Chapter ML:IX

IX. Deep Learning

- □ Elements of Deep Learning
- Convolutional Neural Networks
- Autoencoder Networks
- □ Recurrent Neural Networks
- □ Long-Term Dependencies
- □ RNNs for Machine Translation
- Attention Mechanism
- □ Transformer
- □ Transformer Language Models
- Pretraining and Finetuning

ML:IX-124 Deep Learning © STEIN/VÖLSKE 2023

Statistical Machine Translation (SMT)

ML:IX-125 Deep Learning © STEIN/VÖLSKE 2023

Statistical Machine Translation (SMT)

ML:IX-126 Deep Learning © STEIN/VÖLSKE 2023

Statistical Machine Translation (SMT)

The "Noisy Channel" Model applied to SMT:

Learn from a parallel corpus D a probabilistic model, $P(Y \mid X)$, which can be used to *decode* the channel input (the target sentence y, e.g. in German) from the channel output (the source sentence x in a foreign language (e.g., English)).

ML:IX-127 Deep Learning © STEIN/VÖLSKE 2023

Statistical Machine Translation (SMT) (continued)

ML:IX-128 Deep Learning © STEIN/VÖLSKE 2023

Statistical Machine Translation (SMT) (continued)

ML:IX-129 Deep Learning © STEIN/VÖLSKE 2023

Statistical Machine Translation (SMT) (continued)

Task: Given a sentence x in a foreign language (here: English), what is the most probable translation y in our own language (here: German)?

$$p(y \mid x) \to \max$$

ML:IX-130 Deep Learning © STEIN/VÖLSKE 2023

Remarks:

- Here, x denotes a sentence $x_1x_2 \dots x_{|x|}$. Likewise, y denotes a sentence $y_1y_2 \dots y_{|y|}$. The x_t and y_t denote the words at position (at time point) t in the respective sentences.
- Noisy Channel Model I. When the (German) sentence y was transmitted over a noisy channel, it got corrupted and came out as sentence x in a foreign language (English). The task is to recover the original sentence, i.e., to decode (= translate) the English (source) into German (target).
- Noisy Channel Model II. We can observe only the sentence x, and we ask ourselves which sentence y might have induced x? Among the candidates for y we search the most probable sentence, which we then consider as translation of x.
 - I.e., the Noisy Channel Model does *not* take sentence y and looks for a translation x (= varies x), but takes "the condition" x as given and varies among the y.

Tackling this translation task with coupled RNNs (= Neural Machine Translation) reflects this view: Conditioned by the hidden vector encoding of x, denoted as $\mathbf{y}^{e}(T^{e})$ in the figure, the decoder has to generate the most probable sentence y.

ML:IX-131 Deep Learning © STEIN/VÖLSKE 2023

Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the foreign language maximizes under D the probability $p(y \mid x)$:

$$\operatorname{argmax}_y p(y \mid x) = \operatorname{argmax}_y \ p(x \mid y) \cdot p(y) \qquad \quad \Leftarrow$$

$$P(Y \mid X) = \frac{P(X \mid Y) \cdot P(Y)}{P(X)}$$

 $X \stackrel{\frown}{=} X = x$, $x \stackrel{\frown}{=} \text{English sentence}$ $Y \stackrel{\frown}{=} Y = y$, $y \stackrel{\frown}{=} \text{German sentence}$

ML:IX-132 Deep Learning © STEIN/VÖLSKE 2023

Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the foreign language maximizes under D the probability $p(y \mid x)$:

$$\operatorname{argmax}_y p(y \mid x) = \operatorname{argmax}_y \ p(x \mid y) \cdot \boxed{p(y)} \\ \Leftarrow \\ \begin{aligned} P(Y \mid X) &= \frac{P(X \mid Y) \cdot P(Y)}{P(X)} \\ X &\cong X = x, \quad x \cong \text{English sentence} \\ Y &\cong Y = y, \quad y \cong \text{German sentence} \end{aligned}$$

- 1. p(y) is called "language model" and takes care of the *fluency* in the target language. It is modeled as $p(y_1, \ldots, y_m) = \prod_{i=1}^m p(y_i \mid y_{i-(n-1)}, \ldots, y_{i-1})$. Training data are (monolingual) corpora in the target language.
- 2. $p(x \mid y)$ is called "translation model" and captures the translation *fidelity* between two languages. It is modeled as $p(x, \mathbf{a} \mid y)$, where "a" is a vector of alignment features. Training data are bilingual corpora.
- 3. $argmax_y$ is called "decoder" and operationalizes the *search* for the maximization problem. Keyword: beam search

ML:IX-133 Deep Learning © STEIN/VÖLSKE 2023

Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the foreign language maximizes under D the probability $p(y \mid x)$:

$$\operatorname{argmax}_y p(y \mid x) = \operatorname{argmax}_y \underbrace{p(x \mid y)} \cdot p(y) \qquad \Leftarrow \qquad P(Y \mid X) = \frac{P(X \mid Y) \cdot P(Y)}{P(X)} \\ X \mathrel{\widehat{=}} X = x, \quad x \mathrel{\widehat{=}} \text{ English sentence} \\ Y \mathrel{\widehat{=}} Y = y, \quad y \mathrel{\widehat{=}} \text{ German sentence}$$

- 1. p(y) is called "language model" and takes care of the *fluency* in the target language. It is modeled as $p(y_1, \ldots, y_m) = \prod_{i=1}^m p(y_i \mid y_{i-(n-1)}, \ldots, y_{i-1})$. Training data are (monolingual) corpora in the target language.
- 2. $p(x \mid y)$ is called "translation model" and captures the translation *fidelity* between two languages. It is modeled as $p(x, \mathbf{a} \mid y)$, where "a" is a vector of alignment features. Training data are bilingual corpora.
- 3. argmax_y is called "decoder" and operationalizes the *search* for the maximization problem. Keyword: beam search

ML:IX-134 Deep Learning © STEIN/VÖLSKE 2023

Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the foreign language maximizes under D the probability $p(y \mid x)$:

$$\operatorname{argmax}_y p(y \mid x) = \underbrace{\operatorname{argmax}_y} p(x \mid y) \cdot p(y) \qquad \Longleftrightarrow \qquad P(Y \mid X) = \frac{P(X \mid Y) \cdot P(Y)}{P(X)} \\ X \mathrel{\widehat{=}} X = x, \quad x \mathrel{\widehat{=}} \text{ English sentence} \\ Y \mathrel{\widehat{=}} Y = y, \quad y \mathrel{\widehat{=}} \text{ German sentence}$$

- 1. p(y) is called "language model" and takes care of the *fluency* in the target language. It is modeled as $p(y_1, \ldots, y_m) = \prod_{i=1}^m p(y_i \mid y_{i-(n-1)}, \ldots, y_{i-1})$. Training data are (monolingual) corpora in the target language.
- 2. $p(x \mid y)$ is called "translation model" and captures the translation *fidelity* between two languages. It is modeled as $p(x, \mathbf{a} \mid y)$, where "a" is a vector of alignment features. Training data are bilingual corpora.
- 3. $argmax_y$ is called "decoder" and operationalizes the *search* for the maximization problem. Keyword: beam search

ML:IX-135 Deep Learning © STEIN/VÖLSKE 2023

Remarks (statistical machine translation):

- Although $p(y \mid x)$ can be maximized directly, Bayes rule is applied since the decomposition of $p(y \mid x)$ into $p(x \mid y)$ and p(y) comes along with a number of advantages.
- In $\prod_{i=1}^{m} p(y_i \mid y_{i-(n-1)}, \dots, y_{i-1})$, m denotes the length of the entire sequence or sentence, and n denotes the order of the model (the "window" size).
- In the language model syntax, $p(y) \equiv p(y_1, y_2, \dots, y_m)$ denotes the probability of the event to observe the sentence $y \equiv y_1 y_2 \dots y_m$, where y_1 corresponds to the first word of the sentence, y_2 to the second, etc.

The y_i are realizations of random variables, which can be written in any order as arguments of p(). I.e., to capture the word order, y_i does not only denote the word but also its position: y_i corresponds to the event "Word y_i at position i."

In summary, $p(y_1, y_2, ..., y_m)$ is a short form of $P(Y_1 = y_1, Y_2 = y_2, ..., Y_m = y_m)$, where the Y_i are random variables whose realizations are the possible words at position i. Note that these random variables are neither independent nor identically distributed.

 \Box Learning $p(x, \mathbf{a} \mid y)$ from a parallel corpus D is a highly sophisticated endeavor since the alignments features, \mathbf{a} , are complex and given as latent variables only.

ML:IX-136 Deep Learning © STEIN/VÖLSKE 2023

Neural Machine Translation (NMT)

Concept:

- Machine translation with a multilayer perceptron (MLP).
- Network architecture is a sequence-to-sequence model:
 - 1. Encoder RNN, calculates an encoding of the source sentence x.
 - 2. Decoder RNN, generates the target sentence *y*. The decoder RNN is a *conditional* language model—it is conditioned on the RNN encoding.
- Optimization (loss minimization) is done for the network as a whole, which means that backpropagation is performed "end-to-end".

ML:IX-137 Deep Learning © STEIN/VÖLSKE 2023

Neural Machine Translation (NMT) (continued)

ML:IX-138 Deep Learning © STEIN/VÖLSKE 2023

Neural Machine Translation (NMT) (continued)

ML:IX-139 Deep Learning © STEIN/VÖLSKE 2023

Neural Machine Translation (NMT) (continued)

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$p(y \mid x) = p(y_1 \mid x) \cdot p(y_2 \mid y_1, x) \cdot p(y_3 \mid y_1, y_2, x) \cdot \ldots \cdot p(y_\tau \mid y_1, \ldots, y_{\tau-1}, x)$$

ML:IX-140 Deep Learning © STEIN/VÖLSKE 2023

Remarks:

- "End-to-end" is not an architectural feature of a network (observe that every network is used in this way). It is a strategy for solving a task by *not* decomposing it, but by processing the original input-output examples in an indivisible manner.
- The sequence-to-sequence model is an example of a conditional language model: (1) It is a language model because the decoder is predicting the next word y_t of the target sentence based on the preceding words y_1, \ldots, y_{t-1} . (2) It is conditional because its predictions are conditioned on the source sentence x. [Manning 2021, lecture CS224N]
- □ In the following slides, the hidden vector $\mathbf{y}^{\mathbf{e}}(T^{\mathbf{e}})$ represents the RNN encoding of the source sentence x. In particular,
 - the word x_t from a source (input) sentence x is denoted as $\mathbf{x}(t)$,
 - the word y_t from a output sentence is denoted as y(t),
 - the word y_t from a target sentence y is denoted as $\mathbf{c}(t)$.

Note that we have until now not distinguished that y_t can be output or target; y_t has been considered as an (output) variable whose optimum value has to be determined.

Don't get confused: The input y of the noisy channel becomes the output (or target) of the RNN. Similarly, the output x of the noisy channel becomes the input of the RNN.

ML:IX-141 Deep Learning © STEIN/VÖLSKE 2023

Types of Learning Tasks [Recap]

(S1) sequence \rightarrow class

sentence $\rightarrow \{\oplus, \ominus\}$ i love my cat $\rightarrow \oplus$

(S2) class \rightarrow sequence

 $\{\oplus,\ominus\}\to \text{sentence}$

 $\oplus \to \mathrm{i}$ love my cat

(S3) sequence → sequence

English sentence → German sentence

i love my cat \rightarrow ich liebe meine katze

(S3) Sequence-to-Sequence: Machine Translation

- ightharpoonup I love my cat. ightharpoonup Ich liebe meine Katze.
- \supset Cats and dogs lap water. o Katzen und Hunde lecken Wasser.
- \Box It is raining cats and dogs. \to Es regnet in Strömen.
- \Box Cats and dogs are not allowed. \rightarrow Katzen oder Hunde sind nicht erlaubt.

```
Vocabulary<sup>e</sup>: (allowed and are cat cats dogs i is it lap love my not raining water)
```

Vocabulary^d: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)

ML:IX-143 Deep Learning © STEIN/VÖLSKE 2023

(S3) Sequence-to-Sequence: Machine Translation

□ I love my cat.

 \rightarrow Ich liebe meine Katze.

Cats and dogs lap water.

→ Katzen und Hunde lecken Wasser.

☐ It is raining cats and dogs.

- \rightarrow Es regnet in Strömen.
- Cats and dogs are not allowed.
- → Katzen oder Hunde sind nicht erlaubt.
- **Vocabulary**^e: (allowed and are cat cats dogs i is it lap love my not
 - raining water)
- **Vocabulary**^d: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)
- Input: $\left[\left[\left[\left[\left[\mathbf{x}, \ \mathbf{y}(0) \right], \ \mathbf{y}(1) \right], \ \mathbf{y}(2) \right], \ldots \right], \ \mathbf{y}(\tau 1) \right], \ \mathbf{x} = \begin{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \right] \stackrel{\frown}{\cong} \mathbf{I} \text{ love my cat }$
- $\text{Output:} \qquad [\mathbf{y}(1),\mathbf{y}(2),\mathbf{y}(3),\ldots,\mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \ \widehat{=} \ \texttt{<start>}, \quad \mathbf{y}(\tau) \ \widehat{=} \ \mathbf{c}(5) \ \widehat{=} \ \texttt{<end>}$

(S3) Sequence-to-Sequence: Machine Translation

I love my cat.

 \rightarrow Ich liebe meine Katze.

Cats and dogs lap water.

→ Katzen und Hunde lecken Wasser.

It is raining cats and dogs.

- \rightarrow Es regnet in Strömen.
- Cats and dogs are not allowed.
- → Katzen oder Hunde sind nicht erlaubt.
- **Vocabulary**^e: (allowed and are cat cats dogs i is it lap love my not
 - raining water)
- Vocabulary^d: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)
- Input: $\left[\left[\left[\left[\mathbf{x}, \ \mathbf{y}(0) \right], \ \mathbf{y}(1) \right], \ \mathbf{y}(2) \right], \ldots \right], \ \mathbf{y}(\tau 1) \right], \ \mathbf{x} = \left| \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \right| \ \widehat{\mathbf{b}} \ | \mathbf{b} \ | \mathbf$
- Output: $[\mathbf{y(1)}, \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y(0)} \equiv \mathbf{c(0)} \ \widehat{=} \ < \mathsf{start} >, \quad \mathbf{y}(\tau) \ \widehat{=} \ < \mathsf{c(5)} \ \widehat{=} \ < \mathsf{end} >$

(S3) Sequence-to-Sequence: Machine Translation

I love my cat.

 \rightarrow Ich liebe meine Katze.

Cats and dogs lap water.

- → Katzen und Hunde lecken Wasser.
- It is raining cats and dogs.
- \rightarrow Es regnet in Strömen.
- Cats and dogs are not allowed.
- → Katzen oder Hunde sind nicht erlaubt.
- **Vocabulary**^e: (allowed and are cat cats dogs i is it lap love my not
 - raining water)
- Vocabulary^d: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)
- Input: $\left[\left[\left[\left[\mathbf{x}, \ \mathbf{y}(0) \right], \ \mathbf{y}(1) \right], \ \mathbf{y}(2) \right], \ldots \right], \ \mathbf{y}(\tau 1) \right], \ \mathbf{x} = \left[\begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \right] \stackrel{\frown}{=} \mathbf{I} \text{ love my cat }$
- Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathsf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$

(S3) Sequence-to-Sequence: Machine Translation

I love my cat.

→ Ich liebe meine Katze.

Cats and dogs lap water.

- → Katzen und Hunde lecken Wasser.
- It is raining cats and dogs.
- \rightarrow Es regnet in Strömen.
- Cats and dogs are not allowed.
- → Katzen oder Hunde sind nicht erlaubt.
- **Vocabulary**^e: (allowed and are cat cats dogs i is it lap love my not
 - raining water)
- Vocabulary^d: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)
- Input: $\left[\left[\left[\left[\mathbf{x}, \ \mathbf{y}(0) \right], \ \mathbf{y}(1) \right], \ \mathbf{y}(2) \right], \ldots \right], \ \mathbf{y}(\tau 1) \right], \ \mathbf{x} = \left[\begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \right] \stackrel{\frown}{\cong} \mathbf{I} \text{ love my cat }$
- Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathsf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$

(S3) Sequence-to-Sequence: Machine Translation

□ I love my cat.

→ Ich liebe meine Katze.

Cats and dogs lap water.

- → Katzen und Hunde lecken Wasser.
- It is raining cats and dogs.
- \rightarrow Es regnet in Strömen.
- Cats and dogs are not allowed.
- → Katzen oder Hunde sind nicht erlaubt.
- **Vocabulary**^e: (allowed and are cat cats dogs i is it lap love my not
- raining water)
- Vocabulary^d: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)
- Input: $\begin{bmatrix} \begin{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathbf{x}, \ \mathbf{y}(0) \end{bmatrix}, \ \mathbf{y}(1) \end{bmatrix}, \ \mathbf{y}(2) \end{bmatrix}, \dots \end{bmatrix}, \ \mathbf{y}(\tau 1) \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} \begin{pmatrix} \mathbf{0} \\ \vdots \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} \mathbf{0} \\ \vdots \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} \mathbf{0} \\ \vdots \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} \mathbf{0} \\ \vdots \\ 1 \\ 0 \end{bmatrix} \end{bmatrix} \stackrel{\frown}{=} \mathbf{I} \text{ love my cat }$
- Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathsf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$

(S3) Sequence-to-Sequence: Machine Translation

□ I love my cat.

→ Ich liebe meine Katze.

Cats and dogs lap water.

→ Katzen und Hunde lecken Wasser.

□ It is raining cats and dogs.

- \rightarrow Es regnet in Strömen.
- Cats and dogs are not allowed.
- → Katzen oder Hunde sind nicht erlaubt.
- **Vocabulary**^e: (allowed and are cat cats dogs i is it lap love my not raining water)
- Vocabulary^d: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)
- Input: $\begin{bmatrix} \begin{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathbf{x}, \mathbf{y}(0) \end{bmatrix}, \mathbf{y}(1) \end{bmatrix}, \mathbf{y}(2) \end{bmatrix}, \dots \end{bmatrix}, \mathbf{y}(\tau 1) \end{bmatrix}, \mathbf{x} = \begin{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix} \end{bmatrix} \stackrel{\frown}{=} \mathbf{I} \text{ love my cat } \mathbf{x} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y}(0) \end{bmatrix}, \begin{bmatrix} \mathbf{y}(0) \\ \mathbf$
- Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathsf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$
- Target: $[\mathbf{c}(1), \dots, \mathbf{c}(5)] = \begin{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \end{bmatrix} \stackrel{\widehat{}}{=} \text{ Ich liebe meine Katze}$

(S3) Sequence-to-Sequence Mapping with RNNs

Input:

$$\mathbf{x}, [\mathbf{y}(1), \dots, \mathbf{y}(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma}_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathbf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathbf{h}}\begin{pmatrix}\mathbf{y}^{\mathbf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T^{\mathbf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots,$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \text{end} \rangle$$

ML:IX-150 Deep Learning

(S3) Sequence-to-Sequence Mapping with RNNs

Input:

$$\mathbf{x}$$
, $[\mathbf{y}(1),\ldots,\mathbf{y}(au{-}1)]$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma}_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathbf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathbf{h}}\begin{pmatrix}\mathbf{y}^{\mathbf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T^{\mathbf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots,$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \mathsf{end} \rangle$$

(S3) Sequence-to-Sequence Mapping with RNNs

Input:

$$x, [y(1), \dots, y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = oldsymbol{\sigma}_{\!\!arDelta}\left(W^{\mathbf{0}}\,\mathbf{y}^{\mathsf{d}}(t)
ight), t = 1, \ldots, au$$

Hidden:

$$\mathbf{y}^{\mathbf{e}}(t) = \boldsymbol{\sigma} \left(W^{\mathbf{h}} \begin{pmatrix} \mathbf{y}^{\mathbf{e}}(t-1) \\ \mathbf{x}(t) \end{pmatrix} \right), t = 1, \dots, T^{\mathbf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots,$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$$

(S3) Sequence-to-Sequence Mapping with RNNs

Input:

$$x, [y(1), \dots, y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathbf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T^{\mathsf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{c}(t-1)\end{pmatrix}\right), t = 1, \dots, T^{\mathsf{d}}$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$$

© STEIN/VÖLSKE 2023

(S3) Sequence-to-Sequence Mapping with RNNs

Input:

$$x, [y(1), \dots, y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T^{\mathsf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots, \tau$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \mathsf{end} \rangle$$

ML:IX-154 Deep Learning

© STEIN/VÖLSKE 2023

(S3) Sequence-to-Sequence Mapping with RNNs

Input:

$$x, [y(1), \dots, y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T^{\mathsf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots, \tau$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$$

ML:IX-155 Deep Learning

© STEIN/VÖLSKE 2023

(S3) Sequence-to-Sequence Mapping with RNNs

Input:

$$\mathbf{x}, [\mathbf{y}(1), \dots, \mathbf{y}(4)]$$

Output:

$$\mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, 5$$

Hidden:

$$\mathbf{y}^{\mathbf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, 4$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{c}(t-1)\end{pmatrix}\right), t = 1, \dots, 5$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(5)]$$

$$\mathbf{c}(5) = \langle \text{end} \rangle$$

(S3) Sequence-to-Sequence Mapping with RNNs

Input:

$$\mathbf{x}, [\mathbf{y}(1), \dots, \mathbf{y}(4)]$$

Output:

$$\mathbf{y}(t) = \sigma_{\!\scriptscriptstyle \Delta} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, 5$$

Hidden:

$$\mathbf{y}^{\mathbf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathbf{h}}\begin{pmatrix}\mathbf{y}^{\mathbf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, 4$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{y}(t-1)\end{pmatrix}\right), t = 1, \dots, 5$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(5)]$$

$$\mathbf{c}(5) \mathrel{\widehat{=}} < \mathsf{end} >$$

Remarks:

- The final encoder hidden state, $\mathbf{y}^{\mathsf{e}}(T^{\mathsf{e}})$, represents the encoding of the source sentence. $\mathbf{y}^{\mathsf{e}}(T^{\mathsf{e}})$ is unified with the first decoder hidden state, $\mathbf{y}^{\mathsf{d}}(0)$.
- □ The encoder hidden state $\mathbf{y}^{\mathbf{e}}(t)$ represents the input sequence *up* to time step t, $[\mathbf{x}(1), \dots, \mathbf{x}(t)]$.
- The decoder hidden state $\mathbf{y}^{\mathsf{d}}(t)$ represents the entire input sequence $[\mathbf{x}(1), \dots, \mathbf{x}(T^{\mathsf{e}})]$, as well as the output sequence *up* to time step t-1, $[\mathbf{y}(1), \dots, \mathbf{y}(t-1)]$.
- Note that, as before, we are given a model function $\mathbf{y}()$, which maps some input (actually, a *sequence* of feature vectors, $[\mathbf{x}(1), \dots, \mathbf{x}(T^e)]$) to some output (a sequence of output vectors, $[\mathbf{y}(1), \dots, \mathbf{y}(T^d)]$).

ML:IX-158 Deep Learning © STEIN/VÖLSKE 2023

Sequence-to-Sequence RNNs are Conditional Language Models

ML:IX-159 Deep Learning © STEIN/VÖLSKE 2023

Sequence-to-Sequence RNNs are Conditional Language Models

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$p(y \mid x) = p(y_1 \mid x) \cdot p(y_2 \mid y_1, x) \cdot p(y_3 \mid y_1, y_2, x) \cdot p(y_4 \mid y_1, y_2, y_3, x)$$

ML:IX-160 Deep Learning © STEIN/VÖLSKE 2023

Sequence-to-Sequence RNNs are Conditional Language Models

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$\underline{p(y \mid x)} \equiv p(\mathbf{y}(1), \dots, \mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0)), \qquad \mathbf{x} := \mathbf{x}(1), \mathbf{x}(2), \mathbf{x}(3), \mathbf{x}(4) \\
= p(\mathbf{y}(1) \mid \mathbf{x}, \mathbf{y}(0)) \cdot p(\mathbf{y}(2) \mid \mathbf{x}, \mathbf{y}(0), \mathbf{y}(1)) \cdot \dots \cdot p(\mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0), \dots, \mathbf{y}(4))$$

ML:IX-161 Deep Learning © STEIN/VÖLSKE 2023

Sequence-to-Sequence RNNs are Conditional Language Models

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$\underline{p(y \mid x)} \equiv p(\mathbf{y}(1), \dots, \mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0)), \qquad \mathbf{x} := \mathbf{x}(1), \mathbf{x}(2), \mathbf{x}(3), \mathbf{x}(4) \\
= p(\mathbf{y}(1) \mid \mathbf{x}, \mathbf{y}(0)) \cdot p(\mathbf{y}(2) \mid \mathbf{x}, \mathbf{y}(0), \mathbf{y}(1)) \cdot \dots \cdot p(\mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0), \dots, \mathbf{y}(4))$$

ML:IX-162 Deep Learning © STEIN/VÖLSKE 2023

Sequence-to-Sequence RNNs are Conditional Language Models

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$\underline{p(y \mid x)} \equiv p(\mathbf{y}(1), \dots, \mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0)), \qquad \mathbf{x} := \mathbf{x}(1), \mathbf{x}(2), \mathbf{x}(3), \mathbf{x}(4) \\
= p(\mathbf{y}(1) \mid \mathbf{x}, \mathbf{y}(0)) \cdot p(\mathbf{y}(2) \mid \mathbf{x}, \mathbf{y}(0), \mathbf{y}(1)) \cdot \dots \cdot p(\mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0), \dots, \mathbf{y}(4))$$

ML:IX-163 Deep Learning © STEIN/VÖLSKE 2023

Sequence-to-Sequence RNNs are Conditional Language Models

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$\underline{p(y \mid x)} \equiv p(\mathbf{y}(1), \dots, \mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0)), \qquad \mathbf{x} := \mathbf{x}(1), \mathbf{x}(2), \mathbf{x}(3), \mathbf{x}(4) \\
= p(\mathbf{y}(1) \mid \mathbf{x}, \mathbf{y}(0)) \cdot p(\mathbf{y}(2) \mid \mathbf{x}, \mathbf{y}(0), \mathbf{y}(1)) \cdot \dots \cdot p(\mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0), \dots, \mathbf{y}(4))$$

ML:IX-164 Deep Learning © STEIN/VÖLSKE 2023

Remarks:

- Each output vector $\mathbf{y}(t)$ corresponds to a probability distribution over the <u>Vocabulary</u>^d (recall the σ_{Δ} -function). Here, the illustration of generation (aka decoding) steps shows an argmax-operation on each $\mathbf{y}(t)$, called "greedy decoding": the word with the highest probability is chosen.
- To maximize $\prod_{t=1}^{\tau} p(\mathbf{y}(t) \mid \mathbf{x}, \mathbf{y}(0), \dots, \mathbf{y}(t-1))$, a complete search in the space of all sequences (target sentences) that can be generated is necessary, which is computationally intractable. Instead, heuristic search such as beam search is applied, where a beam size around 5 to 10 has shown good results in practice.
 - The beam size is the number of generated successors in each decoding step; they are added to the OPEN list of the heuristic search algorithm. [Course on Search Algorithms]
- □ Sequence-to-sequence RNNs can be "stacked", this way forming a multi-layered RNN, which is able to compute more complex representations. The idea is that the lower (higher) RNNs compute the lower-level (higher-level) features.
 - Practice has shown that 2-4 layers are useful for neural machine translation, while transformer-based networks are typically deeper and comprise 12-24 layers.

 [Manning 2021, lecture CS224N]

ML:IX-165 Deep Learning © STEIN/VÖLSKE 2023

Representation: Embeddings Instead of One-Hot Encoding

 $[\mathcal{T}\mathcal{O}\mathcal{D}\mathcal{O}]$

ML:IX-166 Deep Learning ©STEIN/VÖLSKE 2023