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Perceptron Learning
Biological Inspiration

A very simplified model of a neuron:

cell body
dendrites

synapse

axon
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Perceptron Learning
Biological Inspiration (continued)

Neuron characteristics:

q The numerous dendrites of a neuron serve as its input channels for electrical
signals.

q At particular contact points, the so-called synapses, electrical signals can be
initiated.

q A synapse can initiate signals of different strengths, where the strength is
encoded by the frequency of a “pulse train”. Keyword: frequency modulation

q The cell body of a neuron accumulates the incoming signals.

q If a particular stimulus threshold is exceeded, the cell body generates a
signal, which is output via the axon.

q The processing of the signals is unidirectional. (from left to right in the figure)
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Remarks (facts about the human brain):

q The human brain is comprised of about 1011 neurons.

q The length of a dendrite or an axon is about 100 micron. A micron = 10−6 m = 10−3 mm.

q The dendrites of a neuron are connected to 100 000 – 200 000 other neurons.

q An axon is connected to up to 10 000 synapses of other neurons.

q The human brain contains about 1012 synapses.

q The switching of a neuron is not faster than 10−3 s, which is rather slow compared to the
10−12 s for electrical circuits. This means that within the typical human reaction time of about
10−1 s only a few hundred neuronal activities can take place.

ML:IV-4 Neural Networks © STEIN/LETTMANN 2024



Perceptron Learning
History

1943 Warren McCulloch and Walter Pitts present a model of the neuron.

1949 Donald Hebb postulates a new learning paradigm: reinforcement only for
active neurons. (those neurons involved in a decision process)

1958 Frank Rosenblatt develops the perceptron model. (see next slide)

1962 Rosenblatt proves the perceptron convergence theorem.

1969 Marvin Minsky and Seymour Papert publish a book on the limitations of the
perceptron model.

1970

... Research on ANNs (artificial neural networks) paused.

1985

1986 David Rumelhart and James McClelland present the multilayer perceptron.
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Perceptron Learning
The Perceptron of Rosenblatt (1958)
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Perceptron Learning
The Perceptron of Rosenblatt (1958)

Input Output
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q Rosenblatt’s perceptron relies on the neuron model of McCulloch/Pitts [1943].

q The weights wj model the reinforcement factor.

q The threshold function models a decision rule.

q The perceptron is a “feed forward system”.
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Perceptron Learning
The Perceptron of Rosenblatt (1958)
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Perceptron Learning
The Perceptron of Rosenblatt (1958)
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j=0

heaviside ( )

y(x) = heaviside(
p∑
j=1

wjxj − θ)

= heaviside(
p∑
j=0

wjxj), with w0 = −θ, x0 = 1

ML:IV-9 Neural Networks © STEIN/LETTMANN 2024



Remarks:

q By extending both the weight vector by w0 = −θ and the feature vectors by the constant
feature x0 = 1, the learning algorithm gets a canonical form.

q A single hypothesis is determined by (w0, w1, . . . , wp).

q Since the range of the model function y(x) is {0, 1}, the heaviside function is used for
discretization (= class assignment). In the section

::::::
From

::::::::::::::::
Regression

:::
to

::::::::::::::::::
Classification of the

part Machine Learning Basics, the range of the model function is {−1, 1} and the sign
function does the discretization, which in principle is no difference.

q The heaviside function is named after the mathematician Oliver Heaviside.
[Wikipedia: step function, Oliver Heaviside]

q The threshold function is also called “activation function”.
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Perceptron Learning
Binary Classification Problems

Setting:

q X is a multiset of feature vectors from an
::::::::
inner

:::::::::::::
product

::::::::::
space

::::
X, X ⊆ Rp.

q C = {0, 1} is a set of two classes. Similarly: {−1, 1}, {	,⊕}, {no, yes}, etc.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit D using a perceptron y().
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Perceptron Learning
The PT Algorithm [algorithms:

:::::
LMS,

:::::::
BGDσ,

:::::
BGD,

::::
IGD, PT ]

Algorithm: PT Perceptron Training
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {0, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

PT(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1

4. (x, c) = random_select(D)

5. y(x)
(?)
= heaviside(wTx)

6. δ = c− y(x) // y(x) ∈ {0, 1}, c ∈ {0, 1} ; δ ∈ {0, 1,−1}
7. ∆w

(?)
= η · δ · x

8. w = w + ∆w

9. UNTIL(convergence(D, y(), t))

10. return(w)
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Perceptron Learning
The PT Algorithm [algorithms:

:::::
LMS,

:::::::
BGDσ,

:::::
BGD,

::::
IGD, PT ]

Algorithm: PT Perceptron Training
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {0, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

PT(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1

4. (x, c) = random_select(D)

5. y(x)
(?)
= heaviside(wTx)

6. δ = c− y(x) // y(x) ∈ {0, 1}, c ∈ {0, 1} ; δ ∈ {0, 1,−1}
7. ∆w

(?)
= η · δ · x

8. w = w + ∆w

9. UNTIL(convergence(D, y(), t))

10. return(w)

Model function evaluation.

Calculation of indicator for true/false hyperplane side.

Calculation of weight correction.

Parameter vector update.
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Remarks:

(?)
:::::::::
Recap. We consider the feature vector x in its extended form when used as operand in a
scalar product with the weight vector, wTx, and consequently, when noted as argument of
the model function, y(x). This means that x = (1, x1, . . . , xp)

T ∈ Rp+1, and x0 = 1.

q The variable t denotes the time. The learning algorithm gets an example presented at each
point in time and may adapt the weight vector.

q For an example (x, c) ∈ D the weight adaptation rule compares the target class c (the ground
truth) to the class computed by the perceptron. In case of a wrong classification of x, δ is
either −1 or +1, regardless of the exact numeric difference between c and wTx.

In contrast, regression-based algorithms use the goodness of the fit of each example. This
difference may look small but is a significant conceptual difference, entailing a number of
consequences.

q
::::::::
Recap. The function convergence() checks for misclassified examples (= analyzes the 0/1
loss). Consider in this regard the vectors of observed and computed classes, D|c and y(D|x)
respectively. In addition, the function may check via t an upper bound on the number of
iterations.
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Perceptron Learning
Weight Adaptation: Illustration in Input Space

x2

x1

n
→

x2

x1

d

n
→

Definition of an (affine) hyperplane: N =
{
x | ~nTx = d

}
[Wikipedia]

q ~n is a normal vector of (a vector perpendicular to) the hyperplane N .

q If ||~n|| = 1 then |~nTx− d| gives the (geometric) distance of the point x to N .

q If sign(~nTx1 − d) = sign(~nTx2 − d), then x1 and x2 are on the same side of the hyperplane.
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Perceptron Learning
Weight Adaptation: Illustration in Input Space

x2

x1

w = (w1,...,wp)T→

x2

x1

θ

Definition of an (affine) hyperplane: ~wTx =

p∑
j=1

wjxj = θ = −w0 ⇔ wTx
(?)
= 0

Hyperplane definition as before, with notation taken from the classification problem setting.
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Remarks:

q
::::::::
Recap. Distinguish between the p-dimensional direction vector ~w = (w1, . . . , wp)

T , and the
(p+1)-dimensional hypothesis w = (w0, w1, . . . , wp)

T .

q A perceptron defines a hyperplane that is perpendicular (= normal) to ~w = (w1, . . . , wp)
T .

q θ or −w0 defines the offset of the hyperplane from the origin, along ~w and as multiple of
1/||~w||.

q The set of possible weight vectors w = (w0, w1, . . . , wp)
T , w ∈ Rp+1, forms the hypothesis

space H.

q Weight adaptation means learning, and the shown learning paradigm is supervised.
Consider in this regard the Lines 6–7 of the PT algorithm: If some xj is zero, ∆wj will be zero
as well. Keyword: Hebbian learning [Wikipedia: Hebbian theory, Donald Hebb]

q Note that here (and in the following illustrations) the hyperplane movement is not the result of
solving a regression problem in the (p+1)-dimensional input–output space, where the sum of
the residuals is to be minimized.

Rather, the PT algorithm takes a missclassified example x as an event to update the
hyperplane’s normal vector by a fixed amount that is proportional to x. In particular, the
update, ∆w, does not exploit the residual associated with x at time t. This means that the
absolute value of the distance of x from the hyperplane is disregarded.
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Perceptron Learning
Example

A

B

q The examples are presented to the perceptron.

q The perceptron computes a value that is interpreted as class label.
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Perceptron Learning
Example (continued)

Encoding:

q The encoding of the examples is based on features such as the number of
line crossings, most acute angle, longest line, etc.

q The class label, c, is encoded as a number: examples from A are labeled
with 1, examples from B are labeled with 0.


x11

x12...
x1p

 . . .


xk1
xk2...
xkp


︸ ︷︷ ︸

Class A =̂ c = 1


xl1
xl2...
xlp

 . . .


xm1

xm2...
xmp


︸ ︷︷ ︸

Class B =̂ c = 0
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Perceptron Learning
Example: Illustration in Input Space [PT algorithm]
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A possible configuration of encoded objects (feature vectors) in the input space X.
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Perceptron Learning
Example: Illustration in Input Space [PT algorithm]
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Perceptron Learning
Example: Illustration in Input Space [PT algorithm]
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Perceptron Learning
Example: Illustration in Input Space [PT algorithm]
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Perceptron Learning
Example: Illustration in Input Space [PT algorithm]
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Perceptron Learning
Example: Illustration in Input Space [PT algorithm]
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Perceptron Learning
Example: Illustration in Input Space [PT algorithm]
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Perceptron Learning
Example: Illustration in Input Space [PT algorithm]
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Perceptron Learning
Example: Illustration in Input Space [PT algorithm]
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Perceptron Learning
Example: Illustration in Input Space [PT algorithm]
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Perceptron Learning
Perceptron Convergence Theorem [discussion]

Questions:

1. Which kind of learning tasks can be addressed with the functions in the
hypothesis space H?

2. Can the PT algorithm construct such a function for a given task?
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Perceptron Learning
Perceptron Convergence Theorem [discussion]

Questions:

1. Which kind of learning tasks can be addressed with the functions in the
hypothesis space H?

2. Can the PT algorithm construct such a function for a given task?

Theorem 1 (Perceptron Convergence [Rosenblatt 1962])

Let X0 and X1 be two finite sets with vectors of the form x = (1, x1, . . . , xp)
T , let

X1 ∩X0 = ∅, and let ŵ define a separating hyperplane with respect to X0 and X1.
Moreover, let D be a set of examples of the form (x, 0), x ∈ X0 and (x, 1), x ∈ X1.

Then holds:

If the examples in D are processed with the PT algorithm, the constructed weight
vector w will converge within a finite number of iterations.
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Perceptron Learning
Perceptron Convergence Theorem: Proof

Preliminaries:

q The sets X1 and X0 are separated by a hyperplane ŵ. The proof requires that for all x ∈ X1

the inequality ŵTx > 0 holds. This condition is always fulfilled, as the following consideration
shows.
Let x′ ∈ X1 with ŵTx′ = 0. Since X0 is finite, the members x ∈ X0 have a minimum positive
distance δ with regard to the hyperplane ŵ. Hence, ŵ can be moved by δ

2 towards X0,
resulting in a new hyperplane ŵ′ that still fulfills (ŵ′)Tx < 0 for all x ∈ X0, but that now also
fulfills (ŵ′)Tx > 0 for all x ∈ X1.

q By defining X ′ = X1 ∪ {−x | x ∈ X0}, the searched w fulfills wTx > 0 for all x ∈ X ′. Then,
with c = 1 for all x ∈ X ′, δ ∈ {0, 1} (instead of {0, 1,−1}). [PT algorithm, Line 5]
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Perceptron Learning
Perceptron Convergence Theorem: Proof

Preliminaries:

q The sets X1 and X0 are separated by a hyperplane ŵ. The proof requires that for all x ∈ X1

the inequality ŵTx > 0 holds. This condition is always fulfilled, as the following consideration
shows.
Let x′ ∈ X1 with ŵTx′ = 0. Since X0 is finite, the members x ∈ X0 have a minimum positive
distance δ with regard to the hyperplane ŵ. Hence, ŵ can be moved by δ

2 towards X0,
resulting in a new hyperplane ŵ′ that still fulfills (ŵ′)Tx < 0 for all x ∈ X0, but that now also
fulfills (ŵ′)Tx > 0 for all x ∈ X1.

q By defining X ′ = X1 ∪ {−x | x ∈ X0}, the searched w fulfills wTx > 0 for all x ∈ X ′. Then,
with c = 1 for all x ∈ X ′, δ ∈ {0, 1} (instead of {0, 1,−1}). [PT algorithm, Line 5]

q The PT algorithm performs a number of iterations. Let w(0) denote the first (and randomly
chosen) weight vector, let w(t) denote the weight vector adjusted in iteration t, which forms
the basis for the weight vector w(t+ 1), and let x(t) ∈ X ′ denote the feature vector chosen in
iteration t.

q Recall the Cauchy–Schwarz inequality: ||a||2 · ||b||2 ≥ (aTb)2, where ||x|| :=
√
xTx denotes

the Euclidean norm.
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

Line of argument:

(a) We state a lower bound for how much ||w|| has changed from its initial value after n iterations.
The derivation of this lower bound exploits the presupposed linear separability of X0 and X1.

(b) We state an upper bound for how much ||w|| can change from its initial value after n
iterations. The derivation of this upper bound exploits the finiteness of X0 and X1, which in
turn guarantees the existence of an upper bound for the norm of the maximum feature vector.

(c) We observe that the lower bound grows quadratically in n, whereas the upper bound grows
linearly. To satisfy the relation “lower bound < upper bound”, n must be finite.
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

1. The PT algorithm computes in iteration t the scalar product w(t)Tx(t). If classified correctly,
w(t)Tx(t) > 0 and w is unchanged. Otherwise, w(t+ 1) = w(t) + η · x(t) [Lines 5–7].
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

1. The PT algorithm computes in iteration t the scalar product w(t)Tx(t). If classified correctly,
w(t)Tx(t) > 0 and w is unchanged. Otherwise, w(t+ 1) = w(t) + η · x(t) [Lines 5–7].

2. A sequence of n incorrectly classified feature vectors, (x(t)), along with the weight
adaptation, w(t+ 1) = w(t) + η · x(t), results in the series w(n) :
w(1) = w(0) + η · x(0)

w(2) = w(1) + η · x(1) = w(0) + η · x(0) + η · x(1)
...

w(n) = w(0) + η · x(0) + . . .+ η · x(n− 1)

ML:IV-36 Neural Networks © STEIN/LETTMANN 2024



Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

1. The PT algorithm computes in iteration t the scalar product w(t)Tx(t). If classified correctly,
w(t)Tx(t) > 0 and w is unchanged. Otherwise, w(t+ 1) = w(t) + η · x(t) [Lines 5–7].

2. A sequence of n incorrectly classified feature vectors, (x(t)), along with the weight
adaptation, w(t+ 1) = w(t) + η · x(t), results in the series w(n) :
w(1) = w(0) + η · x(0)

w(2) = w(1) + η · x(1) = w(0) + η · x(0) + η · x(1)
...

w(n) = w(0) + η · x(0) + . . .+ η · x(n− 1)

3. The hyperplane defined by ŵ separates X1 and X0 : ∀x ∈ X ′ : ŵTx > 0

Let δ := min
x∈X ′

ŵTx. Recall from the preliminaries that δ > 0 holds.
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

1. The PT algorithm computes in iteration t the scalar product w(t)Tx(t). If classified correctly,
w(t)Tx(t) > 0 and w is unchanged. Otherwise, w(t+ 1) = w(t) + η · x(t) [Lines 5–7].

2. A sequence of n incorrectly classified feature vectors, (x(t)), along with the weight
adaptation, w(t+ 1) = w(t) + η · x(t), results in the series w(n) :
w(1) = w(0) + η · x(0)

w(2) = w(1) + η · x(1) = w(0) + η · x(0) + η · x(1)
...

w(n) = w(0) + η · x(0) + . . .+ η · x(n− 1)

3. The hyperplane defined by ŵ separates X1 and X0 : ∀x ∈ X ′ : ŵTx > 0

Let δ := min
x∈X ′

ŵTx. Recall from the preliminaries that δ > 0 holds.

4. Analyze the scalar product of w(n) and ŵ :

ŵTw(n) = ŵTw(0) + η · ŵTx(0) + . . .+ η · ŵTx(n− 1)

⇒ ŵTw(n) ≥ ŵTw(0) + η · nδ ≥ 0 // For n ≥ n0 with sufficiently large n0 ∈ N.
⇒ (ŵTw(n))2 ≥ (ŵTw(0) + nηδ)2
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

1. The PT algorithm computes in iteration t the scalar product w(t)Tx(t). If classified correctly,
w(t)Tx(t) > 0 and w is unchanged. Otherwise, w(t+ 1) = w(t) + η · x(t) [Lines 5–7].

2. A sequence of n incorrectly classified feature vectors, (x(t)), along with the weight
adaptation, w(t+ 1) = w(t) + η · x(t), results in the series w(n) :
w(1) = w(0) + η · x(0)

w(2) = w(1) + η · x(1) = w(0) + η · x(0) + η · x(1)
...

w(n) = w(0) + η · x(0) + . . .+ η · x(n− 1)

3. The hyperplane defined by ŵ separates X1 and X0 : ∀x ∈ X ′ : ŵTx > 0

Let δ := min
x∈X ′

ŵTx. Recall from the preliminaries that δ > 0 holds.

4. Analyze the scalar product of w(n) and ŵ :

ŵTw(n) = ŵTw(0) + η · ŵTx(0) + . . .+ η · ŵTx(n− 1)

⇒ ŵTw(n) ≥ ŵTw(0) + η · nδ ≥ 0 // For n ≥ n0 with sufficiently large n0 ∈ N.
⇒ (ŵTw(n))2 ≥ (ŵTw(0) + nηδ)2

5. Apply the Cauchy–Schwarz inequality:

||ŵ||2 · ||w(n)||2 ≥ (ŵTw(0) + nηδ)2 ⇔ ||w(n)||2 ≥ (ŵTw(0) + nηδ)2

||ŵ||2
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

6. Consider again the weight adaptation w(t+ 1) = w(t) + η · x(t) :

||w(t+ 1)||2 = ||w(t) + η · x(t)||2

= (w(t) + η · x(t))T (w(t) + η · x(t))

= w(t)Tw(t) + η2 · x(t)Tx(t) + 2η ·w(t)Tx(t)

≤ ||w(t)||2 + ||η · x(t)||2 // Since w(t)Tx(t) < 0.
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

6. Consider again the weight adaptation w(t+ 1) = w(t) + η · x(t) :

||w(t+ 1)||2 = ||w(t) + η · x(t)||2

= (w(t) + η · x(t))T (w(t) + η · x(t))

= w(t)Tw(t) + η2 · x(t)Tx(t) + 2η ·w(t)Tx(t)

≤ ||w(t)||2 + ||η · x(t)||2 // Since w(t)Tx(t) < 0.

7. Consider the series w(n) from Step 2 :

||w(n)||2 ≤ ||w(n− 1)||2 + ||η · x(n− 1)||2

≤ ||w(n− 2)||2 + ||η · x(n− 2)||2 + ||η · x(n− 1)||2

≤ ||w(0)||2 + ||η · x(0)||2 + . . .+ ||η · x(n− 1)||2

= ||w(0)||2 +
n−1∑
j=0

||η · x(i)||2
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

6. Consider again the weight adaptation w(t+ 1) = w(t) + η · x(t) :

||w(t+ 1)||2 = ||w(t) + η · x(t)||2

= (w(t) + η · x(t))T (w(t) + η · x(t))

= w(t)Tw(t) + η2 · x(t)Tx(t) + 2η ·w(t)Tx(t)

≤ ||w(t)||2 + ||η · x(t)||2 // Since w(t)Tx(t) < 0.

7. Consider the series w(n) from Step 2 :

||w(n)||2 ≤ ||w(n− 1)||2 + ||η · x(n− 1)||2

≤ ||w(n− 2)||2 + ||η · x(n− 2)||2 + ||η · x(n− 1)||2

≤ ||w(0)||2 + ||η · x(0)||2 + . . .+ ||η · x(n− 1)||2

= ||w(0)||2 +
n−1∑
j=0

||η · x(i)||2

8. With ε := max
x∈X ′
||x||2 follows ||w(n)||2 ≤ ||w(0)||2 + nη2ε
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

9. Both inequalities (see Step 5 and Step 8) must be fulfilled:

||w(n)||2 ≥ (ŵTw(0) + nηδ)2

||ŵ||2
and ||w(n)||2 ≤ ||w(0)||2 + nη2ε

⇒ (ŵTw(0) + nηδ)2

||ŵ||2
≤ ||w(n)||2 ≤ ||w(0)||2 + nη2ε

⇒ (ŵTw(0) + nηδ)2

||ŵ||2
≤ ||w(0)||2 + nη2ε

Set w(0) = 0 : ⇒ n2η2δ2

||ŵ||2
≤ nη2ε

⇔ n ≤ ε

δ2
· ||ŵ||2
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

9. Both inequalities (see Step 5 and Step 8) must be fulfilled:

||w(n)||2 ≥ (ŵTw(0) + nηδ)2

||ŵ||2
and ||w(n)||2 ≤ ||w(0)||2 + nη2ε

⇒ (ŵTw(0) + nηδ)2

||ŵ||2
≤ ||w(n)||2 ≤ ||w(0)||2 + nη2ε

⇒ (ŵTw(0) + nηδ)2

||ŵ||2
≤ ||w(0)||2 + nη2ε

Set w(0) = 0 : ⇒ n2η2δ2

||ŵ||2
≤ nη2ε

⇔ n ≤ ε

δ2
· ||ŵ||2
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

9. Both inequalities (see Step 5 and Step 8) must be fulfilled:

||w(n)||2 ≥ (ŵTw(0) + nηδ)2

||ŵ||2
and ||w(n)||2 ≤ ||w(0)||2 + nη2ε

⇒ (ŵTw(0) + nηδ)2

||ŵ||2
≤ ||w(n)||2 ≤ ||w(0)||2 + nη2ε

⇒ (ŵTw(0) + nηδ)2

||ŵ||2
≤ ||w(0)||2 + nη2ε

Set w(0) = 0 : ⇒ n2η2δ2

||ŵ||2
≤ nη2ε

⇔ n ≤ ε

δ2
· ||ŵ||2

; The PT algorithm terminates within a finite number of iterations.

Observe:
(ŵTw(0) + nηδ)2

||ŵ||2
∈ Θ(n2) and ||w(0)||2 + nη2ε ∈ Θ(n)
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Perceptron Learning
Perceptron Convergence Theorem: Discussion [theorem]

Given some w, the PT algorithm checks if the examples (x, c) ∈ D are on the
correct hyperplane side and possibly adapts w (left). The goal is to find a
separating hyperplane w.
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If the classes are
:::::::::::
linearly

::::::::::::::::
separable (left), the PT algorithm will converge. If no such

hyperplane exists, convergence cannot be guaranteed (right).
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Remarks:

q The PT algorithm may require an exponential number of iterations to find a separating
hyperplane. By means of linear programming, a separating hyperplane can be found in
polynomial time.

q Due to the intial random weights, but also due to the randomized encounter of wrongly
classified examples, different runs of the PT algorithm on the same set of training
examples D can lead to different solutions (different separating hyperplanes).
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Perceptron Learning
PT Algorithm versus Regression

Given some w, regression methods compute a loss, quantifying the “grade of
misclassification”, by exploiting both the hyperplane side and distance, given the
examples (x, c) ∈ D. The goal is to find a loss-minimum hyperplane w.
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Perceptron Learning
PT Algorithm versus Regression

Given some w, regression methods compute a loss, quantifying the “grade of
misclassification”, by exploiting both the hyperplane side and distance, given the
examples (x, c) ∈ D. The goal is to find a loss-minimum hyperplane w.
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y(x1, x2)
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Perceptron Learning
PT Algorithm versus Regression

Given some w, regression methods compute a loss, quantifying the “grade of
misclassification”, by exploiting both the hyperplane side and distance, given the
examples (x, c) ∈ D. The goal is to find a loss-minimum hyperplane w.
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geometric distance:
 wTx
||w||→

y(x) = wTx 

y(x1, x2)
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Remarks:

q Both approaches, the PT algorithm and regression, determine a hyperplane (= weights w) in
the p-dimensional input space. Those x ∈ Rp that fullfill the identity wTx = 0 form the
hyperplane. See the illustrations for (1) the PT algorithm and

:::
(2) linear regression.
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Remarks: (continued)

q The PT algorithm looks similar to the
::::::::::::::
incremental

::::::::::::
gradient

::::::::::
descent

:::::::::::::
algorithm, IGD, since

these algorithms differ only in the computation of y(x) (Line 5), where the PT algorithm
applies the heaviside function to wTx. This difference may look small but is a significant
conceptual difference, entailing a number of consequences:

– The PT algorithm is not based on residuals (in the (p+1)-dimensional input–output
space) but refers to the input space only, where it simply evaluates the side of the
hyperplane as a binary feature (correct side or not).

– Gradient descent is a regression approach which exploits the residuals provided by a
loss function of choice, whose differential is evaluated to guide hyperplane search.

– Provided linear separability, the PT algorithm will converge within a finite number of
iterations, which, however, cannot be guaranteed for gradient descent. [theorem]

– Gradient descent may converge even if the data is not linearly separable. However, this
convergence process is of an asymptotic nature and no finite iteration bound can be
stated.

– Data sets can be constructed whose classes are linearly separable, but where gradient
descent will not determine a hyperplane that classifies all examples correctly (whereas
the PT algorithm of course does).

ML:IV-52 Neural Networks © STEIN/LETTMANN 2024

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-gradient-descent.pdf#algorithm-incremental-gradient-descent

