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Overfitting

Definition 9 (Overfitting)

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h2 ∈ H is considered to overfit D if an h1 ∈ H with the following property exists:

Err (h2, D) < Err (h1, D) and Err ∗(h1) < Err ∗(h2),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h on D.
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Overfitting

Definition 9 (Overfitting)

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h2 ∈ H is considered to overfit D if an h1 ∈ H with the following property exists:

Err (h2, D) < Err (h1, D) and Err ∗(h1) < Err ∗(h2),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h on D.

Er
ro

r

Increasing model function complexity
h2h1

Error on D
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Overfitting

Definition 9 (Overfitting)

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h2 ∈ H is considered to overfit D if an h1 ∈ H with the following property exists:

Err (h2, D) < Err (h1, D) and Err ∗(h1) < Err ∗(h2),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h on D.
[see continuation]

Er
ro

r

Increasing model function complexity
h2h1

Error on D

True error
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Overfitting

Definition 9 (Overfitting)

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h2 ∈ H is considered to overfit D if an h1 ∈ H with the following property exists:

Err (h2, D) < Err (h1, D) and Err ∗(h1) < Err ∗(h2),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h on D.
[see continuation]

Reasons for overfitting are often rooted in the example set D :

q D is noisy and we “learn noise.”

q D is biased and hence not representative.
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Overfitting

Definition 9 (Overfitting)

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h2 ∈ H is considered to overfit D if an h1 ∈ H with the following property exists:

Err (h2, D) < Err (h1, D) and Err ∗(h1) < Err ∗(h2),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h on D.
[see continuation]

Reasons for overfitting are often rooted in the example set D :

q D is noisy and we “learn noise.”

q D is biased and hence not representative.

q D is too small and hence pretends unrealistic data properties.
m

D is too small with regard to the complexity of the chosen model function.
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Remarks:

q
:::::::::
Recap. A hypothesis is a proposed explanation for a phenomenon. [Wikipedia]

Here, a hypothesis “explains” (= fits) the data D. Hence, a concrete model function y(), y(),
or, if the function type is clear from the context, its parameters w or θ are called “hypothesis”.
The variable name h (similarly: h1, h2, hi, h′, etc.) may be used to refer to a specific instance
of a model function or its parameters.
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Overfitting
Example: Linear Regression

x
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Overfitting
Example: Linear Regression

x

(a) y(x) = w0 + w1 · x
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Overfitting
Example: Linear Regression

x

(b) y(x) = w0 + w1 · x + w2 · x2 (
:::::::
basis

::::::::::::::
expansion)

y(x) = (w0 w1 w2)

 1
x
x2

 =: wT

x0x1
x2

 = wTx = y(x), where x0 = 1, x1 = x, x2 = x2
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Overfitting
Example: Linear Regression

x

(c) y(x) = w0 +

6∑
j=1

wj · xj (
:::::::
basis

::::::::::::::
expansion)

y(x) =: wTx = y(x), where x0 = 1, xj = xj, j = 1, . . . , 6
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Overfitting
Example: Linear Regression (continued)

Given the three polynomial model functions of degrees 1, 2, and 6, and a training
set Dtr , select the function that best fits the data:

x

(a) RSS(w)� 0

x

(b) RSS(w) > 0

x

(c) RSS(w) > 0
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Overfitting
Example: Linear Regression (continued)

Given the three polynomial model functions of degrees 1, 2, and 6, and a training
set Dtr , select the function that best fits the data:

x

(a) RSS(w)� 0

x

(b) RSS(w) > 0

x

(c) RSS(w) = 0
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Overfitting
Example: Linear Regression (continued)

Given the three polynomial model functions of degrees 1, 2, and 6, and a training
set Dtr , select the function that best fits the data:

x

(a) RSS(w)� 0

x

(b) RSS(w) > 0

x

(c) RSS(w) = 0

Questions:

(1) How to choose a suited model function / hypothesis space H?

(2) How to parameterize a model function / pick an element from H?
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Overfitting
Example: Linear Regression (continued)

Given the three polynomial model functions of degrees 1, 2, and 6, and a training
set Dtr , select the function that best fits the data:

x

(a) RSS(w)� 0

x

(b) RSS(w) > 0

x

(c) RSS(w)� 0

Let Dtest be a set of test examples.

If D = Dtr ∪Dtest is representative of the real-world population in X, the quadratic
model function (b), y(x) = w0 + w1 · x + w2 · x2, is the closest match.
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Overfitting

Definition 9 (Overfitting (continued))

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h2 ∈ H is considered to overfit D if an h1 ∈ H with the following property exists:

Err (h2, D) < Err (h1, D) and Err ∗(h1) < Err ∗(h2),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h for D.
[see first part]

Er
ro

r

Increasing model function complexity
h2h1

Error on D

True error
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Overfitting

Definition 9 (Overfitting (continued))

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h2 ∈ H is considered to overfit D if an h1 ∈ H with the following property exists:

Err (h2, D) < Err (h1, D) and Err ∗(h1) < Err ∗(h2),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h for D.
[see first part]

Er
ro

r

Increasing model function complexity
h2h1

Error on D

True error

Error on Dtr

Error on Dtest
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Overfitting

Definition 9 (Overfitting (continued))

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h2 ∈ H is considered to overfit D if an h1 ∈ H with the following property exists:

Err (h2, D) < Err (h1, D) and Err ∗(h1) < Err ∗(h2),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h for D.
[see first part]

Er
ro

r

Increasing model function complexity
h2h1

Error on D

True error

Error on Dtr

Error on Dval
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Overfitting

Definition 9 (Overfitting (continued))

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h2 ∈ H is considered to overfit D if an h1 ∈ H with the following property exists:

Err (h2, D) < Err (h1, D) and Err ∗(h1) < Err ∗(h2),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h for D.

Moreover, let Dtr ⊂ D be a training set, Dtest ⊂ D be a test set, Dtest ∩Dtr = ∅, and
Err (h,Dtest) be an estimate for Err ∗(h) [

::::::::
holdout

:::::::::::
estimation]. The hypothesis h2 ∈ H is

considered to overfit D if an h1 ∈ H with the following property exists:

Err (h2, Dtr ) < Err (h1, Dtr ) and Err (h1, Dtest) < Err (h2, Dtest)

In particular: Err (h2, Dtest)� Err (h2, Dtr )
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Remarks:

q We need a validation or development (holdout) set, Dval , to
::::::::
control

:::::::::
model

::::::::::::
selection, and we

need a test (holdout) set, Dtest , to
:::::::::
assess

:::::
the

::::::
true

:::::::
error of the final model.

q Two holdout sets are necessary to prevent an information leak between the model selection
phase and the assessment of the final model.

ML:III-84 Linear Models © POTTHAST/STEIN/VÖLSKE 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#model-selection
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#estimating-error-bounds


Overfitting
Mitigation Strategies

How to detect overfitting:

q Visual inspection
Apply projection or embedding for dimensionalities p > 3.

q Validation
Given a test set, the

:::::::::::::
difference

::::::::::::::::::::::::::::::::::::::
Err (y(), Dtest)− Err (y(), Dtr) is too large.
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Overfitting
Mitigation Strategies

How to detect overfitting:

q Visual inspection
Apply projection or embedding for dimensionalities p > 3.

q Validation
Given a test set, the

:::::::::::::
difference

::::::::::::::::::::::::::::::::::::::
Err (y(), Dtest)− Err (y(), Dtr) is too large.

How to tackle overfitting:

q Increase the quantity and / or the quality of the training data D.
Quantity: More data averages out noise.
Quality: Omitting “poor examples” allows a better fit, but is problematic though.

q Early stopping of a model optimization / refinement process.
Criterion: Err (y(), Dval)− Err (y(), Dtr) increases with increasing model function complexity.
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Overfitting
Mitigation Strategies

How to detect overfitting:

q Visual inspection
Apply projection or embedding for dimensionalities p > 3.

q Validation
Given a test set, the

:::::::::::::
difference

::::::::::::::::::::::::::::::::::::::
Err (y(), Dtest)− Err (y(), Dtr) is too large.

How to tackle overfitting:

q Increase the quantity and / or the quality of the training data D.
Quantity: More data averages out noise.
Quality: Omitting “poor examples” allows a better fit, but is problematic though.

q Early stopping of a model optimization / refinement process.
Criterion: Err (y(), Dval)− Err (y(), Dtr) increases with increasing model function complexity.

q Regularization: Increase model bias by constraining the hypothesis space.
(1) Model function: Consider functions of lower complexity / VC dimension. [Wikipedia]

(2) Hypothesis w: Bound the absolute values of the weights in ~w of a model function.
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Chapter ML:III

III. Linear Models
q Logistic Regression
q Loss Computation in Detail
q Overfitting
q Regularization
q Gradient Descent in Detail
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Regularization
ML Stack: Regularization [ML stack:

:::::
LMS,

::::
log.

::::::::::::
regression,

::::
loss

:::::::
comp., regularization,

::::
GD ]

Optimization approach

Optimization objective
Loss function [ + Regularization ]

Model function ; Hypothesis space

4

Task

Data

...

q Objective: minimize objective function
q Regularization: Euclidean norm,

absolute-value norm
q Loss: l(c, y(x))

...

...
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Regularization
Bound the Absolute Values of the Weights w

Principle: Add to the loss function (term) a regularization function (term), R(w):

L(w) = L(w) + λ ·R(w), l(w) = l(c, y(x)) +
λ

n
·R(w),

where λ ≥ 0 controls the impact of R(w), R(w) ≥ 0.
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Regularization
Bound the Absolute Values of the Weights w

Principle: Add to the loss function (term) a regularization function (term), R(w):

L(w) = L(w) + λ ·R(w), l(w) = l(c, y(x)) +
λ

n
·R(w),

where λ ≥ 0 controls the impact of R(w), R(w) ≥ 0.

Example (c) (continued) :

x

q y(x) = w0 +
6∑

j=1

wj · xj

q L(w) = RSS(w) =
n∑

i=1

(yi − y(xi))2

q R(w) = |w1| + |w2| + . . . + |w6|
λ = 0

; ŵ = (−0.7, 15.4, −80.6, 174.9, −99.5, −113.7, 109.7)T
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Regularization
Bound the Absolute Values of the Weights w

Principle: Add to the loss function (term) a regularization function (term), R(w):

L(w) = L(w) + λ ·R(w), l(w) = l(c, y(x)) +
λ

n
·R(w),

where λ ≥ 0 controls the impact of R(w), R(w) ≥ 0.

Example (c) (continued) :

x

q y(x) = w0 +
6∑

j=1

wj · xj

q L(w) = RSS(w) =
n∑

i=1

(yi − y(xi))2

q R(w) = |w1| + |w2| + . . . + |w6|
λ = 0.001

; ŵ = (0.01, 2.0, −1.73, −0.22, 0.0, 0.0, 0.8)T
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Regularization
Bound the Absolute Values of the Weights w

Principle: Add to the loss function (term) a regularization function (term), R(w):

L(w) = L(w) + λ ·R(w), l(w) = l(c, y(x)) +
λ

n
·R(w),

where λ ≥ 0 controls the impact of R(w), R(w) ≥ 0.

Example (c) (continued) :

x

q y(x) = w0 +
6∑

j=1

wj · xj

q L(w) = RSS(w) =
n∑

i=1

(yi − y(xi))2

q R(w) = |w1| + |w2| + . . . + |w6|
λ = 0.02

; ŵ = (0.17, 0.73, 0.0, −0.21, −0.01, −0.01, 0.0)T
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Regularization
Bound the Absolute Values of the Weights w

Principle: Add to the loss function (term) a regularization function (term), R(w):

L(w) = L(w) + λ ·R(w), l(w) = l(c, y(x)) +
λ

n
·R(w),

where λ ≥ 0 controls the impact of R(w), R(w) ≥ 0.

Observations:

q Model complexity depends (also) on the magnitude of the weights w.

q Minimizing L(w) sets no bounds on the weights w.

q Regularization is achieved with a “counterweight” λ ·R(w) that grows with w.

q Aside from λ no additional hyperparameter is introduced.
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Remarks:

q L(w) is called (global) “objective function”, “cost function”, or “error function”; l(w) is its
pointwise counterpart.

q The regularization term constrains the magnitude of the direction vector of the hyperplane,
progressively reducing the hyperplane’s steepness as λ increases. The intercept w0 is
adjusted accordingly through minimization of L(w) but must not be part of the regularization
term itself, which would lead to an incorrect solution.

q To denote the difference, we write w ≡ (w0, w1, . . . , wp)
T to refer to the entire parameter

vector (the actual hypothesis), and ~w ≡ (w1, . . . , wp)
T for the direction vector excluding w0.

q About choosing λ:

– Recall subsection
::::::::::::::
Comparing

:::::::::
Model

:::::::::::
Variants of section Evaluating Effectiveness where

hyperparameter optimization is tackled by means of a validation set.

– How to calculate the regularization parameter λ in linear regression. [stackoverflow]

– “No black-box procedures for choosing the regularization parameter λ are available, and
most likely will never exist.” [Hansen/Hanke 1993]
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Remarks: (continued)

q The term “regularization” derives from “regular”, a synonym for “smooth” within the context of
model functions. [stackexchange]

q Regularization is applied in settings where the set of examples D is much smaller than the
population of real-world objects O. Under the conditions of the

:::::::::::
Inductive

::::::::::::
Learning

:::::::::::::::
Hypothesis

we can infer from D a hypothesis h that generalizes sufficiently well to the entire
population—if h is sufficiently simple, stable (wrt. changes in D), and smooth, which can be
achieved with regularization.

However, if D covers (nearly) the entire population, minimizing the loss L(w) takes
precedence over additional restrictions R(w) regarding the simplicity, the stability, and the
smoothness of h.

q The origins of regularization go back to the fields of inverse problems and ill-posed problems.
Solving an inverse problem means calculating from a set of observations the causal factors
that produced them. [Wikipedia]

Inverse problems are often ill-posed, where “ill-posedness” is defined as not being
“well-posed”. In turn, a mathematical problem is called well-posed if (1) a solution exists,
(2) the solution is unique, (3) the solution’s behavior changes continuously with the initial
conditions. [Wikipedia]

Under certain assumptions the problem of learning from examples forms an inverse problem.
[deVito 2005]

ML:III-96 Linear Models © POTTHAST/STEIN/VÖLSKE 2023

https://stats.stackexchange.com/questions/250722/the-origin-of-the-term-regularization#answer-250754
https://webis.de/downloads/lecturenotes/machine-learning/unit-en-concept-learning.pdf#inductive-learning-hypothesis
https://en.wikipedia.org/wiki/Inverse_problem
https://en.wikipedia.org/wiki/Well-posed_problem
https://jmlr.org/papers/v6/devito05a.html


Regularization
The Vector Norm as Regularization Function

q Ridge regression. R||~w||22
(w) =

p∑
i=1

w2
i = ~wT ~w

q Lasso regression. R||~w||1(w) =

p∑
i=1

|wi|
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Remarks:

q The term “ridge” refers to the ridge that one gets in the likelihood function (equivalently,
“valley” in the RSS) if there is multicollinearity in the data. Ridge regression adds a penalty
that turns the ridge into a peak in likelihood space or, equivalently, a depression in the
minimization criterion. [stackexchange]

Ridge regression predates lasso regression. It is also known as weight decay in machine
learning, and with multiple independent discoveries, it is variously known as the
Tikhonov-Miller method, the Phillips-Twomey method, the constrained linear inversion
method, and the method of linear regularization. [Wikipedia]

q “Lasso” is an acronym for “least absolute shrinkage and selection operator”.

q || · ||k denotes the vector norm operator:

||x||k ≡

(
p∑

j=1

|xj|k
)1/k

,

where k ∈ [1,∞) and p is the dimensionality of vector x.

q By convention, || · || (omitting the subscript) refers to the Euclidean norm (k = 2).
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w)
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Regularization
The Vector Norm as Regularization Function (continued)

R||~w||22
(w) =

p∑
i=1

w2
i = ~wT ~w

w1

w2

0

0

0

w1

w2
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Regularization
The Vector Norm as Regularization Function (continued)

R||~w||1(w) =

p∑
i=1

|wi|

w1

w2

0

0

0

w1

w2
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Remarks:

q The exemplified plots of the loss term, L(w), and the regularization term, R(w), are illustrated
over the parameter space {(w1, w2) | wi ∈ R} (instead of {(w0, w1) | wi ∈ R}) to better
emphasize the characteristic difference between ridge regression and lasso regression.

q The contour line plots show two-dimensional projections of the three-dimensional convex
loss function (here: RSS) for a given set of example data, as well as of the two regularization
functions R||w||22 and R||w||1, whose shapes do not depend on the data.

q A contour line is a curve along which the respective function has a constant value.

ML:III-102 Linear Models © POTTHAST/STEIN/VÖLSKE 2023



Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w)

w1

w2
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w)

w1

w2

λ = 10
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w)

w1

w2

λ = 10
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w)

w1

w2

λ = 100
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w)

w1

w2

λ = 100
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w) L(w) = L(w) + λ ·R||~w||1(w)

w1

w2

λ = 100

w1

w2

λ = 10

ML:III-108 Linear Models © POTTHAST/STEIN/VÖLSKE 2023



Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w) L(w) = L(w) + λ ·R||~w||1(w)

w1

w2

λ = 100

w1

w2

λ = 10
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w) L(w) = L(w) + λ ·R||~w||1(w)

w1

w2

λ = 100

w1

w2

λ = 100
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w) L(w) = L(w) + λ ·R||~w||1(w)

w1

w2

λ = 100

w1

w2

λ = 100
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w) L(w) = L(w) + λ ·R||~w||1(w)

[animation] [animation]

The animations show superimposed contourlines. The choice of R determines the
trajectory the minimum takes towards the origin as a function of λ. [stackexchange]
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Remarks:

q The exemplified loss function is minimal at the cross. Without regularization, the weights
associated with the minimum will be the result of a linear regression. By adding the
regularization term λ ·R(w) with λ > 0, the joint minimum of the two functions is found closer
to the origin of the parameter space than the minimum of the loss function.

q The choice of λ determines how much closer the joint minimum is to the origin of the
parameter space; the higher, the closer, and thus the smaller the parameters w.

q The minimum of L(w) is on a tangent point between a contour line of L(w) and a contour line
of R(w). Barring exceptional cases, the minimum of L(w) (the sum of global loss and
regularization) is unique, even if the minimum of L(w) (the global loss) is non-unique.

q A key difference between ridge (R||~w||22) and lasso (R||~w||1) regression is that, with lasso
regression, parameters can be reduced to zero, eliminating the corresponding feature from
the model function.

With ridge regression, the influence of all parameters will be reduced “uniformly.” In
particular, a parameter will be reduced to zero if and only if the minimum of the loss function
is found on that parameter’s axis.
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Regularization
Regularized Linear Regression [

::::::
linear

:::::::::::
regression]

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx
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Regularization
Regularized Linear Regression [

::::::
linear

:::::::::::
regression]

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx

q Given x1, . . . ,xn, assess goodness of fit of the objective function:

(1)L(w) = RSS(w) + λ ·R||~w||22(w) =

n∑
i=1

(yi −wTxi)
2 + λ · ~wT ~w
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Regularization
Regularized Linear Regression [

::::::
linear

:::::::::::
regression]

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx

q Given x1, . . . ,xn, assess goodness of fit of the objective function:

(1)L(w) = RSS(w) + λ ·R||~w||22(w) =

n∑
i=1

(yi −wTxi)
2 + λ · ~wT ~w

q Estimate optimum w by minimizing the objective function:

(2)ŵ = argmin
w∈Rp+1

L(w)
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Regularization
Regularized Linear Regression (continued) [

::::::
linear

:::::::::::
regression]

q Let X denote the n× (p+1) matrix, where row i is (1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of outputs in the training set D.

; L(w) = (y −Xw)T (y −Xw) + λ · ~wT ~w
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Regularization
Regularized Linear Regression (continued) [

::::::
linear

:::::::::::
regression]

q Let X denote the n× (p+1) matrix, where row i is (1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of outputs in the training set D.

; L(w) = (y −Xw)T (y −Xw) + λ · ~wT ~w

q Minimize L(w) via a direct method:

∂L(w)

∂w
= −2XT (y −Xw) + 2λ ·

(
0
~w

)
= 0

XT (y −Xw)− λ ·
(
0
~w

)
= 0

⇔
(
XTX + λ · diag(0, 1, . . . , 1)

)
w = XTy Normal equations.

⇔ ŵ ≡ w =
(
XTX + diag(0, λ, . . . , λ)︸ ︷︷ ︸

Conditioning the moment matrix XTX [Wikipedia 1, 2, 3]

)−1
XTy If λ > 0.
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Regularization
Regularized Linear Regression (continued) [

::::::
linear

:::::::::::
regression]

q Let X denote the n× (p+1) matrix, where row i is (1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of outputs in the training set D.

; L(w) = (y −Xw)T (y −Xw) + λ · ~wT ~w

q Minimize L(w) via a direct method:

∂L(w)

∂w
= −2XT (y −Xw) + 2λ ·

(
0
~w

)
= 0

XT (y −Xw)− λ ·
(
0
~w

)
= 0

⇔
(
XTX + λ · diag(0, 1, . . . , 1)

)
w = XTy Normal equations.

⇔ ŵ ≡ w =
(
XTX + diag(0, λ, . . . , λ)︸ ︷︷ ︸

Conditioning the moment matrix XTX [Wikipedia 1, 2, 3]

)−1
XTy If λ > 0.
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Regularization
Regularized Linear Regression (continued) [

::::::
linear

:::::::::::
regression]

q Let X denote the n× (p+1) matrix, where row i is (1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of outputs in the training set D.

; L(w) = (y −Xw)T (y −Xw) + λ · ~wT ~w

q Minimize L(w) via a direct method:

∂L(w)

∂w
= −2XT (y −Xw) + 2λ ·

(
0
~w

)
= 0

XT (y −Xw)− λ ·
(
0
~w

)
= 0

⇔
(
XTX + λ · diag(0, 1, . . . , 1)

)
w = XTy Normal equations.

⇔ ŵ ≡ w =
(
XTX + diag(0, λ, . . . , λ)︸ ︷︷ ︸

Conditioning the moment matrix XTX [Wikipedia 1, 2, 3]

)−1
XTy If λ > 0.

ŷ(xi) = ŵT xi Regression function with least squares estimator ŵ.
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