h}_s}} & \cdots & \frac{\partial L_2(\mathbf{w})}{\partial w_{lsl_{s-1}}^{\mathsf{h}_s}} \end{bmatrix}, \quad \mathsf{where} \quad \mathbf{y}^{\mathsf{h}_0} \equiv \mathbf{x}, \\ \mathbf{y}^{\mathsf{h}_d} \equiv \mathbf{y}$$ \hookrightarrow p. 110 (2) Backpropagation (continued) [mlp two layers] [derivation] $$\Delta W^{\mathsf{h}_s} = \begin{cases} \eta \cdot \sum_{D} \underbrace{\left[(\mathbf{c} - \mathbf{y}(\mathbf{x})) \odot \mathbf{y}(\mathbf{x}) \odot (1 - \mathbf{y}(\mathbf{x})) \right] \otimes \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x})}_{\delta^{\mathsf{h}_d} \equiv \delta^{\mathsf{O}}} & \text{if } s = d \\ \eta \cdot \sum_{D} \underbrace{\left[\left(\left(W^{\mathsf{h}_{s+1}} \right)^T \delta^{\mathsf{h}_{s+1}} \right) \odot \mathbf{y}^{\mathsf{h}_s}(\mathbf{x}) \odot (1 - \mathbf{y}^{\mathsf{h}_s}(\mathbf{x})) \right]_{1, \dots, l_s}}_{\delta^{\mathsf{h}_s}} \otimes \mathbf{y}^{\mathsf{h}_{s-1}}(\mathbf{x}) & \text{if } 1 < s < d \end{cases}$$ where $l_s = \mathit{no._rows}(W^{\mathsf{h}_s})$ where $l_s = no$. $rows(W^{h_s})$ ### The IGD Algorithm Algorithm: $\operatorname{IGD}_{\mathsf{MLP}_d}$ Incremental Gradient Descent for the d-layer MLP. Input: D Multiset of examples (\mathbf{x},\mathbf{c}) with $\mathbf{x} \in \mathbf{R}^p, \ \mathbf{c} \in \{0,1\}^k.$ Learning rate, a small positive constant. Output: $W^{\mathsf{h}_1}, \dots, W^{\mathsf{h}_d}$ Weight matrices of the d layers. (= hypothesis) ``` 1. For s=1 to d do initialize_random_weights (W^{\mathbf{h}_s}) enddo, t=0 ``` - 2. **REPEAT** - 3. t = t + 1 - 4. FOREACH $(\mathbf{x}, \mathbf{c}) \in D$ DO - 5. - 6. 7a. - 7b. - 8. - 9. ENDDO - 10. $\mathbf{UNTIL}(\mathbf{convergence}(D,\mathbf{y}(),t))$ - 11. $return(W^{\mathsf{h}_1}, \dots, W^{\mathsf{h}_d})$ ML:IV-111 Neural Networks The IGD Algorithm (continued) [mlp two layers] ``` Algorithm: \mathsf{IGD}_{\mathsf{MLP}_d} Incremental Gradient Descent for the d-layer MLP. Input: D Multiset of examples (\mathbf{x}, \mathbf{c}) with \mathbf{x} \in \mathbf{R}^p, \ \mathbf{c} \in \{0,1\}^k. Learning rate, a small positive constant. Output: W^{\mathsf{h}_1}, \dots, W^{\mathsf{h}_d} Weight matrices of the d layers. (= hypothesis) 1. FOR s=1 TO d DO initialize_random_weights(W^{\mathsf{h}_s}) ENDDO, t=0 2. REPEAT ``` - 3. t = t + 1 - 4. FOREACH $(\mathbf{x}, \mathbf{c}) \in D$ DO - 5. $\mathbf{y}^{h_1}(\mathbf{x}) = \begin{pmatrix} 1 \\ \boldsymbol{\sigma}(W^{h_1}\mathbf{x}) \end{pmatrix}$ // forward propagation; \mathbf{x} is extended by $x_0 = 1$ - FOR s=2 TO d-1 DO $\mathbf{y}^{\mathsf{h}_s}(\mathbf{x}) = \begin{pmatrix} 1 \\ \boldsymbol{\sigma}(W^{\mathsf{h}_s} \mathbf{y}^{\mathsf{h}_{s-1}}(\mathbf{x})) \end{pmatrix}$ ENDDO $\mathbf{y}(\mathbf{x}) = \boldsymbol{\sigma}(W^{\mathsf{h}_d} \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x}))$ - $\mathbf{y}(\mathbf{x}) = \mathbf{v}(\mathbf{w} + \mathbf{y} + (\mathbf{x}))$ - 7a. - 7b. 8. 9. ENDDO ML:IV-112 Neural Networks - 10. $\mathbf{UNTIL}(\mathbf{convergence}(D,\mathbf{y}(),t))$ - 11. $return(W^{\mathsf{h}_1},\ldots,W^{\mathsf{h}_d})$ The IGD Algorithm (continued) [mlp two layers] ``` Algorithm: \mathsf{IGD}_{\mathsf{MLP}_d} Incremental Gradient Descent for the d-layer MLP. Input: D Multiset of examples (\mathbf{x}, \mathbf{c}) with \mathbf{x} \in \mathbf{R}^p, \ \mathbf{c} \in \{0, 1\}^k. Learning rate, a small positive constant. Output: W^{\mathsf{h}_1}, \dots, W^{\mathsf{h}_d} Weight matrices of the d layers. (= hypothesis) 1. FOR s=1 TO d DO initialize_random_weights(W^{\mathsf{h}_s}) ENDDO, t=0 2. REPEAT ``` - 3. t = t + 1 - 4. FOREACH $(\mathbf{x}, \mathbf{c}) \in D$ DO - 5. $\mathbf{y}^{h_1}(\mathbf{x}) = \begin{pmatrix} 1 \\ \boldsymbol{\sigma}^{(W^{h_1}\mathbf{x})} \end{pmatrix}$ // forward propagation; \mathbf{x} is extended by $x_0 = 1$ - FOR s=2 TO d-1 DO $\mathbf{y}^{\mathsf{h}_s}(\mathbf{x})=\begin{pmatrix} 1 \\ \boldsymbol{\sigma}(W^{\mathsf{h}_s}\,\mathbf{y}^{\mathsf{h}_{s-1}}(\mathbf{x})) \end{pmatrix}$ ENDDO - $\mathbf{y}(\mathbf{x}) =
\boldsymbol{\sigma}(W^{\mathsf{h}_d}\,\mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x}))$ - $\mathbf{\delta} = \mathbf{c} \mathbf{y}(\mathbf{x})$ - 7a. - 8. - 9. ENDDO - 10. $\mathbf{UNTIL}(\mathbf{convergence}(D,\mathbf{y}(),t))$ - 11. $return(W^{\mathsf{h}_1},\ldots,W^{\mathsf{h}_d})$ The IGD Algorithm (continued) [mlp two layers] ``` Algorithm: IGD_{MLP} Incremental Gradient Descent for the d-layer MLP. Input: Multiset of examples (\mathbf{x}, \mathbf{c}) with \mathbf{x} \in \mathbf{R}^p, \mathbf{c} \in \{0, 1\}^k. D Learning rate, a small positive constant. \eta W^{h_1}, \ldots, W^{h_d} Weight matrices of the d layers. (= hypothesis) Output: FOR s=1 TO d DO <code>initialize_random_weights(Wh_s)</code> ENDDO, t=0 REPEAT 3. t = t + 1 4. FOREACH (\mathbf{x}, \mathbf{c}) \in D DO 5. \mathbf{y}^{h_1}(\mathbf{x}) = \begin{pmatrix} 1 \\ \boldsymbol{\sigma}(W^{h_1}\mathbf{x}) \end{pmatrix} // forward propagation; \mathbf{x} is extended by x_0 = 1 FOR s=2 to d-1 do \mathbf{y}^{\mathsf{h}_s}(\mathbf{x}) = \begin{pmatrix} 1 \\ \boldsymbol{\sigma}^{(W^{\mathsf{h}_s}\mathbf{v}^{\mathsf{h}_{s-1}}(\mathbf{x}))} \end{pmatrix} end o \mathbf{v}(\mathbf{x}) = \boldsymbol{\sigma}(W^{\mathsf{h}_d} \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x})) \delta = \mathbf{c} - \mathbf{y}(\mathbf{x}) 7a. \delta^{h_d} = \delta \odot y(x) \odot (1 - y(x)) // backpropagation (Steps 7a+7b) FOR s=d-1 downto 1 do \boldsymbol{\delta}^{\mathsf{h}_s}=[((W^{\mathsf{h}_{s+1}})^T\,\boldsymbol{\delta}^{\mathsf{h}_{s+1}})\odot\mathbf{y}^{\mathsf{h}_s}(\mathbf{x})\odot(\mathbf{1}-\mathbf{y}^{\mathsf{h}_s}(\mathbf{x}))]_{\mathsf{h}_s} ENDDO _{\Delta}W^{\mathsf{h}_{1}} = \eta \cdot (\boldsymbol{\delta}^{\mathsf{h}_{1}} \otimes \mathbf{x}) 7b. FOR s=2 to d do _{\Delta}W^{\mathsf{h}_s}=\eta\cdot(\pmb{\delta}^{\mathsf{h}_s}\otimes\mathbf{y}^{\mathsf{h}_{s-1}}(\mathbf{x})) enddo ``` 11. $return(W^{\mathsf{h}_1},\ldots,W^{\mathsf{h}_d})$ **UNTIL**(convergence $(D, \mathbf{y}(), t)$) **ENDDO** 8.9. 10. ML:IV-114 Neural Networks The IGD Algorithm (continued) [mlp two layers] ``` Algorithm: IGD_{MLP} Incremental Gradient Descent for the d-layer MLP. Input: Multiset of examples (\mathbf{x}, \mathbf{c}) with \mathbf{x} \in \mathbf{R}^p, \mathbf{c} \in \{0, 1\}^k. D Learning rate, a small positive constant. \eta W^{h_1}, \ldots, W^{h_d} Weight matrices of the d layers. (= hypothesis) Output: FOR s=1 TO d DO <code>initialize_random_weights(Wh_s)</code> ENDDO, t=0 REPEAT 3. t = t + 1 4. FOREACH (\mathbf{x}, \mathbf{c}) \in D DO 5. \mathbf{y}^{h_1}(\mathbf{x}) = \begin{pmatrix} 1 \\ \boldsymbol{\sigma}(W^{h_1}\mathbf{x}) \end{pmatrix} // forward propagation; \mathbf{x} is extended by x_0 = 1 FOR s=2 to d-1 do \mathbf{y}^{\mathsf{h}_s}(\mathbf{x}) = \begin{pmatrix} 1 \\ \boldsymbol{\sigma}^{(W^{\mathsf{h}_s}\mathbf{v}^{\mathsf{h}_{s-1}}(\mathbf{x}))} \end{pmatrix} end o \mathbf{v}(\mathbf{x}) = \boldsymbol{\sigma}(W^{\mathsf{h}_d} \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x})) \delta = \mathbf{c} - \mathbf{y}(\mathbf{x}) 7a. \delta^{h_d} = \delta \odot y(x) \odot (1 - y(x)) // backpropagation (Steps 7a+7b) FOR s=d-1 downto 1 do \boldsymbol{\delta}^{\mathsf{h}_s}=[((W^{\mathsf{h}_{s+1}})^T\,\boldsymbol{\delta}^{\mathsf{h}_{s+1}})\odot\mathbf{y}^{\mathsf{h}_s}(\mathbf{x})\odot(\mathbf{1}-\mathbf{y}^{\mathsf{h}_s}(\mathbf{x}))]_{\mathsf{h}_s} ENDDO _{\Delta}W^{\mathsf{h}_{1}} = \eta \cdot (\boldsymbol{\delta}^{\mathsf{h}_{1}} \otimes \mathbf{x}) 7b. FOR s=2 to d do _\Delta W^{\mathsf{h}_s}=\eta\cdot(\pmb{\delta}^{\mathsf{h}_s}\otimes\mathbf{y}^{\mathsf{h}_{s-1}}(\mathbf{x})) enddo FOR s=1 to d do W^{\mathsf{h}_s}=W^{\mathsf{h}_s}+{}_{\vartriangle}W^{\mathsf{h}_s} enddo 8. 9. ENDDO ``` ML:IV-115 Neural Networks **UNTIL**(convergence $(D, \mathbf{y}(), t)$) $return(W^{\mathsf{h}_1},\ldots,W^{\mathsf{h}_d})$ 10. 11. The IGD Algorithm (continued) [mlp two layers] Algorithm: $\mathsf{IGD}_{\mathsf{MLP}_{A}}$ Incremental Gradient Descent for the *d*-layer MLP. Input: Multiset of examples (\mathbf{x}, \mathbf{c}) with $\mathbf{x} \in \mathbf{R}^p$, $\mathbf{c} \in \{0, 1\}^k$. DLearning rate, a small positive constant. η W^{h_1}, \ldots, W^{h_d} Weight matrices of the d layers. (= hypothesis) Output: FOR s=1 TO d DO initialize random weights (W^{h_s}) ENDDO, t=0REPEAT 3. t = t + 14. FOREACH $(\mathbf{x}, \mathbf{c}) \in D$ DO 5. Model function evaluation. 6. Calculation of residual vector. 7a. Calculation of derivative of the loss. 7b. 8. Parameter vector update $\hat{=}$ one gradient step down. 10. $\mathbf{UNTIL}(\mathbf{convergence}(D,\mathbf{y}(),t))$ 11. $return(W^{\mathsf{h}_1},\ldots,W^{\mathsf{h}_d})$ **ENDDO** 9. \square Partial derivative for a weight in a weight matrix W^{h_s} , $1 \le s \le d$: $$\frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} L_2(\mathbf{w}) = \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} \frac{1}{2} \cdot \sum_{(\mathbf{x}, \mathbf{c}) \in D} \sum_{u=1}^k (c_u - y_u(\mathbf{x}))^2$$ $$= \frac{1}{2} \cdot \sum_{D} \sum_{u=1}^k \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} (c_u - y_u(\mathbf{x}))^2$$ $$= -\sum_{D} \sum_{u=1}^k (c_u - y_u(\mathbf{x})) \cdot \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} y_u(\mathbf{x})$$ $$\stackrel{(1,2)}{=} -\sum_{D} \sum_{u=1}^k \underbrace{(c_u - y_u(\mathbf{x})) \cdot y_u(\mathbf{x}) \cdot (1 - y_u(\mathbf{x}))}_{\partial u_{ij}} \cdot \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} W_{u*}^{\mathsf{h}_d} \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x})$$ $$\stackrel{(3)}{=} -\sum_{D} \sum_{u=1}^k \delta_u^{\mathsf{h}_d} \cdot \frac{\partial}{\partial w_{is}^{\mathsf{h}_s}} \sum_{v=1}^k w_{uv}^{\mathsf{h}_d} \cdot y_v^{\mathsf{h}_{d-1}}(\mathbf{x})$$ \Box Partial derivative for a weight in W^{h_d} (output layer), i.e., s=d: $$\begin{split} \frac{\partial}{\partial w_{ij}^{\mathsf{h}_d}} L_2(\mathbf{w}) &= -\sum_{D} \sum_{u=1}^k \, \delta_u^{\mathsf{h}_d} \cdot \sum_{v=0}^{l_{d-1}} \, \frac{\partial}{\partial w_{ij}^{\mathsf{h}_d}} \, w_{uv}^{\mathsf{h}_d} \cdot y_v^{\mathsf{h}_{d-1}}(\mathbf{x}) & \text{// and } v = j \text{ the partial derivative is nonzero. See the illustration.} \\ &= -\sum_{i=0}^k \, \delta_i^{\mathsf{h}_d} \cdot y_j^{\mathsf{h}_{d-1}}(\mathbf{x}) & \text{// and } v = j \text{ the partial derivative is nonzero.} \end{split}$$ \square Partial derivative for a weight in a weight matrix W^{h_s} , $s \leq d-1$: $$\begin{split} \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} L_2(\mathbf{w}) &= -\sum_{D} \sum_{u=1}^k \ \delta_u^{\mathsf{h}_d} \cdot \sum_{v=0}^{l_{d-1}} \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} \ w_{uv}^{\mathsf{h}_d} \cdot y_v^{\mathsf{h}_{d-1}}(\mathbf{x}) \quad /\!/ \quad \underset{\mathsf{except}}{\text{except}} \ y_0^{\mathsf{h}_{d-1}} \ \text{depends on } w_{ij}^{\mathsf{h}_s}. \\ \overset{(1,2)}{=} -\sum_{D} \sum_{u=1}^k \ \delta_u^{\mathsf{h}_d} \cdot \sum_{v=1}^{l_{d-1}} \ w_{uv}^{\mathsf{h}_d} \cdot y_v^{\mathsf{h}_{d-1}}(\mathbf{x}) \cdot (1 - y_v^{\mathsf{h}_{d-1}}(\mathbf{x})) \cdot \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} W_{v*}^{\mathsf{h}_{d-1}} \ \mathbf{y}^{\mathsf{h}_{d-2}}(\mathbf{x}) \\ \overset{(4)}{=} -\sum_{D} \sum_{v=1}^{l_{d-1}} \sum_{u=1}^k \ \delta_u^{\mathsf{h}_d} \cdot w_{uv}^{\mathsf{h}_d} \cdot y_v^{\mathsf{h}_{d-1}}(\mathbf{x}) \cdot (1 - y_v^{\mathsf{h}_{d-1}}(\mathbf{x})) \cdot \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} W_{v*}^{\mathsf{h}_{d-1}} \ \mathbf{y}^{\mathsf{h}_{d-2}}(\mathbf{x}) \\ \overset{(5)}{=} -\sum_{D} \sum_{v=1}^{l_{d-1}} \ \underbrace{(W_{*v}^{\mathsf{h}_d})^T \delta_v^{\mathsf{h}_d} \cdot y_v^{\mathsf{h}_{d-1}}(\mathbf{x}) \cdot (1 - y_v^{\mathsf{h}_{d-1}}(\mathbf{x}))}_{\delta_v^{\mathsf{h}_{d-1}}} \cdot \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} W_{v*}^{\mathsf{h}_{d-1}} \cdot \underbrace{\partial}_{w_{ij}} W_{v*}^{\mathsf{h}_{d-2}}(\mathbf{x}) \\ \overset{(3)}{=} -\sum_{D} \sum_{v=1}^{l_{d-1}} \ \delta_v^{\mathsf{h}_{d-1}} \cdot \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} \sum_{w=0}^{l_{d-2}} \ w_{vw}^{\mathsf{h}_{d-1}} \cdot y_w^{\mathsf{h}_{d-2}}(\mathbf{x}) \end{split}$$ \Box Partial derivative for a weight in $W^{\mathsf{h}_{d-1}}$ (next to output layer), i.e., s=d-1: $$\begin{split} \frac{\partial}{\partial w_{ij}^{\mathsf{h}_{d-1}}} L_2(\mathbf{w}) &= -\sum_{D} \sum_{v=1}^{l_{d-1}} \delta_v^{\mathsf{h}_{d-1}} \sum_{w=0}^{l_{d-2}} \frac{\partial}{\partial w_{ij}^{\mathsf{h}_{d-1}}} \, w_{vw}^{\mathsf{h}_{d-1}} \cdot y_w^{\mathsf{h}_{d-2}}(\mathbf{x}) & \text{// and } w = j \text{ the partial derivative is nonzero.} \\ &= -\sum_{i=0}^{d_{i-1}} \delta_i^{\mathsf{h}_{d-1}} \cdot y_j^{\mathsf{h}_{d-2}}(\mathbf{x}) & \text{// and } w = j \text{ the partial derivative is nonzero.} \end{split}$$ Instead of writing out the recursion further, i.e., considering a weight matrix W^{h_s} , $s \le d-2$, we substitute s for d-1 (similarly: s+1 for d) to derive the general backpropagation rule: $$\begin{split} \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} L_2(\mathbf{w}) &= -\sum_D \ \delta_i^{\mathsf{h}_s} \cdot y_j^{\mathsf{h}_{s-1}}(\mathbf{x}) \quad \text{//} \quad \delta_i^{\mathsf{h}_s} \text{ is expanded based on the definition of } \delta_v^{\mathsf{h}_{d-1}}. \\ &= -\sum_D \ \underbrace{(W_{*i}^{\mathsf{h}_{s+1}})^T \boldsymbol{\delta}^{\mathsf{h}_{s+1}} \cdot y_i^{\mathsf{h}_s}(\mathbf{x}) \cdot (1-y_i^{\mathsf{h}_s}(\mathbf{x}))}_{\boldsymbol{\delta}_i^{\mathsf{h}_s}} \cdot y_j^{\mathsf{h}_{s-1}}(\mathbf{x}) \end{split}$$ - \Box Plugging the result for $\frac{\partial}{\partial w_s^{h_s}} L_2(\mathbf{w})$ into $-\eta \cdot [\cdots]$ yields the update formula for ΔW^{h_s} . In detail: - For updating the output matrix, $W^{h_d} \equiv W^{o}$, we compute $$oldsymbol{\delta}^{\mathsf{h}_d} = (\mathbf{c} - \mathbf{y}(\mathbf{x})) \odot \mathbf{y}(\mathbf{x}) \odot (1 - \mathbf{y}(\mathbf{x}))$$ - For updating a matrix W^{h_s} , $1 \le s < d$, we compute $$\begin{split} \boldsymbol{\delta}^{\mathsf{h}_s} &= \left[((W^{\mathsf{h}_{s+1}})^T \,
\boldsymbol{\delta}^{\mathsf{h}_{s+1}}) \odot \mathbf{y}^{\mathsf{h}_s}(\mathbf{x}) \odot (\mathbf{1} - \mathbf{y}^{\mathsf{h}_s}(\mathbf{x})) \right]_{1,\dots,l_s}, \quad \text{where} \quad W^{\mathsf{h}_{s+1}} \in \mathbf{R}^{l_{s+1} \times (l_s+1)}, \\ \boldsymbol{\delta}^{\mathsf{h}_{s+1}} &\in \mathbf{R}^{l_{s+1}}, \\ \mathbf{y}^{\mathsf{h}_s} &\in \mathbf{R}^{l_s+1}, \\ \text{and} \quad \mathbf{y}^{\mathsf{h}_0}(\mathbf{x}) \equiv \mathbf{x}. \end{split}$$ □ Hints: (1) $$y_u(\mathbf{x}) = \left[\underline{\boldsymbol{\sigma}}\left(W^{\mathsf{h}_d}\ \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x})\right)\right]_u = \sigma\left(W^{\mathsf{h}_d}_{u^*}\ \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x})\right)$$ (2) Chain rule with $\frac{d}{dz}\sigma(z)=\sigma(z)\cdot(1-\sigma(z))$, where $\sigma(z):=y_u(\mathbf{x})$ and $z=W_{u*}^{\mathsf{h}_d}\mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x})$: $$\frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} y_u(\mathbf{x}) \equiv \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} \left(\sigma \left(W_{u*}^{\mathsf{h}_d} \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x}) \right) \right) \equiv \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} \left(\sigma \left(z \right) \right) = y_u(\mathbf{x}) \cdot (1 - y_u(\mathbf{x})) \cdot \frac{\partial}{\partial w_{ij}^{\mathsf{h}_s}} \left(W_{u*}^{\mathsf{h}_d} \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x}) \right)$$ Note that in the partial derivative expression the symbol x is a constant, while $w_{ij}^{h_s}$ is the variable whose effect on the change of the loss L_2 (at input x) is computed. - (3) $W_{u*}^{\mathsf{h}_d} \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x}) = w_{u0}^{\mathsf{h}_d} \cdot y_0^{\mathsf{h}_{d-1}}(\mathbf{x}) + \ldots + w_{uj}^{\mathsf{h}_d} \cdot y_j^{\mathsf{h}_{d-1}}(\mathbf{x}) + \ldots + w_{ul_{d-1}}^{\mathsf{h}_d} \cdot y_{l_{d-1}}^{\mathsf{h}_{d-1}}(\mathbf{x}),$ where $l_{d-1} = \mathit{no._rows}(W^{\mathsf{h}_{d-1}}).$ - Rearrange sums to reflect the nested dependencies that develop naturally from the backpropagation. We now can define $\delta_v^{\mathsf{h}_{d-1}}$ in layer d-1 as a function of δ^{h_d} (layer d). - (5) $\sum_{u=1}^{\kappa} \delta_u^{\mathsf{h}_d} \cdot w_{uv}^{\mathsf{h}_d} = (W_{*v}^{\mathsf{h}_d})^T \boldsymbol{\delta}^{\mathsf{h}_d} \quad \text{(scalar product)}.$ $\mathbf{y}(\mathbf{x})$ as a function of some $w_{ij}^{\mathsf{h}_s}$ in the output layer W^o and some middle layer W^{h_s} . To calculate the partial derivative of $y_u(\mathbf{x})$ with respect to $w_{ij}^{\mathsf{h}_s}$, determine those terms in $y_u(\mathbf{x})$ that depend on $w_{ij}^{\mathsf{h}_s}$ (shown orange). All other terms are in the role of constants. Compare the above illustration to the multilayer perceptron network architecture. ML:IV-121 Neural Networks © STEIN/VÖLSKE 2024 $\mathbf{y}(\mathbf{x})$ as a function of some $w_{ij}^{\mathsf{h}_s}$ in the output layer W^o and some middle layer W^{h_s} . To calculate the partial derivative of $y_u(\mathbf{x})$ with respect to $w_{ij}^{\mathsf{h}_s}$, determine those terms in $y_u(\mathbf{x})$ that depend on $w_{ij}^{\mathsf{h}_s}$ (shown orange). All other terms are in the role of constants. $$y_{u}(\mathbf{x}) = \begin{bmatrix} \boldsymbol{\sigma} \begin{pmatrix} \mathbf{W}^{\mathsf{h}_{d}} \begin{pmatrix} 1 \\ \boldsymbol{\sigma} \begin{pmatrix} \dots \begin{pmatrix} 1 \\ \sigma(W^{\mathsf{h}_{s+1}} \begin{pmatrix} 1 \\ \sigma(W^{\mathsf{h}_{s}} \mathbf{y}^{\mathsf{h}_{s-1}}(\mathbf{x}) \end{pmatrix}) \end{pmatrix} \end{pmatrix} \end{pmatrix} \dots \end{pmatrix} \end{bmatrix} \end{bmatrix}_{u} \begin{bmatrix} \boldsymbol{\sigma}(\dots) \sim \mathbf{y}^{\mathsf{h}_{d}}(\mathbf{x}) \equiv \mathbf{y}(\mathbf{x}) \\ ((\dots)) \sim \mathbf{y}^{\mathsf{h}_{d-1}}(\mathbf{x}) \\ ((\dots)) \sim \mathbf{y}^{\mathsf{h}_{s+1}}(\mathbf{x}) \\ ((\dots)) \sim \mathbf{y}^{\mathsf{h}_{s}}(\mathbf{x}) \end{bmatrix}$$ □ Compare the above illustration to the multilayer perceptron network architecture. Remarks (derivation of $\nabla^{o}L_{2}(\mathbf{w})$ and $\nabla^{h}L_{2}(\mathbf{w})$ for MLP at depth one): - $\Box \nabla^{\mathsf{o}} L_2(\mathbf{w}) \equiv \nabla^{\mathsf{h}_d} L_2(\mathbf{w})$, and hence $\delta^{\mathsf{o}} \equiv \delta^{\mathsf{h}_d}$. - \neg $\nabla^h L_2(\mathbf{w})$ is a special case of the *s*-layer case, and we obtain $\underline{\delta}^h$ from $\underline{\delta}^{h_s}$ by applying the following identities: $$W^{\mathsf{h}_{s+1}} = W^{\mathsf{o}}$$, $\boldsymbol{\delta}^{\mathsf{h}_{s+1}} = \boldsymbol{\delta}^{\mathsf{h}_d} = \boldsymbol{\delta}^{\mathsf{o}}$, $\mathbf{y}^{\mathsf{h}_s} = \mathbf{y}^{\mathsf{h}}$, and $l_s = l$.