Chapter ML:IX

IX. Deep Learning

- □ Elements of Deep Learning
- □ Convolutional Neural Networks
- Autoencoder Networks
- □ Recurrent Neural Networks
- □ Long-Term Dependencies
- □ RNNs for Machine Translation
- Attention Mechanism
- □ Transformer
- Transformer Language Models
- Pretraining and Finetuning

ML:IX-29 Deep Learning © STEIN/VÖLSKE 2024

Notation I (MLP matrices) [notation: MLP matrices, computational graph, language model]

ML:IX-30 Deep Learning © STEIN/VÖLSKE 2024

Notation I (MLP matrices) [notation: MLP matrices, computational graph, language model]

ML:IX-31 Deep Learning © STEIN/VÖLSKE 2024

Notation I (MLP matrices) [notation: MLP matrices, computational graph, language model]

ML:IX-32 Deep Learning © STEIN/VÖLSKE 2024

Notation I (MLP matrices) [notation: MLP matrices, computational graph, language model]

ML:IX-33 Deep Learning © STEIN/VÖLSKE 2024

Notation I (MLP matrices) [notation: MLP matrices, computational graph, language model]

ML:IX-34 Deep Learning © STEIN/VÖLSKE 2024

Remarks:

- A hidden vector is the result of an intermediate computation in a multilayer network. If sequences are processed, hidden vectors may be distinguished as hidden *encoder* vectors (which consider the input at a certain time step) and hidden *decoder* vectors (which generate the output at a certain time step).
- A predefined hidden vector is used to for initialization purposes for the first hidden layer in a sequence-processing multilayer network. Typically, it is a constant vector of zeroes.
- Attention vectors combine the information in hidden vectors in a way that is specific to a certain time step. Keyword: vanishing gradient problem
- A target vector (or target vector sequence) encodes the desired output.
 Keywords: supervised learning, ground truth

ML:IX-35 Deep Learning © STEIN/VÖLSKE 2024

Types of Learning Tasks [Recap]

(S1) sequence → class

 $\text{sentence} \to \{\oplus,\ominus\}$

i love my cat $\rightarrow \oplus$

(S2) $class \rightarrow sequence$

 $\{\oplus,\ominus\}\to sentence$

 $\oplus \to \mathrm{i}$ love my cat

(S3) sequence \rightarrow sequence

English sentence → German sentence

i love my cat \rightarrow ich liebe meine katze

ML:IX-36 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding

- \Box One *p*-dimensional input vector **x**.
- \neg One hidden layer (general: d-1 hidden layers, i.e., d active layers).
- \Box One k-dimensional output vector $\mathbf{y}(\mathbf{x})$.

ML:IX-37 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued)

- \Box Sequence of p-dimensional input vectors $[\mathbf{x}(1), \dots, \mathbf{x}(T)]$.
- One hidden layer that is recurrently updated.
- figspace One k-dimensional output vector $\mathbf{y}([\mathbf{x}(1),\ldots,\mathbf{x}(T)])$ or \mathbf{y} .

ML:IX-38 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued)

ML:IX-39 Deep Learning

RNN Sequence Encoding (continued)

ML:IX-40 Deep Learning

Remarks:

- An input sequence is written in brackets, $[\mathbf{x}(1), \dots, \mathbf{x}(T)]$, where $\mathbf{x}(t), t = 1, \dots, T$, denotes the input vector at time step t.
- The words in the input sequence are usually one-hot-encoded, i.e., by a p-dimensional input vector with a "1" whose position indicates the word, and zeros elsewhere.

ML:IX-41 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

 $t: 0 \rightarrow 1$

Input encoding over t.

ML:IX-42 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

 $t: 0 \rightarrow 1$

Input encoding over t.

ML:IX-43 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

 $t: 0 \rightarrow 1$

Input encoding over t.

ML:IX-44 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

ML:IX-45 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

 $t{:}~1 \rightarrow 2$

Input encoding over t.

ML:IX-46 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

 $t{:}~1 \rightarrow 2$

Input encoding over t.

ML:IX-47 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

ML:IX-48 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

 $t: 0 \rightarrow 1$

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-49 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

 $t: 0 \rightarrow 1$

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-50 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

 $t: 0 \rightarrow 1$

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-51 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-52 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

 $t: 1 \rightarrow 2$

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-53 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

 $t: 1 \rightarrow 2$

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-54 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-55 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-56 Deep Learning © STEIN/VÖLSKE 2024

(S1) Sequence-to-Class: Sentiment Classification

- riangleright I love my cat. $o \oplus$
- $lue{}$ Cats and dogs lap water. ightarrow o \oplus
- \Box It is raining cats and dogs. \rightarrow \ominus
- \Box Cats and dogs are not allowed. \rightarrow \ominus
- \Box Cats and dogs have always been natural enemies. \rightarrow \ominus

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water)

ML:IX-57 Deep Learning © STEIN/VÖLSKE 2024

(S1) Sequence-to-Class: Sentiment Classification

I love my cat.

 $\rightarrow \oplus$

Cats and dogs lap water.

 $\rightarrow \oplus$

It is raining cats and dogs.

 \rightarrow \ominus

□ Cats and dogs are not allowed.

- \rightarrow \ominus
- Cats and dogs have always been natural enemies.
- \rightarrow \ominus

Vocabulary:

(allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water)

Input:

$$[\mathbf{x}(1), \dots, \mathbf{x}(4)] = \begin{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{bmatrix} \end{bmatrix}$$

 $\hat{=}$ [word_11, word_15, word_16, word_6]

 $\,\widehat{=}\,$ I love my cat

ML:IX-58 Deep Learning © STEIN/VÖLSKE 2024

(S1) Sequence-to-Class: Sentiment Classification

- □ I love my cat.
- \Box Cats and dogs lap water. o
- \square It is raining cats and dogs. $o \in$
- riangle Cats and dogs are not allowed. riangle
- $lue{}$ Cats and dogs have always been natural enemies. ightarrow \ominus

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water)

Input:
$$[\mathbf{x}(1), \dots, \mathbf{x}(4)] = \begin{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \end{bmatrix}$$

 $\rightarrow \oplus$

 $\widehat{=}$ I love my cat

Output:
$$\mathbf{y}([\mathbf{x}(1),\ldots,\mathbf{x}(4)]) = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

Target:
$$\mathbf{c} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

(S1) Sequence-to-Class Mapping with RNNs

Input:

$$[\mathbf{x}(1),\ldots,\mathbf{x}(T)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \begin{pmatrix} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{x}(t) \end{pmatrix} \right), t = 1, \dots, T$$

Output:

$$\mathbf{y} = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(T) \right)$$

Target:

(S1) Sequence-to-Class Mapping with RNNs

Input:

$$[\mathbf{x}(1),\ldots,\mathbf{x}(T)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T$$

Output:

$$\mathbf{y} = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(T) \right)$$

ML:IX-61 Deep Learning © STEIN/VÖLSKE 2024

(S1) Sequence-to-Class Mapping with RNNs

Input:

$$[\mathbf{x}(1), \dots, \mathbf{x}(T)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T$$

Target:

Output:

$$\mathbf{y} = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(T) \right)$$

ML:IX-62 Deep Learning © STEIN/VÖLSKE 2024

(S1) Sequence-to-Class Mapping with RNNs

Input:

$$[\mathbf{x}(1), \dots, \mathbf{x}(T)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T$$

Target:

Output:

$$\mathbf{y} = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(T) \right)$$

ML:IX-63 Deep Learning

(S1) Sequence-to-Class Mapping with RNNs

Input:

$$[\mathbf{x}(1), \dots, \mathbf{x}(T)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T$$

Target:

C

Output:

$$\mathbf{y} = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(T) \right)$$

ML:IX-64 Deep Learning

(S1) Sequence-to-Class Mapping with RNNs

Input:

$$[\mathbf{x}(1),\ldots,\mathbf{x}(4)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, 4$$

Target:

 \mathbf{c}

Output:

$$\mathbf{y} = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(4) \right)$$

Remarks:

- We denote $y^h(0)$ not as input since this kind of <u>predefined hidden vector</u> does not contain any "actual knowledge", but is usually initialized as vector of zeros.
- $\ \square$ To keep the illustrations clear we use the bag-of-words model for representing (= embedding) the words as vectors $\mathbf{x}(t)$.
 - In practice, however, one considers semantically stronger (language-model-based) embeddings, which also encode information about neighborhoods and occurrence probabilities. In this regard, either a previously computed embedding can be used, or the embedding can be learned along with the task, end-to-end.
- $egin{align*} egin{align*} egin{align*} \begin{subarray}{l} \b$
 - $\Delta^{k-1} \subset \mathbf{R}^k$ denotes the standard k-1-simplex, which contains all k-tuples with non-negative elements that sum to 1. [Wikipedia]

ML:IX-66 Deep Learning © STEIN/VÖLSKE 2024

The IGD Algorithm for Sequence-to-Class Tasks [IGDc2seq]

Algorithm: IGD_{seq2c} Incremental Gradient Descent for RNNs at seg2class tasks. Input: Multiset of examples $([\mathbf{x}(1),\ldots,\mathbf{x}(T)],\mathbf{c})$ with $\mathbf{x}(t)\in\mathbf{R}^p,\ \mathbf{c}\in\{0,1\}^k$. DLearning rate, a small positive constant. η $W^{\mathsf{h}}, W^{\mathsf{o}}$ Weight matrices. (= hypothesis) Output: initialize_random_weights(W^h, W^o), $\mathbf{y}^h(0) = (0, \dots, 0)^T$, $t_{enoch} = 0$ 2. REPEAT 3. $t_{\mathsf{epoch}} = t_{\mathsf{epoch}} + 1$ FOREACH $([\mathbf{x}(1), \dots, \mathbf{x}(T)], \mathbf{c}) \in D$ do 4. 5. Model function evaluation. 6. Calculation of residual vector. 7a. Calculation of derivative of the loss. 7b. 8. Parameter update \hat{\hat{e}} one gradient step down. 9. **ENDDO UNTIL** $(convergence(D, y(\cdot), t_{epoch}))$ 10. $return(W^h, W^o)$ 11.

ML:IX-67 Deep Learning

The IGD Algorithm for Sequence-to-Class Tasks [IGD_{c2sea}]

Algorithm: Incremental Gradient Descent for RNNs at seg2class tasks. IGD_{seg2c} Input: Multiset of examples $([\mathbf{x}(1),\ldots,\mathbf{x}(T)],\mathbf{c})$ with $\mathbf{x}(t)\in\mathbf{R}^p,\ \mathbf{c}\in\{0,1\}^k$. DLearning rate, a small positive constant. η $W^{\mathsf{h}}, W^{\mathsf{o}}$ Weight matrices. (= hypothesis) Output: initialize_random_weights(W^h, W^o), $\mathbf{y}^h(0) = (0, \dots, 0)^T$, $t_{enoch} = 0$ 1. 2. REPEAT 3. $t_{\mathsf{epoch}} = t_{\mathsf{epoch}} + 1$ FOREACH $([\mathbf{x}(1), \dots, \mathbf{x}(T)], \mathbf{c}) \in D$ do 4. FOR t=1 TO T DO // forward propagation 5. $\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \begin{pmatrix} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{x}(t) \end{pmatrix} \right)$ $\mathbf{y} = \boldsymbol{\sigma}_{\!\scriptscriptstyle \wedge} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(T) \right)$ $\boldsymbol{\delta} = \mathbf{c} - \mathbf{y}([\mathbf{x}(1), \dots, \mathbf{x}(T)])$ 6. $\ell(\mathbf{w}) = l(\delta) + \frac{\lambda}{n} R(\mathbf{w}), \quad \nabla \ell(\mathbf{w}) = \mathsf{autodiff}(\ell(), \mathbf{w}) \ / / \text{ backpropagation (7a+7b)}$ 7a. $\Delta W^{\mathsf{h}} = \eta \cdot \nabla^{\mathsf{h}} \mathscr{E}(\mathbf{w}), \quad \Delta W^{\mathsf{o}} = \eta \cdot \nabla^{\mathsf{o}} \mathscr{E}(\mathbf{w})$ 7b. $W^{\mathsf{h}} = W^{\mathsf{h}} +_{\Delta} W^{\mathsf{h}}$, $W^{\mathsf{o}} = W^{\mathsf{o}} +_{\Delta} W^{\mathsf{o}}$ 8. 9.

ML:IX-68 Deep Learning

10.

11.

ENDDO

 $return(W^h, W^o)$

UNTIL($convergence(D, y(\cdot), t_{epoch}))$

Types of Learning Tasks [Recap]

(S1) sequence \rightarrow class

sentence
$$\rightarrow \{\oplus, \ominus\}$$

i love my cat $\rightarrow \oplus$

(S2) class → sequence

$$\{\oplus,\ominus\}\to sentence$$

 $\oplus \to \mathrm{i}$ love my cat

(S3) sequence \rightarrow sequence

English sentence → German sentence

i love my cat \rightarrow ich liebe meine katze

ML:IX-69 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding

- \Box One *p*-dimensional input vector **x**.
- \Box One hidden layer (general: d-1 hidden layers, i.e., d active layers).
- \Box One k-dimensional output vector $\mathbf{y}(\mathbf{x})$.

ML:IX-70 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued)

- \Box One *p*-dimensional input vector **x**.
- One hidden and one output layer, which are recurrently updated.
- \Box Sequence of k-dimen. output vectors $[\mathbf{y}(\mathbf{x},1),\ldots,\mathbf{y}(\mathbf{x}, au)]$ or $[\mathbf{y}(1),\ldots,\mathbf{y}(au)]$.

ML:IX-71 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued)

ML:IX-72 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued)

ML:IX-73 Deep Learning

© STEIN/VÖLSKE 2024

Remarks:

- An output sequence is written in brackets, $[y(1), \dots, y(\tau)]$, where $y(t), t = 1, \dots, \tau$, denotes the output vector at time step t.
- The words in the output sequence are usually one-hot-encoded, i.e., by a k-dimensional output vector with a "1" whose position indicates the word, and zeros elsewhere.
- \Box If the input, \mathbf{x} , is clear from the context, we usually note $\mathbf{y}(\mathbf{x},t)$ as $\mathbf{y}(t)$.
- The matrix W^i is necessary to embed the typically low-dimensional input vector \mathbf{x} regarding the high-dimensional hidden vectors \mathbf{y}^h : $\mathbf{y}^h(0) = \boldsymbol{\sigma}(W^i\mathbf{x})$.
- The parameter τ in $\mathbf{y}(\tau)$ is unknown. More specifically, the generation process terminates at that time step τ for which $\mathbf{y}(\tau) = (0, 0, \dots, 0, 1)^T$ ($\widehat{=}$ <end>).

 τ (the length of the computed output) does not have to be equal to T (the length of the target or ground truth).

ML:IX-74 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t: 0 \rightarrow 1$

Output decoding over t.

ML:IX-75 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t: 0 \rightarrow 1$

Output decoding over t.

ML:IX-76 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t: 0 \rightarrow 1$

Output decoding over t.

ML:IX-77 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t: 0 \rightarrow 1$

Output decoding over t.

ML:IX-78 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

ML:IX-79 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t{:}~1 \rightarrow 2$

Output decoding over t.

ML:IX-80 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t{:}~1 \rightarrow 2$

Output decoding over t.

ML:IX-81 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t{:}~1 \rightarrow 2$

Output decoding over t.

ML:IX-82 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

ML:IX-83 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t: 0 \rightarrow 1$

Output decoding over *t*.

Hidden and output layer at subsequent time steps.

ML:IX-84 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t: 0 \rightarrow 1$

Output decoding over *t*.

Hidden and output layer at subsequent time steps.

ML:IX-85 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t: 0 \rightarrow 1$

Output decoding over *t*.

Hidden and output layer at subsequent time steps.

ML:IX-86 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t: 0 \rightarrow 1$

Output decoding over *t*.

Hidden and output layer at subsequent time steps.

ML:IX-87 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

Hidden and output layer at subsequent time steps.

ML:IX-88 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t: 1 \rightarrow 2$

Output decoding over *t*.

Hidden and output layer at subsequent time steps.

ML:IX-89 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t: 1 \rightarrow 2$

Output decoding over *t*.

Hidden and output layer at subsequent time steps.

ML:IX-90 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

 $t: 1 \rightarrow 2$

Output decoding over *t*.

Hidden and output layer at subsequent time steps.

ML:IX-91 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

Hidden and output layer at subsequent time steps.

ML:IX-92 Deep Learning © STEIN/VÖLSKE 2024

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

Hidden and output layer at subsequent time steps.

ML:IX-93 Deep Learning © STEIN/VÖLSKE 2024

(S2) Class-to-Sequence: Text Generation

- \oplus \rightarrow I love my cat.
- \oplus \rightarrow Cats and dogs lap water.
- \ominus \rightarrow It is raining cats and dogs.
- \ominus \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

```
Vocabulary: (allowed always and are been cat cats dogs enemies have i is
    it lap love my natural not raining water <start> <end>)
```

ML:IX-94 Deep Learning © STEIN/VÖLSKE 2024

(S2) Class-to-Sequence: Text Generation

- \oplus \rightarrow I love my cat.
- \oplus \rightarrow Cats and dogs lap water.
- \rightarrow It is raining cats and dogs.
- \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[[[[\mathbf{x}, \ \mathbf{y}(0)], \ \mathbf{y}(1)], \ \mathbf{y}(2)], \ldots], \ \mathbf{y}(\tau-1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

ML:IX-95 Deep Learning © STEIN/VÖLSKE 2024

(S2) Class-to-Sequence: Text Generation

- \oplus \rightarrow I love my cat.
- \oplus \to Cats and dogs lap water.
- \rightarrow It is raining cats and dogs.
- \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[[[\mathbf{x}, \mathbf{y}(0)], \mathbf{y}(1)], \mathbf{y}(2)], \ldots], \mathbf{y}(\tau-1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

Output:
$$[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau)], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathbf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathbf{end} \rangle$$

ML:IX-96 Deep Learning © STEIN/VÖLSKE 2024

(S2) Class-to-Sequence: Text Generation

- \oplus \rightarrow I love my cat.
- \oplus \rightarrow Cats and dogs lap water.
- \rightarrow It is raining cats and dogs.
- \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[[[\mathbf{x}, \mathbf{y}(0)], \mathbf{y}(1)], \mathbf{y}(2)], \ldots], \mathbf{y}(\tau-1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau)], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathbf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathbf{end} \rangle$

ML:IX-97 Deep Learning © STEIN/VÖLSKE 2024

(S2) Class-to-Sequence: Text Generation

- \oplus \rightarrow I love my cat.
- \oplus \rightarrow Cats and dogs lap water.
- \rightarrow It is raining cats and dogs.
- \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[[[\mathbf{x}, \mathbf{y}(0)], \mathbf{y}(1)], \mathbf{y}(2)], \ldots], \mathbf{y}(\tau-1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau)], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathbf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathbf{end} \rangle$

ML:IX-98 Deep Learning © STEIN/VÖLSKE 2024

(S2) Class-to-Sequence: Text Generation

- \oplus \rightarrow I love my cat.
- \oplus \to Cats and dogs lap water.
- \rightarrow It is raining cats and dogs.
- \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[[[[\mathbf{x}, \mathbf{y}(0)], \mathbf{y}(1)], \mathbf{y}(2)], \ldots], \mathbf{y}(\tau-1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau)], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathbf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathbf{end} \rangle$

ML:IX-99 Deep Learning © STEIN/VÖLSKE 2024

(S2) Class-to-Sequence: Text Generation

- \oplus \rightarrow I love my cat.
- \oplus \rightarrow Cats and dogs lap water.
- \rightarrow It is raining cats and dogs.
- \ominus \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[\ [\ [\mathbf{x}, \mathbf{y}(0)], \mathbf{y}(1)], \mathbf{y}(2)], \ldots], \mathbf{y}(\tau-1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

Output:
$$[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau)], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathbf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathbf{end} \rangle$$

Target:
$$[\mathbf{c}(1), \dots, \mathbf{c}(5)] = \begin{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}$$

$$\hat{=} [\text{word_11}, \text{word_15}, \text{word_16}, \text{word_22}]$$

$$\hat{=} \text{I love my cat}$$

(S2) Class-to-Sequence Mapping with RNNs

Input:

$$x, [y(1), ..., y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma}_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(\underline{W}^{\mathsf{i}}\,\mathbf{x}\right)$$

$$^{\mathsf{h}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \begin{pmatrix} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{y}(t-1) \end{pmatrix} \right), t = 1, \dots, \tau$$

$$[\mathbf{c}(1), \dots, \mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \text{end} \rangle$$

(S2) Class-to-Sequence Mapping with RNNs

Input:

$$\mathbf{x}, [\mathbf{y}(1), \dots, \mathbf{y}(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(\underline{W}^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{w}^{\mathsf{h}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \begin{pmatrix} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{v}(t-1) \end{pmatrix} \right), t = 1, \dots, \tau$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \mathsf{end} \rangle$$

(S2) Class-to-Sequence Mapping with RNNs

Input:

$$x, [y(1), \dots, y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, au$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(\underline{W}^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{w}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots, \tau$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$$

(S2) Class-to-Sequence Mapping with RNNs

Input:

$$\mathbf{x}, [\mathbf{y}(1), \dots, \mathbf{y}(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma}_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(\underline{W}^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\boldsymbol{c}(t-1)\end{pmatrix}\right), t = 1, \dots, T$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$$

(S2) Class-to-Sequence Mapping with RNNs

Input:

$$\mathbf{x}, [\mathbf{y}(1), \dots, \mathbf{y}(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma}_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(\underline{W}^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{y}(t-1)\end{pmatrix}\right), t = 1, \dots, \tau$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \mathsf{end} \rangle$$

(S2) Class-to-Sequence Mapping with RNNs

Input:

$$x, [y(1), ..., y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(\underline{W}^{\mathsf{i}}\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots, \tau$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) \mathrel{\widehat{=}} < \mathsf{end} >$$

(S2) Class-to-Sequence Mapping with RNNs

Input:

Output:

$$\mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, 5$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(\underline{W}^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{c}(t-1)\end{pmatrix}\right), t = 1, \dots, 5$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(5)]$$

$$\mathbf{c}(5) \mathrel{\widehat{=}} < \mathsf{end} >$$

(S2) Class-to-Sequence Mapping with RNNs

Input:

$$\mathbf{x}, [\mathbf{y}(1), \dots, \mathbf{y}(4)]$$

Output:

$$\mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, 5$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(\underline{W}^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots, 5$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(5)]$$

$$\mathbf{c}(5) \mathrel{\widehat{=}} \mathsf{}$$

ML:IX-108 Deep Learning

(S2) Class-to-Sequence Mapping with RNNs

Input:

$$\mathbf{x}, [\mathbf{y}(1), \dots, \mathbf{y}(3)]$$

Output:

$$\mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, 4$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(\underline{W}^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{y}(t-1)\end{pmatrix}\right), t = 1, \dots, 4$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(5)]$$

$$\mathbf{c}(5) \mathrel{\widehat{=}} < \mathsf{end} >$$

ML:IX-109 Deep Learning

Remarks:

- We denote y(0) not as input since it is predefined and does not contain any "actual knowledge". In particular, $y(0) \equiv c(0) =$
- $oldsymbol{\Box}$ At training time the calculation of $\mathbf{y}^h(t)$ usually considers the ground truth $\mathbf{c}(t-1)$:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \left(\begin{array}{c} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{c}(t-1) \end{array} \right) \right)$$

 \Box At test time ("production mode") the calculation of $\mathbf{y}^h(t)$ has to consider the output $\mathbf{y}(t-1)$:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \left(\begin{array}{c} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{y}(t-1) \end{array} \right) \right)$$

ML:IX-110 Deep Learning © STEIN/VÖLSKE 2024

The IGD Algorithm for Class-to-Sequence Tasks [IGD_seq2c]

Algorithm: Incremental Gradient Descent for RNNs at class2seq tasks. IGD_{c2seq} Input: Multiset of examples $(\mathbf{x}, [\mathbf{c}(1), \dots, \mathbf{c}(T)])$ with $\mathbf{x} \in \{0, 1\}^p$, $\mathbf{c}(t) \in \mathbf{R}^k$. DLearning rate, a small positive constant. η $W^{\mathsf{i}}, W^{\mathsf{h}}, W^{\mathsf{o}}$ Output: Weights matrices. (= hypothesis) initialize_random_weights(W^{i}, W^{h}, W^{o}), $t_{epoch} = 0$ 2. REPEAT 3. $t_{\mathsf{epoch}} = t_{\mathsf{epoch}} + 1$ FOREACH $(\mathbf{x}, [\mathbf{c}(1), \dots, \mathbf{c}(T)]) \in D$ DO 4. 5. Model function evaluation. Calculation of residual vectors. 6. 7a. Calculation of derivative of the loss. 7b. Parameter update \hat{\hat{e}} one gradient step down. 8. 9. **ENDDO UNTIL** $(convergence(D, y(\cdot), t_{epoch}))$ 10. $return(W^{i}, W^{h}, W^{o})$ 11.

ML:IX-111 Deep Learning

The IGD Algorithm for Class-to-Sequence Tasks [IGDseq2c]

Algorithm: Incremental Gradient Descent for RNNs at class2seq tasks. IGD_{c2seq} Input: Multiset of examples $(\mathbf{x}, [\mathbf{c}(1), \dots, \mathbf{c}(T)])$ with $\mathbf{x} \in \{0, 1\}^p$, $\mathbf{c}(t) \in \mathbf{R}^k$. DLearning rate, a small positive constant. η $W^{\mathsf{i}}, W^{\mathsf{h}}, W^{\mathsf{o}}$ Weights matrices. (= hypothesis) Output: initialize_random_weights (W^{i}, W^{h}, W^{o}) , $t_{epoch} = 0$ 1. 2. REPEAT 3. $t_{\mathsf{epoch}} = t_{\mathsf{epoch}} + 1$ FOREACH $(\mathbf{x}, [\mathbf{c}(1), \dots, \mathbf{c}(T)]) \in D$ DO 4. $\mathbf{v}^{\mathsf{h}}(0) = \boldsymbol{\sigma} \left(W^{\mathsf{i}} \mathbf{x} \right)$ 5. FOR t=1 TO T DO // forward propagation $\mathbf{y}^{\mathsf{h}}(t) = \sigma \left(W^{\mathsf{h}} \left(\mathbf{y}^{\mathsf{h}}(t-1) \atop \mathbf{c}(t-1) \right) \right), \quad \mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right)$ ENDDO $[\boldsymbol{\delta}(1),\ldots,\boldsymbol{\delta}(T)]=[\mathbf{c}(1),\ldots,\mathbf{c}(T)]\ominus[\mathbf{y}(1),\ldots,\mathbf{y}(au)]$ // consider that T may $\neq au$ 6. $\ell(\mathbf{w}) = \sum_{t} l(\boldsymbol{\delta}(t)) + \frac{\lambda}{n} R(\mathbf{w})$, $\nabla \ell(\mathbf{w}) = \mathsf{autodiff}(\ell(), \mathbf{w})$ // backprop. (7a+7b) 7a. $\Delta W^{\mathsf{i}} = \eta \cdot \nabla^{\mathsf{i}} \ell(\mathbf{w}), \quad \Delta W^{\mathsf{h}} = \eta \cdot \nabla^{\mathsf{h}} \ell(\mathbf{w}), \quad \Delta W^{\mathsf{o}} = \eta \cdot \nabla^{\mathsf{o}} \ell(\mathbf{w})$ 7b. $W^{i} = W^{i} +_{\Delta} W^{i}$, $W^{h} = W^{h} +_{\Delta} W^{h}$, $W^{o} = W^{o} +_{\Delta} W^{o}$ 8.

11. $return(W^{i}, W^{h}, W^{o})$ ML:IX-112 Deep Learning

ENDDO

UNTIL($convergence(D, y(\cdot), t_{epoch}))$

9.

10.

Remarks:

ullet We use the operator ${}^*\ominus {}^{<}$ to compare the two sequences $[\mathbf{c}(t)]$ and $[\mathbf{y}(t)]$ of possibly different length. Note that the concrete semantics of ${}^*\ominus {}^{<}$ is left open here.

ML:IX-113 Deep Learning ©STEIN/VÖLSKE 2024