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Approaches to Probability
Area Overview

Mathematics
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Probability
theory
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Statistics ML

q Probability theory: probability measures, Kolmogorov axioms

q Mathematical statistics: application of probability theory, Naive Bayes

q Inferential statistics: parameter estimation, hypothesis (parameter) tests, confidence intervals

q Descriptive statistics: variances, contingencies

q Exploratory data analysis: histograms, principal component analysis

q Data mining: anomaly detection, cluster analysis
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Approaches to Probability

Definition 1 (Random Experiment, Random Observation)

A random experiment or random trial is a procedure that, at least theoretically, can
be repeated infinite times. It is characterized as follows:

1. Configuration.
A precisely specified system that can be reconstructed.

2. Procedure.
An instruction of how to execute the experiment, based on the configuration.

3. Unpredictability of the outcome.
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Approaches to Probability

Definition 1 (Random Experiment, Random Observation)

A random experiment or random trial is a procedure that, at least theoretically, can
be repeated infinite times. It is characterized as follows:

1. Configuration.
A precisely specified system that can be reconstructed.

2. Procedure.
An instruction of how to execute the experiment, based on the configuration.

3. Unpredictability of the outcome.

Random experiments whose configuration and procedure are not designed
artificially are called natural random experiments or natural random observations.
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Remarks:

q A procedure can be repeated several times using the same system, but also with different
“copies” of the original system.

In particular, a random experiment is called ergodic if its time average (= sequential analysis)
is the same as its ensemble average (= parallel analysis). [Wikipedia]

q Note that random experiments are causal in the sense of cause and effect. The randomness
of an experiment, i.e., the unpredictability of its outcome, is a consequence of the missing
information about the causal chain. Hence a random experiment can turn into a deterministic
process when new insights become known.
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Approaches to Probability

Definition 2 (Sample Space, Event Space)

A set Ω = {ω1, ω2, . . . , ωn} is called sample space of a random experiment, if each
experiment outcome is associated with at most one element ω ∈ Ω. The elements in
Ω are called outcomes.

Let Ω be a finite sample space. Each subset A ⊆ Ω is called an event; an event A
occurs iff the experiment outcome ω is a member of A. The set of all events, P(Ω),
is called the event space or σ-algebra.
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Approaches to Probability

Definition 2 (Sample Space, Event Space)

A set Ω = {ω1, ω2, . . . , ωn} is called sample space of a random experiment, if each
experiment outcome is associated with at most one element ω ∈ Ω. The elements in
Ω are called outcomes.

Let Ω be a finite sample space. Each subset A ⊆ Ω is called an event; an event A
occurs iff the experiment outcome ω is a member of A. The set of all events, P(Ω),
is called the event space or σ-algebra.

Examples:

Experiment: Rolling a dice.
Sample space: Ω = {1, 2, 3, 4, 5, 6}
Some event: A = {2, 4, 6}
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Approaches to Probability

Definition 2 (Sample Space, Event Space)

A set Ω = {ω1, ω2, . . . , ωn} is called sample space of a random experiment, if each
experiment outcome is associated with at most one element ω ∈ Ω. The elements in
Ω are called outcomes.

Let Ω be a finite sample space. Each subset A ⊆ Ω is called an event; an event A
occurs iff the experiment outcome ω is a member of A. The set of all events, P(Ω),
is called the event space or σ-algebra.

Examples:

Experiment: Rolling a dice.
Sample space: Ω = {1, 2, 3, 4, 5, 6}
Some event: A = {2, 4, 6}

Rolling two dice at the same time.
Ω = {{1, 1}, {1, 2}, . . . , {2, 2}, . . . , {6, 6}}, |Ω| = ?
B = {{1, 2}}
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Approaches to Probability

Definition 2 (Sample Space, Event Space)

A set Ω = {ω1, ω2, . . . , ωn} is called sample space of a random experiment, if each
experiment outcome is associated with at most one element ω ∈ Ω. The elements in
Ω are called outcomes.

Let Ω be a finite sample space. Each subset A ⊆ Ω is called an event; an event A
occurs iff the experiment outcome ω is a member of A. The set of all events, P(Ω),
is called the event space or σ-algebra.

Examples:

Experiment: Rolling a dice.
Sample space: Ω = {1, 2, 3, 4, 5, 6}
Some event: A = {2, 4, 6}

Rolling two dice at the same time.
Ω = {{1, 1}, {1, 2}, . . . , {2, 2}, . . . , {6, 6}}, |Ω| = ?
B = {{1, 2}}

Rolling two dice one after the other.
Ω = {(1, 1), (1, 2), . . . , (2, 1), . . . , (6, 6)}, |Ω| = ?
B = {(1, 2), (2, 1)}
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Approaches to Probability

Definition 3 (Important Event Types)

Let Ω be a finite sample space, and let A ⊆ Ω and B ⊆ Ω be two events. Then we
agree on the following notation:

1. ∅ The impossible event.

2. Ω The certain event.

3. A := Ω \ A The complementary event of A.

4. |A| = 1 An elementary event.

5. A ⊆ B ⇔ A is a subevent of B, “A entails B”, A⇒ B

6. A = B ⇔ A ⊆ B and B ⊆ A

7. A ∩B = ∅ ⇔ A and B are incompatible (otherwise, they are compatible).
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Approaches to Probability

Definition 3 (Important Event Types)

Let Ω be a finite sample space, and let A ⊆ Ω and B ⊆ Ω be two events. Then we
agree on the following notation:

1. ∅ The impossible event.

2. Ω The certain event.

3. A := Ω \ A The complementary event of A.

4. |A| = 1 An elementary event.

5. A ⊆ B ⇔ A is a subevent of B, “A entails B”, A⇒ B

6. A = B ⇔ A ⊆ B and B ⊆ A

7. A ∩B = ∅ ⇔ A and B are incompatible (otherwise, they are compatible).

Example (Point 5) :

{2} ⊂ {2, 4, 6}
“Roll a two.” � “Even number roll.”

“2” entails “Even number roll.”
“2” ⇒ “2 or 4 or 6”
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Remarks:

q Alternative and semantically equivalent notations for the probability of the joint event
“A and B” :

1. P (A,B)

2. P (A ∧B)

3. P (A ∩B)
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Approaches to Probability
How to Capture the Nature of Probability

1. Classic, symmetry-based

2. Frequentist

3. Axiomatic

4. Subjectivist, Bayesian, prognostic
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Approaches to Probability
How to Capture the Nature of Probability

1. Classic, symmetry-based

2. Frequentist

3. Axiomatic

4. Subjectivist, Bayesian, prognostic

Definition 4 (Classical / Laplace Probability [1749-1827])

If each elementary event {ω}, ω ∈ Ω, gets assigned the same probability
(equiprobable events), then the probability P (A) of an event A is defined as follows:

P (A) =
|A|
|Ω|

=
number of cases favorable for A

number of total outcomes possible
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Remarks:

q A random experiment whose configuration and procedure imply an equiprobable sample
space, be it by definition or by construction, is called Laplace experiment. The probabilities of
the outcomes are called Laplace probabilities.

Since Laplace probabilities are defined by the experiment configuration along with the
experiment procedure, they need not to be estimated.

q The assumption that a given experiment is a Laplace experiment is called Laplace
assumption. If the Laplace assumption cannot be presumed, the probabilities can only be
obtained from a (possibly large) number of trials.

q Strictly speaking, the Laplace probability as introduced above is not a definition but a circular
definition: the probability concept is defined by means of the concept of equiprobability, i.e.,
another kind of probability.
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Approaches to Probability
How to Capture the Nature of Probability (continued)

1. Classic, symmetry-based

2. Frequentist

3. Axiomatic

4. Subjectivist, Bayesian, prognostic

Basis is the empirical law of large numbers:

In a random experiment, the average of the outcomes obtained from a large number
of trials is close to the expected value, and it will become closer as more trials are
performed.

θ
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Remarks:

q Basic assumption of the frequentist approach is that—given enough data—the data will
explain the hypothesis (and no additional assumptions or prior knowledge are required).

q Inspired by the empirical law of large numbers, scientists have tried to develop a frequentist
probability concept, which is completely based on the (fictitious) limit of the relative
frequencies. [von Mises, 1951]

These attempts failed since such a limit formation is possible only within mathematical
settings (infinitesimal calculus), where accurate repetitions unto infinity can be made.
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Approaches to Probability
How to Capture the Nature of Probability (continued)

1. Classic, symmetry-based

2. Frequentist

3. Axiomatic

4. Subjectivist, Bayesian, prognostic

Axiomatic approach to phenomena modeling:

(a) Postulate a function P () that assigns a “probability” to each event in P(Ω).

(b) Specify the required properties of P () in the form of axioms.
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Approaches to Probability
How to Capture the Nature of Probability (continued)

1. Classic, symmetry-based

2. Frequentist

3. Axiomatic

4. Subjectivist, Bayesian, prognostic

Axiomatic approach to phenomena modeling:

(a) Postulate a function P () that assigns a “probability” to each event in P(Ω).

(b) Specify the required properties of P () in the form of axioms.
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Approaches to Probability
How to Capture the Nature of Probability (continued)

1. Classic, symmetry-based

2. Frequentist

3. Axiomatic

4. Subjectivist, Bayesian, prognostic

Consider (prior) knowledge about the hypotheses:

p(h | D) =
p(D | h) · p(h)

p(D)

q Likelihood: How well does h explain (= entail, induce, evoke) the data D?

q Prior: How probable is the hypothesis h a priori (= in principle)?

p(h | D) ∝ p(D | h) · p(h)
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Approaches to Probability
How to Capture the Nature of Probability (continued)

1. Classic, symmetry-based

2. Frequentist

3. Axiomatic

4. Subjectivist, Bayesian, prognostic

Consider (prior) knowledge about the hypotheses:

p(h | D) =
p(D | h) · p(h)

p(D)

q Likelihood: How well does h explain (= entail, induce, evoke) the data D?

q Prior: How probable is the hypothesis h a priori (= in principle)?

p(h | D) ∝ p(D | h) · p(h)

ML:VII-22 Bayesian Learning © STEIN 2024



Approaches to Probability
How to Capture the Nature of Probability (continued)

1. Classic, symmetry-based

2. Frequentist

3. Axiomatic

4. Subjectivist, Bayesian, prognostic

Consider (prior) knowledge about the hypotheses:

p(h | D) =
p(D | h) · p(h)

p(D)

q Likelihood: How well does h explain (= entail, induce, evoke) the data D?

q Prior: How probable is the hypothesis h a priori (= in principle)?

p(h | D) ∝ p(D | h) · p(h)
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Approaches to Probability
How to Capture the Nature of Probability (continued)

Example (we see a damaged car) :

h1 : A meteorite hit the car. p(damaged_car | meteorite_hit_car) = 1.0

p(meteorite_hit_car) = 0.00001

h2 : Falling hail hit the car. p(damaged_car | hail_hit_car) = 0.05

p(hail_hit_car) = 0.01

Consider (prior) knowledge about the hypotheses:

p(h | D) =
p(D | h) · p(h)

p(D)

q Likelihood: How well does h explain (= entail, induce, evoke) the data D?

q Prior: How probable is the hypothesis h a priori (= in principle)?

p(h | D) ∝ p(D | h) · p(h)
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Approaches to Probability
How to Capture the Nature of Probability (continued)

Example (we see a damaged car) :

h1 : A meteorite hit the car. p(damaged_car | meteorite_hit_car) = 1.0

p(meteorite_hit_car) = 0.00001

h2 : Falling hail hit the car. p(damaged_car | hail_hit_car) = 0.05

p(hail_hit_car) = 0.01

Consider (prior) knowledge about the hypotheses:

p(h | D) =
p(D | h) · p(h)

p(D)

q Likelihood: How well does h explain (= entail, induce, evoke) the data D?

q Prior: How probable is the hypothesis h a priori (= in principle)?

p(h | D) ∝ p(D | h) · p(h)
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Remarks:

q Likelihood is the hypothetical probability that an event that has already occurred (here: an
experiment parameterized by h) would yield a specific outcome (here: D, which typically is a
sequence of feature-value pairs (x, c)).

The concept differs from that of a probability in that a probability refers to the occurrence of
future events, while a likelihood refers to past events with known outcomes. I.e., p(D | h) is
called likelihood since we reason about a past experiment. [Mathworld]

q Probability pattern versus likelihood pattern. Let B be known.

– With probabilities P ( · | B) we reason about the future, i.e., possible “consequence”
events “caused” by B.

– With likelihoods P (B | · ) we reason about the past, i.e., possible and already occurred
“precursor” or “condition” events for B. More specifically, B may denote a “data event”,
D=D, and we reason about the occurred “parameter event”, H=h.

q The symbol »∝« means “is proportional to”.
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Remarks (frequentist versus subjectivist) :

q If applicable and if properly applied the frequentist approach and the Bayesian approach will
lead to the same result in most cases.

q The frequentist approach cannot handle singleton or rare events. Example:

“What are the chances that the first human mission to Mars will become a success?”

q “It is unanimously agreed that statistics depends somehow on probability. But, as to what
probability is and how it is connected with statistics, there has seldom been such complete
disagreement and breakdown of communication since the Tower of Babel. Doubtless, much
of the disagreement is merely terminological and would disappear under sufficiently sharp
analysis.” [Savage, 1954]
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Approaches to Probability
Axiomatic Approach to Probability

Definition 5 (Probability Measure [Kolmogorov 1933])

Let Ω be a set, called sample space, and let P(Ω) be the set of all events, called
event space. A function P , P : P(Ω)→ R, which maps each event A ∈ P(Ω) onto a
real number P (A), is called probability measure if it has the following properties:

1. P (A) ≥ 0 (Axiom I)

2. P (Ω) = 1 (Axiom II)

3. A ∩B = ∅ implies P (A ∪B) = P (A) + P (B) (Axiom III)
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Approaches to Probability
Axiomatic Approach to Probability

Definition 5 (Probability Measure [Kolmogorov 1933])

Let Ω be a set, called sample space, and let P(Ω) be the set of all events, called
event space. A function P , P : P(Ω)→ R, which maps each event A ∈ P(Ω) onto a
real number P (A), is called probability measure if it has the following properties:

1. P (A) ≥ 0 (Axiom I)

2. P (Ω) = 1 (Axiom II)

3. A ∩B = ∅ → P (A ∪B) = P (A) + P (B) (Axiom III)
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Approaches to Probability
Axiomatic Approach to Probability

Definition 5 (Probability Measure [Kolmogorov 1933])

Let Ω be a set, called sample space, and let P(Ω) be the set of all events, called
event space. A function P , P : P(Ω)→ R, which maps each event A ∈ P(Ω) onto a
real number P (A), is called probability measure if it has the following properties:

1. P (A) ≥ 0 (Axiom I)

2. P (Ω) = 1 (Axiom II)

3. A ∩B = ∅ → P (A ∪B) = P (A) + P (B) (Axiom III)

Definition 6 (Probability Space)

Let Ω be a sample space, let P(Ω) be an event space, and let P : P(Ω)→ R be a
probability measure. Then the tuple (Ω, P ), as well as the triple (Ω,P(Ω), P ), is
called probability space.
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Approaches to Probability
Axiomatic Approach to Probability

Definition 5 (Probability Measure [Kolmogorov 1933])

Let Ω be a set, called sample space, and let P(Ω) be the set of all events, called
event space. A function P , P : P(Ω)→ R, which maps each event A ∈ P(Ω) onto a
real number P (A), is called probability measure if it has the following properties:

1. P (A) ≥ 0 (Axiom I)

2. P (Ω) = 1 (Axiom II)

3. A ∩B = ∅ → P (A ∪B) = P (A) + P (B) (Axiom III)

Definition 6 (Probability Space)

Let Ω be a sample space, let P(Ω) be an event space, and let P : P(Ω)→ R be a
probability measure. Then the tuple (Ω, P ), as well as the triple (Ω,P(Ω), P ), is
called probability space.

We can work with probabilities without interpreting them.

ML:VII-31 Bayesian Learning © STEIN 2024

https://en.wikipedia.org/wiki/Probability_measure
https://en.wikipedia.org/wiki/Probability_space


Approaches to Probability
Axiomatic Approach to Probability (continued)

Theorem 7 (Consequences of the Kolmogorov Axioms)

1. P (A) + P (A) = 1 (from Axioms II, III)

2. P (∅) = 0 (from 1. with A = Ω)

3. Monotonicity law of the probability measure:
A ⊆ B ⇒ P (A) ≤ P (B) (from Axioms I, III)

4. “Sum rule” or “addition rule” :
P (A ∪B) = P (A) + P (B)− P (A ∩B) (from Axiom III)

5. Let A1, A2, . . . , Ak be mutually exclusive (incompatible), then holds:
P (A1 ∪ A2 ∪ . . . ∪ Ak) = P (A1) + P (A2) + . . . + P (Ak) (from Axiom III)
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Remarks:

q The three axioms are also called the Axiom System of Kolmogorov.

q P (A) is called “probability of the occurrence of A.”

q Observe that nothing is said about how to interpret the probabilities P (). An axiomatic
approach does not explain but “only” specifies properties.

q Also observe that nothing is said about the distribution of the probabilities P ().

q A function that provides the three properties of a probability measure is called a
non-negative, normalized, and additive measure.
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Conditional Probability
Basic Definition

Definition 8 (Conditional Probability)

Let (Ω,P(Ω), P ) be a probability space and let A,B ∈ P(Ω) be two events. Then the
probability of the occurrence of event A given that event B is known to have
occurred is defined as follows:

P (A | B) =
P (A ∩B)

P (B)
, if P (B) > 0

P (A | B) is called “probability of A under condition B.”
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Conditional Probability
Basic Definition

Definition 8 (Conditional Probability)

Let (Ω,P(Ω), P ) be a probability space and let A,B ∈ P(Ω) be two events. Then the
probability of the occurrence of event A given that event B is known to have
occurred is defined as follows:

P (A | B) =
P (A ∩B)

P (B)
, if P (B) > 0

P (A | B) is called “probability of A under condition B.”
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Conditional Probability
Basic Definition

Definition 8 (Conditional Probability)

Let (Ω,P(Ω), P ) be a probability space and let A,B ∈ P(Ω) be two events. Then the
probability of the occurrence of event A given that event B is known to have
occurred is defined as follows:

P (A | B) =
P (A ∩B)

P (B)
, if P (B) > 0

P (A | B) is called “probability of A under condition B.”

A : The road is wet.
B : It’s raining.

A ∩B : The road is wet and it’s raining.
A | B : The road is wet when it’s raining.

Ω

A
A ≡ A | Ω

Here:
P (A | B) > P (A)
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Conditional Probability
Basic Definition

Definition 8 (Conditional Probability)

Let (Ω,P(Ω), P ) be a probability space and let A,B ∈ P(Ω) be two events. Then the
probability of the occurrence of event A given that event B is known to have
occurred is defined as follows:

P (A | B) =
P (A ∩B)

P (B)
, if P (B) > 0

P (A | B) is called “probability of A under condition B.”

A : The road is wet.
B : It’s raining.

A ∩B : The road is wet and it’s raining.
A | B : The road is wet when it’s raining.

Ω

A

B

B ≡ B | Ω

Here:
P (A | B) > P (A)
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Conditional Probability
Basic Definition

Definition 8 (Conditional Probability)

Let (Ω,P(Ω), P ) be a probability space and let A,B ∈ P(Ω) be two events. Then the
probability of the occurrence of event A given that event B is known to have
occurred is defined as follows:

P (A | B) =
P (A ∩B)

P (B)
, if P (B) > 0

P (A | B) is called “probability of A under condition B.”

A : The road is wet.
B : It’s raining.

A ∩B : The road is wet and it’s raining.
A | B : The road is wet when it’s raining.

Ω

A∩B A

B

A ∩B ≡ A ∩B | Ω

Here:
P (A | B) > P (A)
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Conditional Probability
Basic Definition

Definition 8 (Conditional Probability)

Let (Ω,P(Ω), P ) be a probability space and let A,B ∈ P(Ω) be two events. Then the
probability of the occurrence of event A given that event B is known to have
occurred is defined as follows:

P (A | B) =
P (A ∩B)

P (B)
, if P (B) > 0

P (A | B) is called “probability of A under condition B.”

A : The road is wet.
B : It’s raining.

A ∩B : The road is wet and it’s raining.
A | B : The road is wet when it’s raining.

Ω

B

A∩B
A | B ≡ A ∩B | B

Here:
P (A | B) > P (A)
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Remarks (conditional probability) :

q Considered as a function in a parameter (event), A, and a constant (event), B, the conditional
probability P (A | B) fulfills the Kolmogorov Axioms and in turn defines a probability measure.
This probability measure is denoted as PB().

q Important consequences (deductions) from the conditional probability definition:

1. P (A ∩B) = P (B) · P (A | B) (see multiplication rule given statistical independence)

2. P (A ∩B) = P (B ∩ A) = P (A) · P (B | A)

3. P (B) · P (A | B) = P (A) · P (B | A) ⇔ P (A | B) =
P (A ∩B)

P (B)

(?)
=

P (A) · P (B | A)

P (B)

4. P (A | B) = 1− P (A | B) or PB(A) = 1− PB(A) (see Point 1 of Implications)

(?) The identity shows the (simple) Bayes rule.
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Remarks (conditional probability) : (continued)

q While Deduction 4 is obvious since P (A | B) ≡ PB() is a probability measure, the
interpretation of complementary events in conditions may be confusing.

In particular, the following inequality must be assumed: P (A | B) 6= 1− P (A | B)

For illustrating purposes, consider the probability P (A | B) = 0.9 for event A “The road is
wet” given event B “It’s raining”. Observe that this probability cannot give us any clue
regarding the wetness of the road under the complementary event B “It’s not raining”.
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Remarks (conditional event algebra) :

q As a probability measure, the argument of P () is an event, and in this sense A | B denotes
the conditional event “A when given B”. However, except for rare cases the event A | B is not
an element in the event space 2Ω (similarly: not a subset of the sample space Ω) and does
not satisfy Kolmogorov’s axioms:

In standard probability theory the probability measure—precisely: its domain, a σ-algebra
such as 2Ω—is not closed under conditioning (see Lewis’s triviality result).

q A conditional event cannot be combined with other events but only be formed at “top-level”.
E.g., we cannot interpret the “event” B ∧ (A | B), and thus cannot compute P (B, (A | B)).

This restriction becomes clear when recalling the definition of P (A | B) : The conditional
event A | B is not treated as an element in the domain 2Ω of P (), but, P (A | B) is defined as
the quotient of P (A ∩B) and P (B), say, P (A ∩B) is normalized wrt. P (B).

I.e., P (B, (A | B)) (≡ P ((B | Ω), (A | B))), requires a normalization wrt. to P (Ω) and P (B) at
the same time, which cannot be afforded with the algebraic structure of a σ-algebra.

Note that A ∩B is an element in 2Ω, as guaranteed by the σ-algebra requirement.

q The syntax PB(A) (versus P (A | B)) reminds the fact that “event conditioning” is not an
operation of basic set theory but a normalization of a probability value.

q With the invention of so-called conditional event algebras, CEA, the above mentioned
restriction can be overcome.

ML:VII-43 Bayesian Learning © STEIN 2024

https://en.wikipedia.org/wiki/Lewis%27s_triviality_result
https://en.wikipedia.org/wiki/Conditional_event_algebra#Standard_probability_theory
https://en.wikipedia.org/wiki/Conditional_event_algebra


Conditional Probability
Total Probability

Theorem 9 (Total Probability)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1∪ . . .∪Ak, P (Ai) > 0, i = 1, . . . , k. Then for each B ∈ P(Ω) holds:

P (B) =

k∑
i=1

P (Ai) · P (B | Ai)

ML:VII-44 Bayesian Learning © STEIN 2024



Conditional Probability
Total Probability

Theorem 9 (Total Probability)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1∪ . . .∪Ak, P (Ai) > 0, i = 1, . . . , k. Then for each B ∈ P(Ω) holds:

P (B) =

k∑
i=1

P (Ai) · P (B | Ai)

Ω

ML:VII-45 Bayesian Learning © STEIN 2024



Conditional Probability
Total Probability

Theorem 9 (Total Probability)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1∪ . . .∪Ak, P (Ai) > 0, i = 1, . . . , k. Then for each B ∈ P(Ω) holds:

P (B) =

k∑
i=1

P (Ai) · P (B | Ai)

Ω
Ai

ML:VII-46 Bayesian Learning © STEIN 2024



Conditional Probability
Total Probability

Theorem 9 (Total Probability)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1∪ . . .∪Ak, P (Ai) > 0, i = 1, . . . , k. Then for each B ∈ P(Ω) holds:

P (B) =

k∑
i=1

P (Ai) · P (B | Ai)

Ω
Ai

ML:VII-47 Bayesian Learning © STEIN 2024



Conditional Probability
Total Probability

Theorem 9 (Total Probability)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1∪ . . .∪Ak, P (Ai) > 0, i = 1, . . . , k. Then for each B ∈ P(Ω) holds:

P (B) =

k∑
i=1

P (Ai) · P (B | Ai)

Ω
Ai

B

ML:VII-48 Bayesian Learning © STEIN 2024



Conditional Probability
Total Probability

Theorem 9 (Total Probability)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1∪ . . .∪Ak, P (Ai) > 0, i = 1, . . . , k. Then for each B ∈ P(Ω) holds:

P (B) =

k∑
i=1

P (Ai) · P (B | Ai)

Ω
Ai

B

ML:VII-49 Bayesian Learning © STEIN 2024



Conditional Probability
Total Probability

Theorem 9 (Total Probability)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1∪ . . .∪Ak, P (Ai) > 0, i = 1, . . . , k. Then for each B ∈ P(Ω) holds:

P (B) =

k∑
i=1

P (Ai) · P (B | Ai)

Ω
Ai

B

Proof
P (B) = P (Ω ∩B)

= P ((A1 ∪ . . . ∪ Ak) ∩B) (exploitation of completeness of the Ai)

= P ((A1 ∩B) ∪ . . . ∪ (Ak ∩B)) (exploitation of exclusiveness of the Ai)

=

k∑
i=1

P (Ai ∩B) =

k∑
i=1

P (B ∩ Ai) =

k∑
i=1

P (Ai) · P (B | Ai)
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Remarks:

q The theorem of total probability states that the probability of an arbitrary event equals the
sum of the probabilities of the subevents into which the event has been partitioned.
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Conditional Probability
Independence of Events

Definition 10 (Statistical Independence of two Events)

Let (Ω,P(Ω), P ) be a probability space, and let A,B ∈ P(Ω) be two events. Then A
and B are called statistically independent iff the following equation holds:

P (A ∩B) = P (A) · P (B) “multiplication rule”
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Independence of Events

Definition 10 (Statistical Independence of two Events)

Let (Ω,P(Ω), P ) be a probability space, and let A,B ∈ P(Ω) be two events. Then A
and B are called statistically independent iff the following equation holds:

P (A ∩B) = P (A) · P (B) “multiplication rule”

If statistical independence is given for the events A and B, and if 0 < P (B) < 1, then
the following identities hold:

P (A ∩B) = P (A) · P (B)

P (A | B) = P (A | B)

P (A | B) = P (A)
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Let (Ω,P(Ω), P ) be a probability space, and let A,B ∈ P(Ω) be two events. Then A
and B are called statistically independent iff the following equation holds:
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the following identities hold:

P (A ∩B) = P (A) · P (B)

P (A | B) = P (A | B)

P (A | B) = P (A)

Ω

A

A
_

B B
_

[dependent events]
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Definition 10 (Statistical Independence of two Events)
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and B are called statistically independent iff the following equation holds:
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P (A | B) = P (A)

Ω

A

A
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A

A
_

B
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Definition 10 (Statistical Independence of two Events)

Let (Ω,P(Ω), P ) be a probability space, and let A,B ∈ P(Ω) be two events. Then A
and B are called statistically independent iff the following equation holds:

P (A ∩B) = P (A) · P (B) “multiplication rule”

If statistical independence is given for the events A and B, and if 0 < P (B) < 1, then
the following identities hold:

P (A ∩B) = P (A) · P (B)

P (A | B) = P (A | B)

P (A | B) = P (A)

Ω

B

A

A
_

B
_

A∩B
_

[dependent events]
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Conditional Probability
Independence of Events

Definition 10 (Statistical Independence of two Events)
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and B are called statistically independent iff the following equation holds:
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Conditional Probability
Independence of Events (continued)

Definition 11 (Statistical Independence of k Events)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak ∈ P(Ω) be k events. Then
the A1, . . . , Ak are called jointly statistically independent under P iff for all subsets
{Ai1, . . . , Ail} ⊆ {A1, . . . , Ak} the multiplication rule holds:

P (Ai1 ∩ . . . ∩ Ail) = P (Ai1) · . . . · P (Ail),

where i1 < i2 < . . . < il and 2 ≤ l ≤ k.
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