
Chapter ML:II

II. Machine Learning Basics
q Rule-Based Learning of Simple Concepts
q From Regression to Classification
q Evaluating Effectiveness
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From Regression to Classification
Regression versus Classification

q X is a multiset of p-dimensional feature vectors:

Customer 1
house owner yes
income (p.a.) 51 000 EUR
repayment (p.m.) 1 000 EUR
credit period 7 years
SCHUFA entry no
age 37
married yes
. . .

. . .

Customer n
house owner no
income (p.a.) 55 000 EUR
repayment (p.m.) 1 200 EUR
credit period 8 years
SCHUFA entry no
age ?
married yes
. . .

ML:II-60 Machine Learning Basics © STEIN 2023



From Regression to Classification
Regression versus Classification

q X is a multiset of p-dimensional feature vectors:

Customer 1
house owner yes
income (p.a.) 51 000 EUR
repayment (p.m.) 1 000 EUR
credit period 7 years
SCHUFA entry no
age 37
married yes
. . .

. . .

Customer n
house owner no
income (p.a.) 55 000 EUR
repayment (p.m.) 1 200 EUR
credit period 8 years
SCHUFA entry no
age ?
married yes
. . .

Regression setting:
q R is the range of the regression function.
q yi is the

::::::::::
ground

::::::::
truth of the credit line value for xi, xi ∈ X.

q D = {(x1, y1), . . . , (xn, yn)} ⊆ X ×R is a multiset of examples.
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From Regression to Classification
Regression versus Classification

q X is a multiset of p-dimensional feature vectors:

Customer 1
house owner yes
income (p.a.) 51 000 EUR
repayment (p.m.) 1 000 EUR
credit period 7 years
SCHUFA entry no
age 37
married yes
. . .

. . .

Customer n
house owner no
income (p.a.) 55 000 EUR
repayment (p.m.) 1 200 EUR
credit period 8 years
SCHUFA entry no
age ?
married yes
. . .

Regression setting:
q R is the range of the regression function.
q yi is the

::::::::::
ground

::::::::
truth of the credit line value for xi, xi ∈ X.

q D = {(x1, y1), . . . , (xn, yn)} ⊆ X ×R is a multiset of examples.

Classification setting:
q C = {−1, 1} is a set of two classes. Similarly: {0, 1}, {	,⊕}, {no, yes}, etc.

q ci is the ground truth of the creditworthiness class for xi, xi ∈ X.
q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.
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From Regression to Classification
The Linear Regression Model

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx
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From Regression to Classification
The Linear Regression Model

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx

q Given x1, . . . ,xn, assess goodness of fit as residual sum of squares:

(1)RSS(w) =

n∑
i=1

(yi − y(xi))
2 =

n∑
i=1

(yi −wTxi)
2
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From Regression to Classification
The Linear Regression Model

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx

q Given x1, . . . ,xn, assess goodness of fit as residual sum of squares:

(1)RSS(w) =

n∑
i=1

(yi − y(xi))
2 =

n∑
i=1

(yi −wTxi)
2

q Estimate optimum w by minimizing the residual sum of squares:

(2)ŵ = argmin
w∈Rp+1

RSS(w)
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Remarks (residuals):

q A residual is the difference between a target value (ground truth, observation) yi and the
estimated value y(xi) of the model function.

q The residual sum of squares, RSS, is the sum of squares of the residuals. It is also known as
the sum of squared residuals, SSR, or the sum of squared errors of estimates, SSE.

q The RSS term quantifies the regression error—or similarly, the goodness of fit—in the form of
a single value.

q RSS provides several numerical and theoretical advantages, but it is not the only possibility
to assess the goodness of fit (= error) between observed values and the model function.
Alternative approaches for quantifying the error include absolute residual values or likelihood
estimates.

q The error computation is also called loss computation, cost computation, or generally,
performance computation. Similarly, for the right-hand side of Equation (1) the following
names are used: error function, loss function, cost function, or generally, performance term.

Measures that quantify this kind of performance are called effectiveness measures. This
term must not be confused with efficiency measures, which quantify the computational effort
or runtime performance of a method.

q Residual 6= Loss. Observe the subtle difference between the two concepts “residual” and
“loss” (similarly: “error”, “cost”). The former denotes the difference between a target value
(ground truth, observation) and its estimate, whereas the latter denotes the interpretation of
this difference, which often involves a further transformation of the residual.
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Remarks (randomness and distributions):

q The yi are considered as realizations of n respective random variables Yi. Btw., do not
confuse the function y() with a realization yi.

q Equation (2): Estimating ŵ by RSS minimization is based on the following assumptions:

1. The probability distributions of the Yi have the same variance.

2. The expectations E[Yi] of the Yi lie on a straight line, known as the true (population)
regression line: E[Yi] = w∗Txi. I.e., the relation between the xi and the observed yi can
be explained completely by a linear model function.

3. The random variables Yi are statistically independent.

These assumptions are called the weak set (of assumptions). Along with a fourth assumption
about the distribution shape of Yi they become the strong set of assumptions.

q Yi may also be defined as y(xi) + Ei, in which case the disturbance term Ei has the same
distribution as Yi but the mean 0 (while Yi has the mean wTxi).

q Within the classical regression setting the variable x, also called regressor, is a controlled
variable. I.e., its instances xi, i = 1, . . . , n, are not considered as outcomes of a random
experiment: the xi are given, chosen with intent, or constructed without any effect of chance.

Within the typical machine learning setting, the occurrence of feature vectors—more general,
the sample formation process underlying X—is governed by a probability distribution: certain
observations may be more likely than others, and hence each feature vector xi is considered
as the realization of a multivariate random variable (aka random vector) Xi.
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From Regression to Classification
One-Dimensional Feature Space

x
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x
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From Regression to Classification
One-Dimensional Feature Space

x

residual

RSS =

n∑
i=1

(yi − y(xi))
2
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From Regression to Classification
One-Dimensional Feature Space

x

residual

xi

y(xi)

yi

w0

slope = w1

y(x) = w0 + w1 · x, RSS(w0, w1) =

n∑
i=1

(yi − w0 − w1 · xi)2
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From Regression to Classification
One-Dimensional Feature Space (continued) [higher-dimensional]

Minimize RSS(w0, w1) via a direct method:

1.
∂

∂w0

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ0 =
1

n

n∑
i=1

yi −
w1

n

n∑
i=1

xi = ȳ − ŵ1 · x̄
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From Regression to Classification
One-Dimensional Feature Space (continued) [higher-dimensional]

Minimize RSS(w0, w1) via a direct method:

1.
∂

∂w0

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ0 =
1

n

n∑
i=1

yi −
w1

n

n∑
i=1

xi = ȳ − ŵ1 · x̄

2.
∂

∂w1

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ1 ≡ w1 =

n∑
i=1

(xi − x̄) · (yi − ȳ)

n∑
i=1

(xi − x̄)2
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From Regression to Classification
One-Dimensional Feature Space (continued) [higher-dimensional]

Minimize RSS(w0, w1) via a direct method:

1.
∂

∂w0

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ0 =
1

n

n∑
i=1

yi −
w1

n

n∑
i=1

xi = ȳ − ŵ1 · x̄

2.
∂

∂w1

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ1 ≡ w1 =

n∑
i=1

(xi − x̄) · (yi − ȳ)

n∑
i=1

(xi − x̄)2
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From Regression to Classification
One-Dimensional Feature Space (continued)

Illustration of the task of minimizing RSS(w) =

n∑
i=1

(yi −wTxi)
2.

w0

w1

R
S

S
(w

)
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From Regression to Classification
Higher-Dimensional Feature Space

q Recall Equation (1) :

RSS(w) =

n∑
i=1

(yi −wTxi)
2

q Let X denote the n× (p+1) matrix where row i is the extended input vector
(1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of target values yi in the training set D.
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From Regression to Classification
Higher-Dimensional Feature Space

q Recall Equation (1) :

RSS(w) =

n∑
i=1

(yi −wTxi)
2

q Let X denote the n× (p+1) matrix where row i is the extended input vector
(1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of target values yi in the training set D.

; RSS(w) = (y −Xw)T (y −Xw)

RSS(w) is a quadratic function in p+1 parameters.
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From Regression to Classification
Higher-Dimensional Feature Space (continued) [one-dimensional]

Minimize RSS(w) via a direct method:

∂ RSS
∂w

= −2XT (y −Xw) = 0,
∂2 RSS
∂w∂wT

= −2XTX [Wikipedia 1, 2, 3]

XT (y −Xw) = 0

⇔ XTXw = XTy Normal equations. [Mathworld]

; ŵ ≡ w = (XTX)−1XT︸ ︷︷ ︸
Pseudoinverse of X [Wikipedia]

y If X has full column rank p+1.
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From Regression to Classification
Higher-Dimensional Feature Space (continued) [one-dimensional]

Minimize RSS(w) via a direct method:

∂ RSS
∂w

= −2XT (y −Xw) = 0,
∂2 RSS
∂w∂wT

= −2XTX [Wikipedia 1, 2, 3]

XT (y −Xw) = 0

⇔ XTXw = XTy Normal equations. [Mathworld]

; ŵ ≡ w = (XTX)−1XT︸ ︷︷ ︸
Pseudoinverse of X [Wikipedia]

y If X has full column rank p+1.

ŷ(xi) = ŵTxi Regression function with least squares estimator ŵ.

ŷ = Xŵ The n-vector of fitted values at the training input.

= X(XTX)−1XTy
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Remarks:

q A curve fitting (or regression) method that is based on the minimization of squared residuals
is called a method of least squares.

q Various approaches for operationalizing the method of least squares have been devised, in
particular for the case of linear model functions. From a numerical viewpoint one can
distinguish iterative methods, such as the

::::::
LMS

:::::::::::::
algorithm, and direct methods, such as

solving the normal equations via computing the pseudoinverse.

q More on direct methods. While solving the normal equations is usually fast, it suffers from
several deficits: it is numerically unstable and requires singularity handling. Numerically more
stable and more accurate methods are based on the QR decomposition and the singular
value decomposition, SVD.

q QR decomposition can deal with problems of up to 104 variables, provided a dense problem
structure. For significantly larger problems (additional 1-2 orders of magnitudes) as well as
for sparse matrices iterative solvers are the choice. Even larger, dense problems may be
tackled with Artificial Neural Networks.
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1)

Regression learns a real-valued function given as D = {(x1, y1), . . . , (xn, yn)}.

x

y(x)

y(x) = (w0 w1)
(
1
x

)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1)

Binary-valued (±1) functions are also real-valued.

x

1

-1
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x

1

-1

y(x)

y(x) = (w0 w1)
(
1
x

)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x

1

-1

y(x)

The function “sign(wTxi)” is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x

1

-1

+ +++

- --

The function “sign(wTxi)” is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x

1

-1

+ +++

- --

- -- + +++
x'

0

The function “sign(wTxi)” is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x

1

-1

+ +++

- --

- -- + +++
x'

0

sign(wTx) = 1sign(wTx) = -1

q The discrimination point, •, is defined by that x that fulfills w0 + w1 · x = 0.

q For p = 2 we obtain a discrimination line.
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Remarks:

(?) We consider the feature vector x in its extended form when used as operand in a scalar
product with the weight vector, wTx, and consequently, when noted as argument of the
model function, y(x). I.e., x = (1, x1, . . . , xp)

T ∈ Rp+1, and x0 = 1.

q The sign function is three-valued, with sign(z) = −1 (0, 1) for z < 0 (z = 0, z > 0)—i.e., the
case with wTx = 0 needs special treatment. Without loss of generality we will label y(0) with
the “positive” class (1, ⊕, yes, etc.) and define sign(0) = 1 in the respective algebraic
expressions.
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2)

x1

x2

1

-1
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2)

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-
----

-
-- -- - -
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++

+
+

+
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-
----

-
-- -- - -

++
++

+
+

+

y(x1, x2) = (w0 w1 w2)

 1
x1
x2
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-
--

y(x1, x2)

--
-

-- -- - -

++
++

+
+

+

The function “sign(wTxi)” is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-
--

y(x1, x2)

--
-

-- -- - -

++
++

+
+

+

0 (w1 w2)T

The function “sign(wTxi)” is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+++
++

+
+

+
-
- -
-

-

-
-

-
-
----

-
-- -- - -

sign(wTx) = 1sign(wTx) = -1

(w1 w2)T

q The discrimination line, , is defined by the x that fulfill w0+w1·x1+w2·x2 = 0.

q For p = 3 (p > 3) we obtain a discriminating (hyper)plane.
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.
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q The discrimination line, , is defined by the x that fulfill w0+w1·x1+w2·x2 = 0.

q For p = 3 (p > 3) we obtain a discriminating (hyper)plane.
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Remarks:

q The shown figures illustrate how (linear) regression methods that are applied in the
input–output space implicitly define a hyperplane in the input space.

In general, linear regression is not the best choice to solve classification problems:
imbalanced class distributions and outliers can severely impair the classification
effectiveness.

q A suited regression method for classification is logistic regression, introduced in the part
Linear Models, which estimates the probability of class membership. Note that also logistic
regression is a linear classifier since its encoded hypothesis is a linear function in the
parameters w.

An illustration of the input–output space of the logistic regression model along with the
implicitly defined hyperplane is shown here.
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From Regression to Classification
Linear Model Function Variants

The components (features) of the input vector x = (x1, . . . , xp) can stem from
different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as log xj,
√
xj

3. basis expansions, such as xj = (x1)
j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g
.
= j)

5. interactions between variables, such as x3 = x1 · x2
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From Regression to Classification
Linear Model Function Variants

The components (features) of the input vector x = (x1, . . . , xp) can stem from
different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as log xj,
√
xj

3. basis expansions, such as xj = (x1)
j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g
.
= j)

5. interactions between variables, such as x3 = x1 · x2

No matter the source of the xj, the model is still linear in the parameters w :

y(x) = w0 +

p∑
j=1

wj · φj(xj)
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From Regression to Classification
Linear Model Function Variants

The components (features) of the input vector x = (x1, . . . , xp) can stem from
different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as log xj,
√
xj

3. basis expansions, such as xj = (x1)
j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g
.
= j)

5. interactions between variables, such as x3 = x1 · x2

No matter the source of the xj, the model is still linear in the parameters w :

y(x) = w0 +

p∑
j=1

wj · φj(xj)

q linear in the parameters: y(w) is a linear function
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From Regression to Classification
Linear Model Function Variants

The components (features) of the input vector x = (x1, . . . , xp) can stem from
different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as log xj,
√
xj

3. basis expansions, such as xj = (x1)
j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g
.
= j)

5. interactions between variables, such as x3 = x1 · x2

No matter the source of the xj, the model is still linear in the parameters w :

y(x) = w0 +

p∑
j=1

wj · φj(xj)

q linear in the parameters: y(w) is a linear function

q basis functions: input variables (space) become(s) feature variables (space)
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From Regression to Classification
Non-Linear Decision Boundaries [

:::::::
logistic

::::::::::::
regression]
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Higher order polynomial terms in the features (linear in the parameters):

y(x) = wTx = w0 + w1 · x1 + w2 · x2 + w3 · x21 + w4 · x22
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From Regression to Classification
Non-Linear Decision Boundaries [

:::::::
logistic

::::::::::::
regression]
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Higher order polynomial terms in the features (linear in the parameters):

y(x) = wTx = w0 + w1 · x1 + w2 · x2 + w3 · x21 + w4 · x22
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From Regression to Classification
Non-Linear Decision Boundaries [

:::::::
logistic

::::::::::::
regression]
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x1
2 + x2

2  = 1

Higher order polynomial terms in the features (linear in the parameters):

y(x) = wTx = w0 + w1 · x1 + w2 · x2 + w3 · x21 + w4 · x22

with w =


−1
0
0
1
1

 ; y(x) = −1 + x21 + x22
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From Regression to Classification
Non-Linear Decision Boundaries [

:::::::
logistic

::::::::::::
regression]
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x1
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2  ≥ 1
cx = 1

x1
2 + x2

2  < 1
cx = -1

Higher order polynomial terms in the features (linear in the parameters):

y(x) = wTx = w0 + w1 · x1 + w2 · x2 + w3 · x21 + w4 · x22

with w =


−1
0
0
1
1

 ; y(x) = −1 + x21 + x22

Classification: Predict

{
c = 1, if x21 + x22 ≥ 1 ⇔ wTx ≥ 0

c = −1, if x21 + x22 < 1 ⇔ wTx < 0
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From Regression to Classification
Non-Linear Decision Boundaries (continued) [

:::::::
logistic

::::::::::::
regression]

x2
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1
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1-1

cx = 1

cx = -1

More complex polynomials entail more complex decision boundaries:

y(x) = w0 + w1 · x1 + w2 · x2 + w3 · x21 + w4 · x21 · x2 + w5 · x21 · x22 + . . .
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From Regression to Classification
Methods of Least Squares: Iterative versus Direct Methods

argmin
w

RSS(w), with RSS(w) =

n∑
i=1

(yi −wTxi)
2

w0

w1

R
S

S
(w

)
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From Regression to Classification
Methods of Least Squares: Iterative versus Direct Methods

argmin
w

RSS(w), with RSS(w) =

n∑
i=1

(yi −wTxi)
2

w0

w1

R
S

S
(w

)

:::::::
LMS

:::::::::::::::
algorithm:

q applicable as online algorithm
q robust algorithm structure
q unsatisfactory convergence
q allows stochastic sampling

xi

wi

yiy(xi)

error noise

Unknown
system

Adaptive
filter

+
+

-

D

ML:II-108 Machine Learning Basics © STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#algorithm-least-mean-squares


From Regression to Classification
Methods of Least Squares: Iterative versus Direct Methods

argmin
w

RSS(w), with RSS(w) =

n∑
i=1

(yi −wTxi)
2

w0

w1

R
S

S
(w

)

:::::::
LMS

:::::::::::::::
algorithm:

q applicable as online algorithm
q robust algorithm structure
q unsatisfactory convergence
q allows stochastic sampling

xi

wi

yiy(xi)

error noise

Unknown
system

Adaptive
filter

+
+

-

D

Normal equations:

q needs complete data
q numerically unstable
q requires singularity handling
q hardly applicable to big data

ŵ = (XTX)−1XTy
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Remarks:

q The principle of RSS minimization is orthogonal to (= independent of) the type of the model
function y(), i.e., independent of its dimensionality as well as its linearity or nonlinearity.

q To fit the parameters w of a (one-dimensional, multi-dimensional, linear, nonlinear) model
function y(), both the LMS algorithm and direct methods exploit information about the
derivative of the RSS term with respect to w. I.e., even if classification and not regression is
the goal, the distance to the decision boundary (and not the zero-one-loss) is computed,
since the zero-one-loss is non-differentiable.

q For a linear model function y(), RSS is a convex function and hence a single, global optimum
exists.

q A main goal of machine learning approaches is to avoid
:::::::::::::
overfitting. Overfitting, in turn, is

caused by an inadequate (too high) model function complexity—or, similarly, by insufficient
data. A means to reduce the model function complexity is

:::::::::::::::::
regularization. Both topics are

treated in the part Linear Models.

q Regularization will introduce additional constraints for the model function y() or the
parameter vector w. With regularization the minimization expression (2) will have two
summands: a performance term such as the RSS term, and a penalizing term such as a
norm. As before, the first term captures the model function’s goodness depending on w,
whereas the second term restricts the absolute values of the model function’s parameters w.
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From Regression to Classification
Properties of the Solution

Theorem 1 (Gauss-Markov)

Let D = {(x1, y1), . . . , (xn, yn)} be a multiset of examples to be fitted with a linear
model function as y(x)

(?)
= xTw. Within the class of linear

::::::::::::::
unbiased estimators for w,

the least squares estimator ŵ has minimum variance, i.e., is most efficient.
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From Regression to Classification
Properties of the Solution

Theorem 1 (Gauss-Markov)

Let D = {(x1, y1), . . . , (xn, yn)} be a multiset of examples to be fitted with a linear
model function as y(x)

(?)
= xTw. Within the class of linear

::::::::::::::
unbiased estimators for w,

the least squares estimator ŵ has minimum variance, i.e., is most efficient.

Related follow-up issues:

q mean and variance of ŵ

q proof of the Gauss-Markov theorem

q weak set and strong set of assumptions

q efficiency and consistency of unbiased estimators

q rank deficiencies, where the feature number p exceeds |D| = n

q relation between least squares and maximum likelihood estimators / methods
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Remarks:

q The Gauss-Markov Theorem is important since it follows already from the weak set of
assumptions.

q Under the strong set of assumptions the maximum likelihood estimates are identical to the
least-squares estimates.
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