Chapter ML:IV

V. Neural Networks

Perceptron Learning

Multilayer Perceptron Basics

Multilayer Perceptron with Two Layers
Multilayer Perceptron at Arbitrary Depth
Advanced MLPs

Automatic Gradient Computation

I Ty Ny Ny I

ML:IV-53 Neural Networks ©STEIN/VOLSKE 2024

Multilayer Perceptron Basics

Definition 1 (Linear Separability)
Two sets of feature vectors, X, X;, sampled from a p-dimensional feature space X,
are called linearly separable if p+1 real numbers, wy, wy, ..., w,, exist such that the

following conditions holds:
1. vxe Xo: Yl qwjr; <0
2. Vx € X Z?:O wixr; > 0

Multilayer Perceptron Basics

Definition 1 (Linear Separability)

Two sets of feature vectors, X, X;, sampled from a p-dimensional feature space X,
are called linearly separable if p+1 real numbers, wy, wy, ..., w,, exist such that the
following conditions holds:

1. Vx € Xo: Z?:o wiz; < 0
2. Vx e Xi: Z?:O W;x; >0

X2_ @@@@ X2_

®
i ® ®@ § @@®@®®%
] @@@@ i @@@ @@@®
i ® ® | @@@ ®
1 1 ®® g
i 1 ®@
i ;I a&®
_ | @

linearly separable not linearly separable

Multilayer Perceptron Basics
Linear Separability (continued)

The XOR function defines two sets in the R? that are not linearly separable:

Xo=1 - _|_X3 X
T1 T XOR ¢
x1 0 O 0o -
X9 1 0 1 +
xi 11 0o - =01 - e

Multilayer Perceptron Basics
Linear Separability (continued)

The XOR function defines two sets in the R? that are not linearly separable:

Xo =1 -
T1 T XOR ¢
x1 0 O 0o -
X9 1 O 1 +
xi 11 0 - *%2=017

Specification of several hyperplanes.

Layered combination of several perceptrons: the multilayer perceptron.

Multilayer Perceptron Basics
(1) Overcoming the Linear Separability Restriction

A minimum multilayer perceptron y(x) that can handle the XOR problem:

@ ¥o =1 @

XO :1

X2=1— —+ —

X2=0— —_ +

Multilayer Perceptron Basics
(1) Overcoming the Linear Separability Restriction

A minimum multilayer perceptron y(x) that can handle the XOR problem:

XO :1

X2=1— —+

X2=O— —

Multilayer Perceptron Basics
(1) Overcoming the Linear Separability Restriction

A minimum multilayer perceptron y(x) that can handle the XOR problem:

W
X{ — @ 11

h

Multilayer Perceptron Basics
(1) Overcoming the Linear Separability Restriction

A minimum multilayer perceptron y(x) that can handle the XOR problem:

@

XO :1

Multilayer Perceptron Basics
(1) Overcoming the Linear Separability Restriction

A minimum multilayer perceptron y(x) that can handle the XOR problem:

XO :1

_/
% — (=
y2h=1 1 L R X4 +X3
. —0.5 —1 1
wh =)
0.5 —1 1 Yo=0 o +x
2

Multilayer Perceptron Basics
(1) Overcoming the Linear Separability Restriction

A minimum multilayer perceptron y(x) that can handle the XOR problem:

XO :1

N y2=1-
y(X) = heaviside (WO (Heavisidle(Wh x))) i
] —0.5 —1 1
W= 05 —1 1 y7=0 1
we = |]

Remarks:

Q The first, second, and third layer of the shown multilayer perceptron are called input, hidden,
and output layer respectively. Here, in the example, the input layer is comprised of
p+1=3 units, the hidden layer contains /4+1=3 units, and the output layer consists of £=1 unit.

O Each input unit is connected via a weighted edge to all hidden units (except to the topmost
hidden unit, which has a constant input 3 = 1), resulting in six weights, organized as
2x3-matrix W". Each hidden unit is connected via a weighted edge to the output unit,
resulting in three weights, organized as 1x3-matrix W°.

Q The input units perform no computation but only distribute the values z, z1, x5 to the next
layer. The hidden units (again except the topmost unit) and the output unit apply the
heaviside function to the sum of their weighted inputs and propagate the result.

The nine weights w = (w!, ..., wh,, w9, w, w?), organized as W" and W°, specify the
multilayer perceptron (model function) y(x) completely: y(x) = heaviside(W?° (Heavisiée(vvh)

Q The function Heaviside (with capital H) denotes the extension of the scalar heaviside function
to vectors.

For z € R? the function Heaviside(z) is defined as (heaviside(z,), . . ., heaviside(z;))* .

Remarks (history):

Q The multilayer perceptron was presented by Rumelhart and McClelland in 1986. Earlier, but
unnoticed, was a similar research work of Werbos and Parker [1974, 1982].

0 Compared to a single perceptron, the multilayer perceptron poses a significantly more
challenging training (= learning) problem, which requires continuous (and non-linear)
threshold functions along with sophisticated learning strategies.

a Marvin Minsky and Seymour Papert in 1969 used the XOR problem to show the limitations of
single perceptrons. Moreover, they assumed that extensions of the perceptron architecture
(such as the multilayer perceptron) would be similarly limited as a single perceptron. A fatal
mistake. In fact, they brought the research in this field to a halt that lasted 17 years. [Berkeley]

[Marvin Minsky: MIT Media Lab, Wikipedia]

ML:IV-65 Neural Networks ©STEIN/VOLSKE 2024

https://userweb.ucs.louisiana.edu/~isb9112/dept/phil341/histconn.html
https://web.media.mit.edu/~minsky
https://en.wikipedia.org/wiki/Marvin_Minsky

Multilayer Perceptron Basics
(2) Overcoming the Non-Differentiability Restriction

The sigmoid function ¢() as threshold function:

1 do(z)
Cl4e dz

a(z) =0(z)-(1-0(2))

A perceptron with a non-linear and differentiable threshold function:

Output [heaviside]

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#logistic-model-function
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-perceptron-learning.pdf#perceptron-model2

Multilayer Perceptron Basics
(2) Overcoming the Non-Differentiability Restriction (continued)

Computation of the perceptron output y(x) with the sigmoid function o () :

|
y(x) = o(wlx) = — f

An alternative to the sigmoid function is the tanh() function:

1

ez o 6—2 622 o 1

tanh(z) = e ter e+l J N
-1

Remarks:

O Employing a nonlinear function as threshold function in the perceptron, such as sigmoid or
heaviside, is a prerequisite to synthesize complex nonlinear functions via layered
composition.

O Note that a single perceptron with sigmoid activation is identical with the logistic regression
model function.

Q The derivative of o() has a canonical form. It plays a central role for the computation of the
gradient of the loss function in multilayer perceptrons. Derivation:

do(z) ~ d 1 d -1
dz dz 1+e 2 dz

= —1-(14+e7%) -7 (=1

= o0(z)-0(z2) -
= o0(2)-0(2)- (1+e*—-1)
= o(2)-0(2) - (0(2)"" = 1)
= o(2) (1-0(2)

Multilayer Perceptron Basics
(2) Overcoming the Non-Differentiability Restriction (continued)

XO :1
m
Linear activation : : @
w,
. /

y Linear regression

Multilayer Perceptron Basics
(2) Overcoming the Non-Differentiability Restriction (continued)

XO:1N
0

Linear activation : : —y Linear regression
Xp %
XO =1
N‘
Heaviside activation : : —y Perceptron algorithm
%’
Xp

ML:IV-70 Neural Networks ©STEIN/VOLSKE 2024

Multilayer Perceptron Basics

(2) Overcoming the Non-Differentiability Restriction (continued)

Linear activation

Heaviside activation

Sigmoid activation

ML:IV-71 Neural Networks

XO :1
N
4
; /

D

y

y

y

Linear regression

Perceptron algorithm

Logistic regression

© STEIN/VOLSKE 2024

Multilayer Perceptron Basics
(2) Overcoming the Non-Differentiability Restriction (continued)

beyond a single
hyperplane

Network with
linear units

Nonlinear decision
boundaries but

no gradient information

Network with
heaviside units

Nonlinear decision
boundaries and
gradient information

Network with
sigmoid units

ML:IV-72 Neural Networks ©STEIN/VOLSKE 2024

machine-learning/unit-en-gradient-descent.pdf#gradient-descent-linear-regression-zero-one-loss4

a

a

A multilayer perceptron with linear threshold functions can be expressed as a single linear
function and hence is equivalent to the power of a single perceptron only.

Consider the following exemplary composition of three linear functions as a multilayer
perceptron with p input units, two hidden units, and one output unit: y(x) = W° [IWhx]

The weight matrices are as follows:

h h

wll o« o e wl
wh= | Tl = ug |
w21 DY wlp

A straightforward derivation then yields:

h h
wiry + ... + wi.x
h 1171 1pTp
y(x) =W W"x] = [w? wg} A A
= wouwhx + + wluwh x, + wlwh xy + + wouh
= wjwpr T o .. 1W1pTp W91 Ty + ... 2 W1pTp
= (wdwh + wlwh)y + + (Wl + wdwh)z
= 1W1y oWy)Ty T ... 1 W1y 9 Wiy)Tp

= wir1+ ... twpr, = wlx

Multilayer Perceptron Basics
Unrestricted Classification Problems

Setting:
o X is a multiset of feature vectors from an inner product space X, X C R?.

o C = {0,1}"is the set of all multiclass labelings for k classes.

o D={(xy,c1),...,(x,,¢,)} C X x Cis amultiset of examples.

Learning task:

o Fit D using a multilayer perceptron y() with a sigmoid activation function.

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-elements.pdf#inner-product-space

Multilayer Perceptron Basics
Unrestricted Classification Problems: lllustration

Two-class classification problem:

Xo .. o®
| ° oo, .’
107 o & “gd St
0.5 B el °
-_..o‘o .:o. .0.° ..'3
° %oy 0%, o %¢
0.0 o'.:. ‘...... . :......‘o:.o.‘ °
[° '.. .: .. e
-0.5 ..’ 'g".....
°
-1.0 - e

X2 e o®
104 ° ’oo. :‘ o o3
. ® e "o, ° “&.’i
‘..’o “o ..'.' ‘. C °
051s @ o o 8, @
: : °ce "‘.o oA :
0.0 7 ".: "‘,"oo A }o.’.“: Y
-0.5 ¢ ° '.. .: .. [X}
=~ ‘o! “."‘o”.'
.
1.0 .

ML:IV-75 Neural Networks

© STEIN/VOLSKE 2024

Multilayer Perceptron Basics
Unrestricted Classification Problems: lllustration

Two-class classification problem:

X2 . % o®
oo
1.0 - ® °>) ° %
.:'5.S .."0-'..:"'? °
) ® o
R E A R L
0.0 :‘: .:o. oo, oezoo. °
= ... “.... Y }.....':.‘
0.5 : ¢ Ceoe o L
R °ed o‘o"‘o..f
°
-1.0 - hd

-10 05 00 05 10 15 20 X

Separated classes:

Xo ®
o oo %
1.0 S 0
'.*'o‘ ".,. °® g'é
0.5 4 ' Y ‘.‘ @ [J ®
: S e 0: s . o W
° * ':o °.'.o o’:.o’ ¢
- °
0.0 0.. “o.ﬂ...}...:‘:.‘ °
-0.5 4 ® '0. o: ... [)
' P LA ..°
°
-1.0 C

| | | |
-10 05 00 05 10 15 20 X

ML:IV-76 Neural Networks

\\\‘
’\\‘\\\

i

0

Q

\\\‘\“‘“ «r/;,/;//;

\\ s“..,,//

-

‘ ”0"‘."0" ltl

Q
’ ;”;' ""'""'0’»“

o ;
MMM
&23“»‘&«‘ 0

.' ‘Q‘Q »’"
" e

1
///

“‘Q 0’1 ,I

y“

‘ﬂ "

"" o,-/l/ l

© STEIN/VOLSKE 2024

Chapter ML:IV

V. Neural Networks

Perceptron Learning

Multilayer Perceptron Basics

Multilayer Perceptron with Two Layers
Multilayer Perceptron at Arbitrary Depth
Advanced MLPs

Automatic Gradient Computation

I Ty I N B I

ML:IV-77 Neural Networks ©STEIN/VOLSKE 2024

Multilayer Perceptron with Two Layers
Network Architecture

A single perceptron y(x):

O,

XO :1

Multilayer Perceptron with Two Layers
Network Architecture

Multilayer perceptron y(x) with a hidden layer and k-dimensional output layer:

Multilayer Perceptron with Two Layers
Network Architecture

Multilayer perceptron y(x) with a hidden layer and k-dimensional output layer:

Multilayer Perceptron with Two Layers
Network Architecture

Multilayer perceptron y(x) with a hidden layer and k-dimensional output layer:

X (e extended input space) Y (e extended feature space) Y (e output space)

wh we

Multilayer Perceptron with Two Layers
(1) Forward Propagation [mip arbitrary depth]

Multilayer perceptron y(x) with a hidden layer and k-dimensional output layer:

X (e extended input space) Y (e extended feature space) Y (e output space)

wh we

Model function evaluation (= forward propagation) :

¥ - (v (e)

Remarks:

a

Each input unit is connected to the hidden units 1, ..., resulting in [-(p+1) weights,
organized as matrix W" € R+, Each hidden unit is connected to the output units 1, ..., k,
resulting in k-(I+1) weights, organized as matrix W° € R**(+1),

The hidden units and the output unit(s) apply the (vectorial) sigmoid function, o, to the sum
of their weighted inputs and propagate the result as y" and y respectively. For z € R? the
vectorial sigmoid function o (z) is defined as (o (z1),...,0(zq))%.

The parameter vector w = (wf, ... ,w{;, w%y, ..., w?), organized as matrices W" and W°,

specifies the multilayer perceptron (model function) y(x) completely: y(x) = o (W?° (G(V},hx))).

The shown architecture with £ output units allows for the distinction of &k classes, either within
an exclusive class assignment setting or within a multi-label setting. In the former setting a
so-called “softmax layer” can be added subsequent to the output layer to directly return the
class label 1,... k.

The non-linear characteristic of the sigmoid function allows for networks that approximate
every (computable) function. For this capability only three “active” layers are required, i.e.,
two layers with hidden units and one layer with output units. Keyword: universal approximator
[Kolmogorov theorem, 1957]

Multilayer perceptrons are also called multilayer networks or (artificial) neural networks, ANN
for short.

https://neuron.eng.wayne.edu/tarek/MITbook/chap2/2_3.html

Multilayer Perceptron with Two Layers
(1) Forward Propagation (continued) [network architecture]

(a) Propagate x from input to hidden layer:

wh e RXeH) ¢ Rt

(aty o, [T1T) o

Multilayer Perceptron with Two Layers
(1) Forward Propagation (continued) [network architecture]

(a) Propagate x from input to hidden layer:

wh e RXeH) ¢ Rt

h h 1] \ -
(wlo e o o wlp 1 y]h
X1
o _ = 5
h
h h Y
K wy Wy | L Lp) L

(b) Propagate y" from hidden to output layer:

We e ka(l+1) yh c Rl—i—l

(o] 0] [i
(wy ... ws 1h
Y1

(0] 0
\ wk,o . e wk,l yl

y € Rf

Y1

Yk

Multilayer Perceptron with Two Layers

(1) Forward Propagation: Batch Mode

(a) Propagate x from input to hidden layer:

Wh c Rlx (p+1)

(b) Propagate y" from hidden to output layer:

X c Rt
1 1
11 Lin

WO c ka(l+1)

(0]

Wry - - -

(0]
Wy

Wy

h
: yln

: yln i

h
: yln

Y |

Y .-

Ye1 -

Yin

Ykn

Multilayer Perceptron with Two Layers
(2) Backpropagation [inear regression] [mip arbitrary depth]

The considered multilayer perceptron y(x):

X (e extended input space) yh (e extended feature space) Y (e output space)
\ ~~ ‘/ \ ~~ 7
Parameters w: wh e R+ WO ¢ RF*(+1)
<

ML:IV-87 Neural Networks ©STEIN/VOLSKE 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#gradient-descent-linear-regression-squared-loss4

Multilayer Perceptron with Two Layers
(2) Backpropagation [inear regression] [mip arbitrary depth]

The considered multilayer perceptron y(x):

X (e extended input space) Y (e extended feature space) Y (e output space)

wh we

<]

Calculation of derivatives (= backpropagation) wrt. the global squared loss:

Ly(w) = —-RSS(w) = ZZ

(x,c)eD u=1

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#gradient-descent-linear-regression-squared-loss4

Multilayer Perceptron with Two Layers
(2) Backpropagation (continued)

Lo(w) usually contains various local minima:

1 k
L2(W) = 5 : Z(Cu - yu(X))2
(x,¢)

x,c)eD u=1

©STEIN/VOLSKE 2024

ML:IV-89 Neural Networks

Multilayer Perceptron with Two Layers
(2) Backpropagation (continued)

Lo(w) usually contains various local minima:

ZZ

xceDu 1

V Lo(w) — 0Ly (W) OLy(w) OLo(w) 0Ly (w)
? B ows, Y ow?, ’ 8w§‘0 Y

h
8wlp

©STEIN/VOLSKE 2024

ML:IV-90 Neural Networks

Multilayer Perceptron with Two Layers
(2) Backpropagation (continued)

Lo(w) usually contains various local minima:

k
Lw) = 3 S (e~ mlx))
(x,c)

(x,c)eD u=1

VL2<W> =

(a) Gradient in direction of W°, written as matrix:

9Lo(w)

0
awlo

Lo (w)
8w20

ML:IV-91 Neural Networks

8L2 (W)

(0]
ow3,

ILo(w)

(0]
dwy,

9Lo(w)

0
8wkl

g e e e

OLy(w) OLo(w)

? 7

0
8wk,l

= VOLQ (W)

h
owy,

g ..

°)

h
8wlp

8L2 (W)

(b) Gradient in direction of WM :

Lo (w)
aw?o

ILa(w)

h
8wlo

Lo (w)
apr

ILy(w)

h
8wlp

= V"Ly(w)

© STEIN/VOLSKE 2024

Remarks:

a

“Backpropagation” is short for “backward propagation of errors”. Backpropagation is a
method of calculating the derivatives (the gradient).

Basically, the computation of the gradient V L,(w) is independent of the organization of the
weights in matrices W" and 1W° of a network (model function) y(x). Adopt the following view
instead:

To calculate V Ly(w) one has to calculate each of its components 0Ly(w)/0w, w € w, since
each weight (parameter) has a certain impact on the global loss L,(w) of the network. This
impact—as well as the computation of this impact—is different for different weights, but it is
canonical for all weights of the same layer though: observe that each weight w influences

successor graph is identical for all weights of the same layer.

Hence it is convenient, but not necessary, to process the components of the gradient
layer-wise (matrix-wise), as V°L,(w) and V"L,(w) respectively. Even more, due to the
network structure of the model function y(x) only two cases need to be distinguished when
deriving the partial derivative 0L,(w)/0w of an arbitrary weight w € w: (a) w belongs to the
output layer, or (b) w belongs to some hidden layer.

The derivation of the gradient for the two-layer MLP (and hence the weight update processed

for MLPs at arbitrary depth.

Multilayer Perceptron with Two Layers
(2) Backpropagation (continued) [iinear regression] [mip arbitrary depth]

(a) Update of weight matrix 1W°:
We =Ww°+ AW?°,
using the V°-gradient of the loss function L,(w) to take the steepest descent:

AW® = —p- VOLy(w)

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#gradient-descent-weight-adaptation

Multilayer Perceptron with Two Layers
(2) Backpropagation (continued) [iinear regression] [mip arbitrary depth]

(a) Update of weight matrix 1W°:
We =W°+ AW®°,

using the V°-gradient of the loss function L,(w) to take the steepest descent:

AW® = —p- VOLy(w)

[OLa(w) OLo(w)
gy 0w
e —’)7 . .
OLo(w) JOLo(w)
8wgo T awgl

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#gradient-descent-weight-adaptation

Multilayer Perceptron with Two Layers
(2) Backpropagation (continued) [mlp arbitrary depth]

(b) Update of weight matrix W :
Wh=wh 4 Awh,

using the V"-gradient of the loss function L,(w) to take the steepest descent:

AWD = —n- VLo (w)

[OLy(w) OLy(w)
oufy T oul)
= —’)7- .
OLo(w) Lo (w)
oufy T oul)

.....

Multilayer Perceptron with Two Layers
The IGD Algorithm

Algorithm: 1GDwp, Incremental Gradient Descent for the two-layer MLP.

Input:

Output:

g s w N

Ta.

b.

10.
11.

D Multiset of examples (x, ¢) with x € R?, ¢ € {0,1}*.
n Learning rate, a small positive constant.

Wh We Weights of I-(p+1) hidden and k-(I+1) output layer units.

initialize_random_weights(W" W°), t=0
REPEAT
t=t+1
(x,c) e D

UNTIL(convergence(D,y(),t))
return(W", W°)

[Python code]

machine-learning/algorithm-mlp-training.py.txt

Multilayer Perceptron with Two Layers
The IGD Algorithm (continued) [mlp arbitrary depth]

Algorithm: 1GDwp, Incremental Gradient Descent for the two-layer MLP.

Input: D Multiset of examples (x, ¢) with x € R?, ¢ € {0,1}*.
n Learning rate, a small positive constant.

Output: Wh We Weights of I-(p+1) hidden and k-(I+1) output layer units.

1. initialize_random_weights(W", W°), t =0
2. REPEAT
3. t=t+1
4. (x,c) e D
1
=p (O'(Wh x))
y(x) o (W y"(x))
6.
Ta.
To.
8.
9.

10. UNTIL(convergence(D,y(),t))
11. return(Wh Wwo) [Python code]

machine-learning/algorithm-mlp-training.py.txt

Multilayer Perceptron with Two Layers
The IGD Algorithm (continued) [mlp arbitrary depth]

Algorithm: 1GDwp, Incremental Gradient Descent for the two-layer MLP.

Input: D Multiset of examples (x, ¢) with x € R?, ¢ € {0,1}*.
n Learning rate, a small positive constant.

Output: Wh We Weights of I-(p+1) hidden and k-(I+1) output layer units.

1. initialize_random_weights(W", W°), t =0
2. REPEAT
3. t=t+1
4. (x,c) e D
5. y'(x) = (a(wl/h x))
y(x) = a(W°y"(x))

6. 0 =c—y(x)

Ta.

To.
8.
9.

10. UNTIL(convergence(D,y(),t))
11. return(Wh Wwo) [Python code]

machine-learning/algorithm-mlp-training.py.txt

Multilayer Perceptron with Two Layers
The IGD Algorithm (continued) [mlp arbitrary depth]

Algorithm: 1GDwp, Incremental Gradient Descent for the two-layer MLP.
Input: D Multiset of examples (x, ¢) with x € R?, ¢ € {0,1}*.

n Learning rate, a small positive constant.
Output: Wh We Weights of I-(p+1) hidden and k-(I+1) output layer units.

1. initialize_random_weights(W", W°), t =0
2. REPEAT

3. t=t+1
4

5

(x,c) € D
y'(x) = (a(wl/h x))

y(x) = o(Woy"(x))

6. 0 =c—y(x)
Ta. 0°=00y(x) o ((1-yx)
"= [(wWo)r %) oy e -y,
Tb. W=7 (6" @ %)

WO =1p-(6°®@y"(x))

10. UNTIL(convergence(D,y(),t))
11. return(Wh Wwo) [Python code]

machine-learning/algorithm-mlp-training.py.txt

Multilayer Perceptron with Two Layers
The IGD Algorithm (continued) [mlp arbitrary depth]

Algorithm: 1GDwp, Incremental Gradient Descent for the two-layer MLP.

Input: D Multiset of examples (x, ¢) with x € R?, ¢ € {0,1}*.
n Learning rate, a small positive constant.

Output: Wh We Weights of I-(p+1) hidden and k-(I+1) output layer units.

1. initialize_random_weights(W", W°), t =0
2. REPEAT

3. t=t+1

4 (x,c) e D

S y'(x) = (a(wl/h x))

y(x) = o(Woy"(x))

6. 0 =c—y(x)
Ta. 0°=00y(x) o ((1-yx)
S"=[(WO)r ey e d-y",
7b. AWh:n-(dh@)x)
WO =n-(6° @ y"(x))
8. Wh=Wh4+.aW", Wo=W°4 . W°
9.

10. UNTIL(convergence(D,y(),t))
11. return(Wh Wwo) [Python code]

machine-learning/algorithm-mlp-training.py.txt

Multilayer Perceptron with Two Layers
The IGD Algorithm (continued) [mlp arbitrary depth]

Algorithm: 1GDwp, Incremental Gradient Descent for the two-layer MLP.

Input:

Output:

g s w N

Ta.

b.

10.
11.

D Multiset of examples (x, ¢) with x € R?, ¢ € {0,1}*.
n Learning rate, a small positive constant.

Wh We Weights of I-(p+1) hidden and k-(I+1) output layer units.

initialize_random_weights(W" W°), t=0
REPEAT
t=t+1
(x,c) e D

Model function evaluation.

Calculation of residual vector.

Calculation of derivative of the loss.

UNTIL(convergence(D,y(),t))
return(W", W°)

Parameter vector update = one gradient step down.

[Python code]

machine-learning/algorithm-mlp-training.py.txt

Remarks:

Q The symbol »®« denotes the Hadamard product, also known as the element-wise or the
Schur product. It is a binary operation that takes two matrices of the same dimensions and
produces another matrix of the same dimension as the operands, where each element is the
product of the respective elements of the two original matrices. [Wikipedia]

O The symbol »®« denotes the dyadic product, also called outer product or tensor product.
The dyadic product takes two vectors and returns a second order tensor, called a dyadic in
this context: v @ w = vw?’. [Wikipedia]

Q [IV], ., denotes the projection operator, which returns the rows 1 through [of matrix W as a

new matrix.

Q AW and AW indicate an update of the weight matrix per batch, D, or per instance, (x,c) € D,
respectively.

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Dyadics

Chapter ML:IV

V. Neural Networks

Perceptron Learning

Multilayer Perceptron Basics

Multilayer Perceptron with Two Layers
Multilayer Perceptron at Arbitrary Depth
Advanced MLPs

Automatic Gradient Computation

I Ty I I B I

ML:IV-103 Neural Networks ©STEIN/VOLSKE 2024

Multilayer Perceptron at Arbitrary Depth

Network Architecture [mip two layers]

) h
yha- Yy Y=Y (¢ output space)

X (e extended input space) Yy

wh Wha = py°

Multilayer Perceptron at Arbitrary Depth

(1) Forward Propagation [mip two layers]

Multilayer perceptron y(x) with d layers and k-dimensional output:

X (e extended input space) Yy

W

Model function evaluation (= forward propagation) :

1
yl(x) = y(x) = s (th (U (N (;(Whl x)

Multilayer Perceptron at Arbitrary Depth

(2) Backpropagation [mip two layers]

The considered multilayer perceptron y(x):

X (e extended input space) Yy

=Y (e output space)

wh Wha = o

<]

Calculation of derivatives (= backpropagation) wrt. the global squared loss:

Ly(w) = —RSS(w) = ZZ

(x,c)eD u=1

Multilayer Perceptron at Arbitrary Depth

(2) Backpropagation (continued) [mlp two layers]

e R A Ty
Owy owy, 0wy Qwy

T
V Lo(w) — (8L2(W) OLo(W) OLy(W) @L2(W)> where I, = no.__rows(W")

Multilayer Perceptron at Arbitrary Depth

(2) Backpropagation (continued) [mlp two layers]

Update of weight matrix WM, 1 < s < d:

Whs = Whs 4 AWhs,
using the V"s-gradient of the loss function L,(w) to take the steepest descent:

AWhNs = —n . Vs Ly(w)

Multilayer Perceptron at Arbitrary Depth

(2) Backpropagation (continued) [mlp two layers]

Update of weight matrix WM, 1 < s < d:

Whs = Whs 4 AWhs,
using the V"s-gradient of the loss function L,(w) to take the steepest descent:

AWhNs = —n . Vs Ly(w)

- OLo(w) OLa(w) 7
ouls T auls 1 I, = no._rows(W"),
o
= —n- : , Where yh=x
OLy(w) OLy(w) iy
e =
8wlsso 8wzsszs,1

< p. 110

Multilayer Perceptron at Arbitrary Depth

(2) Backpropagation (continued) [mlp two layers]

(-3 [(e—y(x) 0 yx) 6 (1 - y(x)] @ y"i(x) its = d

oMt = §°

n- > (W)) oy o1 -y)] e@yix) if l<s<d

AW s — ¢ 1ols
5"
-S> (W) 8™ oynix) o1 -yhx)], | ®x 51
D
\ 5h1

where I, = no._rows(W")

ML:IV-110 Neural Networks ©STEIN/VOLSKE 2024

Multilayer Perceptron at Arbitrary Depth
The IGD Algorithm

Algorithm: |GDw_p, Incremental Gradient Descent for the d-layer MLP.
Input: D Multiset of examples (x, ¢) with x € R?, ¢ € {0, 1}*.
n Learning rate, a small positive constant.

Output: Wwh .., Whe Weight matrices of the d layers.

FOR s=1 TO d DO initialize_random_weights(W"s) ENDDO, t =10
REPEAT
t=1t+1
(x,c) € D

g s w N -

Ta.

Tb.

10. UNTIL(convergence(D,y(),t))
11. return(Wh, ... Wha) [Python code]

machine-learning/algorithm-multiple-hidden-layer-mlp-training.py.txt

Multilayer Perceptron at Arbitrary Depth

The IGD Algorithm (continued) [mip two layers]

Algorithm: |GDw_p, Incremental Gradient Descent for the d-layer MLP.
Input: D Multiset of examples (x, ¢) with x € R?, ¢ € {0,1}*.
n Learning rate, a small positive constant.

Output: Wwh .., Whe Weight matrices of the d layers.

1. FOR s=1 TO d DO initialize_random_weights(W") ENDDO, t =0
2. REPEAT
3. t=1t+1
4. (x,c) € D
=k y™"(x) = (O'(VI}'H x))
FOR s =2 TO d—1 DO y™(x) = (5 yr-1(x)) ENDDO
y(x) = o(Why"i(x))
6.
Ta.
Tb.
8.
9.

10. UNTIL(convergence(D,y(),t))
11. return(Wh, ... Wha) [Python code]

machine-learning/algorithm-multiple-hidden-layer-mlp-training.py.txt

Multilayer Perceptron at Arbitrary Depth

The IGD Algorithm (continued) [mip two layers]

Algorithm: |GDw_p, Incremental Gradient Descent for the d-layer MLP.
Input: D Multiset of examples (x, ¢) with x € R?, ¢ € {0,1}*.
n Learning rate, a small positive constant.

Output: Wwh .., Whe Weight matrices of the d layers.

1. FOR s=1 TO d DO initialize_random_weights(W") ENDDO, t =0
2. REPEAT
3. t=1t+1
4. (x,c) € D
=k y™"(x) = (O'(VI}'H x))
FOR s =2 TO d—1 DO y™(x) = (5 yr-1(x)) ENDDO
y(x) = o(Why"i(x))
6. 0 =c—y(x)
Ta.
To.
8.
9.

10. UNTIL(convergence(D,y(),t))
11. return(Wh, ... Wha) [Python code]

machine-learning/algorithm-multiple-hidden-layer-mlp-training.py.txt

Multilayer Perceptron at Arbitrary Depth

The IGD Algorithm (continued) [mip two layers]

Algorithm: |GDw_p, Incremental Gradient Descent for the d-layer MLP.
Input: D Multiset of examples (x, ¢) with x € R?, ¢ € {0,1}*.
n Learning rate, a small positive constant.

Output: Wwh .., Whe Weight matrices of the d layers.
1. FOR s=1 TO d DO initialize_random_weights(W") ENDDO, t =0
2. REPEAT
3. t=t+1
4. (x,c) € D
=k y™" (x) = (O'(V[}hl x))

Ta.

Tb.

FOR s =2 TO d—1 DO yM™(x) =
y(x) = o(Whyhei(x))

6 =c—y(x)

" =d0yx) o1 -yx)

FOR s=d-1 DOWNTO 1 DO ™ = [(WM+)T ") ®y™(x) ® (1 — yM(x))], , ENDDO
AWhl =n- (5h1 X X)

FOR s =2 TO d DO WM =5 (6™ @ y™1(x)) ENDDO

10. UNTIL(convergence(D,y(),t))
11. return(Wh, ... Wha) [Python code]

machine-learning/algorithm-multiple-hidden-layer-mlp-training.py.txt

Multilayer Perceptron at Arbitrary Depth

The IGD Algorithm (continued) [mip two layers]

Algorithm: |GDw_p, Incremental Gradient Descent for the d-layer MLP.
Input: D Multiset of examples (x, ¢) with x € R?, ¢ € {0,1}*.
n Learning rate, a small positive constant.

Output: Wwh .., Whe Weight matrices of the d layers.
1. FOR s=1 TO d DO initialize_random_weights(W") ENDDO, t =0
2. REPEAT
3. t=t+1
4. (x,c) € D
=k y™" (x) = (O'(V[}hl x))

Ta.

Tb.

1

FOR s=2 TO d—1 DO th(X) = (O'(thth*l(X))

y(x) = o(Whyhei(x))

6 =c—y(x)

" =60yx) o1 -yx)

FOR s=d-1 DOWNTO 1 DO ™ = [(WM+)T ") ®y™(x) ® (1 — yM(x))], , ENDDO
AWM = n - (5h1 ® X)

FOR s=2 TO d DO W™ =p. (6™ @ y"1(x)) ENDDO

FOR s=1 TO d DO W™ =W" +.W" ENDDO

) ENDDO

10. UNTIL(convergence(D,y(),t))
11. return(Wh, ... Wha) [Python code]

machine-learning/algorithm-multiple-hidden-layer-mlp-training.py.txt

Multilayer Perceptron at Arbitrary Depth

The IGD Algorithm (continued) [mip two layers]

Algorithm: |GDw_p, Incremental Gradient Descent for the d-layer MLP.
Input: D Multiset of examples (x, ¢) with x € R?, ¢ € {0,1}*.
n Learning rate, a small positive constant.

Output: Wwh .., Whe Weight matrices of the d layers.

1. FOR s=1 TO d DO initialize_random_weights(W") ENDDO, t =0
2. REPEAT
3. t=t+1
4. (x,c) € D
5.
Model function evaluation.
0. Calculation of residual wvector.
Ta.
b Calculation of derivative of the loss.
8. Parameter vector update = one gradient step down.
9.

10. UNTIL(convergence(D,y(),t))
11. return(Wh, ... Wha) [Python code]

machine-learning/algorithm-multiple-hidden-layer-mlp-training.py.txt

9 o 1 k ,
ows Lalw) = ouls 2 Z Z (Cu = yu(x))

o ij (x,c)eD u=l

k 9 la—1
) _Z Z 52d'ﬂz whd . a1 (x)
D

u=1 Wi y=0
Q Partial derivative for a weight in WM (output layer), i.e., s =d:

0 la—1 9
ow hd ZZghd,Z o 25 ygd '(x)

v=0 i

= — Z é?d . y?d—l(x)
D

u*x

yhdfl (X)

0 Partial derivative for a weight in a weight matrix W, s < d—1:

0 k la—1 9
La(w) = =30 D 0ut-d) ool o
oM = e 2)
k la—1 5
= =D sl) (L=l) S Y)
D u=1 v=1 awzj
laci K 5
= =D D> a0 - (L= gl (%) - Wy (x)
la—1 5
= =) (WM -yl (x) (L= gl (x) Wy (x)
la—1 9 ly o
= — Z Z 5hd—1 S Z whd71 . yhd_2(x)
. h, vw w
D v=1 awm w—0

0 Partial derivative for a weight in 1"+ (next to output layer), i.e., s = d—1:

lg—1 lg—2
0 ha- O hipa
awhdfl L2(W> - ; Zl 5vd 1 Z ha—1 va;) ywd 2(X)

ij w0 Ow;;

hg—1 hgo
- Z 0; Y (x)
D

O Instead of writing out the recursion further, i.e., considering a weight matrix WM, s < d—2, we
substitute s for d—1 (similarly: s+1 for d) to derive the general backpropagation rule:
0
ow

ij

Ly(w) = — Z 5?5 -y]hs‘l(x)

_ Z (W25+1)T5hs+1 . ylhs (X) . (1 — yzhs (X)) . y;sil(X)

“h.s‘
0,

0 Plugging the result for ﬁLQ(w) into — - || yields the update formula for AW"™. In detail:

ij

— For updating the output matrix, W" = W°, we compute
§" = (c—y(x) Oy(x) o (1-yx))
— For updating a matrix W", 1 < s < d, we compute
5hs _ K({,,Vh_%l)"l‘ 5hs+l> ® yh"(X) ® (1 o yh”(X))L AAAAA . Where th+1 € Rls+1><(ls+]-)7
oM+ € Rls+1,
yhS c Rls"’_l’

and y™(x) =x.

0 Hints:
0) = |o (W ¥ ()| = o (W ¥ ()

2 Chain rule with d—dza(z) =0(2)- (1 —0(2)), where o(z) :=y,(x) and z = Wha yhi-1(x):

(%) = =2 (o (Wi Y™ () = =2 (0/() = u(x) - (1= palx)) - =2 (Wi y"oo1(x)

Note that in the partial derivative expression the symbol x is a constant, while wf] is the
variable whose effect on the change of the loss L, (at input x) is computed.

@ Whi yhii(x) = wzg : ygd”(x) +...+ wzj’ - yhd*l(x) + o 4w I yl:il (x),

where I; | = no._rows(W"hi-1),

4) Rearrange sums to reflect the nested dependencies that develop naturally from the

backpropagation. We now can define 50t in layer d—1 as a function of 6™ (layer d).

k
® Y oy -whi = (Wh)Ts™ (scalar product).

u=1

ML:IV-120 Neural Networks ©STEIN/VOLSKE 2024

77 ;7 » determine those terms in y, (x)
that depend on ™ (shown orange). All other terms are in the role of constants.
ij

°
° . o ®
. .h .
° a-1 :
Yj h '
o . Wy
°
° : :
°
yhs-1 yhs th+1 yh"’1 yhd = Y (e output space)
th th = WO
1 o) ~ yh; (x) = y(x)
B h () ~yM(x)
yu(x) = || W o (.. <;(th hSl(x)>> e > ~ yhs+1(X)
) ()~ yM(x)

calculate the partial derivative of y,(x) with respect to “’Z determine those terms in y,(x)
that depend on wg (shown orange). All other terms are in the role of constants.

yhs-1 hs yhs+1
whs Whe — W
1 o(.) ~ y“;d(ic) = y(x)
yu(x) = |o | Wh| (. (e s))) - N zhsﬂ 83

following identities:
Whett = 70, g

=M =4° yh=yh and [, =1

