
Chapter NLP:V

V. Syntax
❑ Introduction
❑ Context-Free Grammar
❑ Dependency Grammars
❑ Features and Unification

NLP:V-67 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Definition

Dependency grammars describe syntax with a directed
head-dependent relationship between words.

❑ There is exactly one root (usually the verb).

❑ Each word has 1 head and 0–n dependents.

❑ The head-dependent relation has a grammatical function.

❑ There is a single path from root to each vertex.

➜ Dependency structures are directed, acyclic, single-headed trees.

colorless green ideas sleep furiously

root

nsubj
nmod

amod advmod

furiously
nmod amod

advmodnsubj

root

colorless green

ideas

sleep

NLP:V-68 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Properties of Dependencies

Text features can be exploited in dependency parsing:

Plausibility Some dependencies are more plausible than others.
“issues → the” is more plausible than “the → issues”.

Distance Dependencies more often hold between nearby words.
Long-distance dependencies are often problematic.
“Ich muss um 17 Uhr mit dem Bus nach Hause fahren.”.

Breaks Dependencies rarely span intervening verbs or punctuation.
Valency Usual numbers of dependents for a head on each side.

Discussion of the outstanding issues was completed

NLP:V-69 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Remarks:

❑ Dependencies often approximate semantic relationships. Knowing the head-dependent
relations of a sentence is very useful for coreference resolution, question answering, and
information extraction.

❑ Lexicalized CFGs often add the head relation.

NLP:V-70 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Dependency Treebanks: Universal Dependencies[UD, 2021]

The largest treebank for dependencies is Universal Dependencies with “nearly 200
treebanks in over 100 languages”.

UD uses the CoNLL-U format to store dependency annotations:

Lexic Morphology Syntax
ID Form Lemma UPOS XPOS Feats Head Deprel Deps
1 They they PRON PRP . . . 2 nsubj 2:nsubj|4:nsubj
2 buy buy VERB VBP . . . 0 root 0:root
3 and and CONJ CC . . . 4 cc 4:cc
4 sell sell VERB VBP . . . 2 conj 0:root|2:conj
5 books book NOUN NNS . . . 2 obj 2:obj|4:obj
6 . . PUNCT 2 punct 2:punct

❑ Head: The ID of the head of this item.
❑ Deprel: The dependency relation.
❑ Deps: A head:relation list of the Enhanced Dependencies, which includes

advanced concepts but escalates the dependency tree to a graph.

NLP:V-71 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://universaldependencies.org/

Dependency Grammars
Universal Dependency Relations[de Marneffe et al., 2014]

The UD annotation guidelines use 37 “universal syntactic relations”.

Example selection of depency relations:

Relation Description Example with head and dependent
Clausal Arguments

NSUBJ Nominal subject United canceled the flight.
DOBJ Direct object We booked her the flight to Miami.
IOBJ Indirect object We booked her the flight to Miami.

Nominal Modifier
NMOD Nominal modifier We took the morning flight.
AMOD Adjectival modifier Book the cheapest flight.
CASE Pre- and postpositions, . . . Book the flight through Houston.

Others
CONJ Conjunct We flew to Denver and drove to Steamboat.
CC Coordinating conjunction We flew to Denver and drove to Steamboat.

NLP:V-72 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf

Dependency Grammars
Universal Dependency Relations[de Marneffe et al., 2014]

The UD annotation guidelines use 37 “universal syntactic relations”.

Example selection of depency relations:

Relation Description Example with head and dependent
Clausal Arguments

NSUBJ Nominal subject United canceled the flight.
DOBJ Direct object We booked her the flight to Miami.
IOBJ Indirect object We booked her the flight to Miami.

Nominal Modifier
NMOD Nominal modifier We took the morning flight.
AMOD Adjectival modifier Book the cheapest flight.
CASE Pre- and postpositions, . . . Book the flight through Houston.

Others
CONJ Conjunct We flew to Denver and drove to Steamboat.
CC Coordinating conjunction We flew to Denver and drove to Steamboat.

NLP:V-73 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf

Dependency Grammars
Universal Dependency Relations[de Marneffe et al., 2014]

The UD annotation guidelines use 37 “universal syntactic relations”.

Example selection of depency relations:

Relation Description Example with head and dependent
Clausal Arguments

NSUBJ Nominal subject United canceled the flight.
DOBJ Direct object We booked her the flight to Miami.
IOBJ Indirect object We booked her the flight to Miami.

Nominal Modifier
NMOD Nominal modifier We took the morning flight.
AMOD Adjectival modifier Book the cheapest flight.
CASE Pre- and postpositions, . . . Book the flight through Houston.

Others
CONJ Conjunct We flew to Denver and drove to Steamboat.
CC Coordinating conjunction We flew to Denver and drove to Steamboat.

NLP:V-74 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf

Dependency Grammars
Transition-based parsing[Nivre, 2008]

Dependency trees can be parsed in linear time using an incremental transition
system S and an oracle o:

S = (C, T, cs, Ct)

C Set of configurations {(β1, A1), (β2, A2), ..}
β is a buffer of remaining nodes
A is a set of dependency arcs

T Set of transitions t : C → C

cs Initialization function mapping w1, . . . , wn to (β,A) with β = [1, . . . , n], A = ∅

Ct Set of terminal configurations (parses) Ct ⊆ C

NLP:V-75 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://aclanthology.org/J08-4003.pdf

Dependency Grammars
Transition-based parsing[Nivre, 2008]

Dependency trees can be parsed in linear time using an incremental transition
system S and an oracle o:

S = (C, T, cs, Ct)

C Set of configurations {(β1, A1), (β2, A2), ..}
β is a buffer of remaining nodes
A is a set of dependency arcs

T Set of transitions t : C → C

cs Initialization function mapping w1, . . . , wn to (β,A) with β = [1, . . . , n], A = ∅

Ct Set of terminal configurations (parses) Ct ⊆ C

❑ The buffer β never increases.

❑ If β is empty, the parser terminates. a Ct should have been reached

❑ A never decreases. arcs are only added, never removed

NLP:V-76 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://aclanthology.org/J08-4003.pdf

Dependency Grammars
Transition-based parsing[Nivre, 2008]

Dependency trees can be parsed in linear time using an incremental transition
system S and an oracle o:

S = (C, T, cs, Ct)

C Set of configurations {(β1, A1), (β2, A2), ..}
β is a buffer of remaining nodes
A is a set of dependency arcs

T Set of transitions t : C → C

cs Initialization function mapping w1, . . . , wn to (β,A) with β = [1, . . . , n], A = ∅

Ct Set of terminal configurations (parses) Ct ⊆ C

There is an oracle o : C → T :
❑ The oracle determines the next transition given the current configuration. the

history of buffers and arcs

❑ S applies the determined transition, leading to the next configuration.

NLP:V-77 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://aclanthology.org/J08-4003.pdf

Dependency Grammars
Arc-Standard Parsing

Arc-Standard is a transition-based parser with a stack σ and 3 transitions T :

SHIFT Remove the first node from β and push it to σ.
LEFT Add an arc from the first node in β to the top of σ.

Pop σ. Don’t LEFT if top of stack is root or top of stack has a head

RIGHT Add an arc from the top of σ to the first node in β.
Replace the first node in β with the top of σ.
Pop σ. Don’t RIGHT if the first node in β has a head

Stack-based Transition Parser S
Stack Buffer

s1s2sn ... w1 w2 wn...

Arc-Standard
Oracle o

sn, ..., s1, w1, w2, w3, ..., wn

Dependency Relations A

Ci

Ci+1

...

s2s3sn ... s1 w2 wn...

NLP:V-78 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Arc-Standard Parsing

Arc-Standard is a transistion based parser with a stack σ and 3 transitions T :

SHIFT Remove the first node from β and push it to σ.
LEFT Add an arc from the first node in β to the top of σ.

Pop σ. Don’t LEFT if top of stack is root or top of stack has a head

RIGHT Add an arc from the top of σ to the first node in β.
Replace the first node in β with the top of σ.
Pop σ. Don’t RIGHT if the first node in β has a head

colorless green ideas sleep furiously
root

Transition Stack σ Buffer β Relations A

init → [root] [colorless, green, . . . , furiously] –

NLP:V-79 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Arc-Standard Parsing

Arc-Standard is a transistion based parser with a stack σ and 3 transitions T :

SHIFT Remove the first node from β and push it to σ.
LEFT Add an arc from the first node in β to the top of σ.

Pop σ. Don’t LEFT if top of stack is root or top of stack has a head

RIGHT Add an arc from the top of σ to the first node in β.
Replace the first node in β with the top of σ.
Pop σ. Don’t RIGHT if the first node in β has a head

colorless green ideas sleep furiously
root

Transition Stack σ Buffer β Relations A

init → [root] [colorless, green, . . . , furiously] –
SHIFT → [root, colorless] [green, ideas, sleep, furiously] –

NLP:V-80 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Arc-Standard Parsing

Arc-Standard is a transistion based parser with a stack σ and 3 transitions T :

SHIFT Remove the first node from β and push it to σ.
LEFT Add an arc from the first node in β to the top of σ.

Pop σ. Don’t LEFT if top of stack is root or top of stack has a head

RIGHT Add an arc from the top of σ to the first node in β.
Replace the first node in β with the top of σ.
Pop σ. Don’t RIGHT if the first node in β has a head

colorless green ideas sleep furiously
root

Transition Stack σ Buffer β Relations A

init → [root] [colorless, green, . . . , furiously] –
SHIFT→ [root, colorless] [green, ideas, sleep, furiously] –
SHIFT → [root, colorless, green] [ideas, sleep, furiously] –

NLP:V-81 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Arc-Standard Parsing

Arc-Standard is a transistion based parser with a stack σ and 3 transitions T :

SHIFT Remove the first node from β and push it to σ.
LEFT Add an arc from the first node in β to the top of σ.

Pop σ. Don’t LEFT if top of stack is root or top of stack has a head

RIGHT Add an arc from the top of σ to the first node in β.
Replace the first node in β with the top of σ.
Pop σ. Don’t RIGHT if the first node in β has a head

colorless green ideas sleep furiously
root

Transition Stack σ Buffer β Relations A

init → [root] [colorless, green, . . . , furiously] –
SHIFT→ [root, colorless] [green, ideas, sleep, furiously] –
SHIFT→ [root, colorless, green] [ideas, sleep, furiously] –
LEFT → [root, colorless] [ideas, sleep, furiously] A ∪ (ideas → green)

NLP:V-82 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Arc-Standard Parsing

Arc-Standard is a transistion based parser with a stack σ and 3 transitions T :

SHIFT Remove the first node from β and push it to σ.
LEFT Add an arc from the first node in β to the top of σ.

Pop σ. Don’t LEFT if top of stack is root or top of stack has a head

RIGHT Add an arc from the top of σ to the first node in β.
Replace the first node in β with the top of σ.
Pop σ. Don’t RIGHT if the first node in β already has a head

colorless green ideas sleep furiously
root

Transition Stack σ Buffer β Relations A

. . .
SHIFT→ [root, sleep] [furiously]
RIGHT → [root] [sleep] A ∪ (sleep → furiously)

NLP:V-83 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Arc-Standard Parsing

Complete transition sequence until termination. A now contains all relations.

colorless green ideas sleep furiously
root

Transition Stack σ Buffer β Relations A

init → [root] [colorless, green, . . . , furiously] –
SHIFT→ [root, colorless] [green, ideas, sleep, furiously] –
SHIFT→ [root, colorless, green] [ideas, sleep, furiously] –
LEFT→ [root, colorless] [ideas, sleep, furiously] A ∪ (ideas → green)
LEFT→ [root] [ideas, sleep, furiously] A ∪ (ideas → colorless)

SHIFT→ [root, ideas] [sleep, furiously] –
LEFT→ [root] [furiously] A ∪ (sleep → ideas)

SHIFT→ [root, sleep] [furiously]
RIGHT→ [root] [sleep] A ∪ (sleep → furiously)
RIGHT→ [] [root] A ∪ (root → sleep)
SHIFT→ [root] [] –

NLP:V-84 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Arc-Standard Parsing: Oracles

The oracle o : C → T predicts which transition in T = {SHIFT, LEFT, RIGHT} is next.

❑ Usually classification models, neural or feature based.
❑ Typical features are based on the stack, buffer, and previous decisions.

→ similar to span-based sequence labeling.

Some training examples with class ci:

o((Top of σi−1,POS of σi−1,Top of βi−1,POS of βi−1, ci−1, ci−2)) = ci

o((green, JJ, idea,NN,Shift,Shift)) = LEFT

o((colorless, JJ, idea,NN,Left,Shift)) = LEFT

o((root, root, idea,NN,Left,Left)) = ?

i o(Ci−1) Configuration Ci

Stack σ Buffer β Relations A

3 SHIFT → [root, colorless, green] [ideas, sleep, furiously] –
4 LEFT → [root, colorless] [ideas, sleep, furiously] A ∪ (ideas → green)
5 LEFT → [root] [ideas, sleep, furiously] A ∪ (ideas → colorless)

NLP:V-85 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Arc-Standard Parsing: Oracles

Traning data can be generated from reference treebank parses:

❑ Transition through arc-standard as done when parsing.
❑ Instead of using the oracle, select the transition from the

reference parse in this order:

1. Use LEFT if (First of β → Top of σ) is in the reference parse.
2. Else, use RIGHT if

(a) (Top of σ → First of β) is in the reference parse and
(b) all dependents of First of β are assigned.

otherwise, First of β would vanish befor all dependents were assigned.

3. Else, use SHIFT.

The arc-standard parse table can be reproduced from its reference parse in this
way. The features to train the oracle can then be derived from the parse table.

NLP:V-86 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Remarks:

❑ There are several extensions to arc-standard, changing the transision rules. Arc-eager, for
example, adds a REDUCE operator.

❑ Since the greedy transision system forces a decision and can’t revise them, there are
frequent errors with, for example, long-distance dependencies. A beam search can mitigate
this.

❑ Predicting the dependency relations is done by extending the transitions to
T = {SHIFT, RIGHTnsubj, LEFTnsubj, RIGHTdobj, . . . }

NLP:V-87 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Projectivity[McDonald et al., 2005]

Definition 1 (Projectivity)

A dependency relation (arc) is projective if there is a path from the head of the
relation to every word between head and dependent.

A dependency tree is projective if every arc in it is projective.

❑ Common in languages with free word (and attachment) order.
❑ Standard transistion-based parsers can not parse non-projective trees.
❑ Trees are projective when generated from CFG’s. via head-finding rules

❑ In non-projective trees, the arcs overlap.

Projective John saw a dog which was a Yorkshire Terrier

root

Non-projective John saw a dog yesterday which was a Yorkshire Terrier

rootroot

?

NLP:V-88 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://aclanthology.org/H05-1066.pdf

Dependency Grammars
Graph-based Parsing

Idea: Use graph-algorithms to find the best dependency tree in a fully-connected,
directed, weighted graph.

❑ More accurate on long-distance
dependencies.

❑ Can solve projective sentences.

Two problems to solve:

1. How to assign scores to each edge?
→ Machine Learning

2. How to find the best parse?
→ Maximum Spanning Tree

colorless root

green

ideas sleep

furiously

8

13

4

222

Graph construction:

❑ Create vertices for each word.
❑ Create a directed connection from

each vertex to all other vertices.
❑ Create a root vertex.
❑ Create a directed connection from

the root to all other vertices.

NLP:V-89 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Evaluation

Dependency parsing is evaluated with the Unlabeled Attachment Score (UAS) and
the Labeled Attachment Score (LAS). Both are similar to accuracy.

Unlabeled Attachment Score:

❑ Fraction of correctly attached heads.
❑ Independent of the assigned label.
❑ Example: 4/5 = 0.8.

green has the wrong head.

Labeled Attachment Score:

❑ Fraction of correctly attached heads
and labels.

❑ Example: 3/5 = 0.6.
green has the wrong head.
(sleep

−−→
dobj furiously) has a wrong label.

Reference parse:

colorless green ideas sleep furiously

root

nsubj
nmod

amod advmod

System output:

colorless green ideas sleep furiously

root

nsubj
nmod

amod dobj

NLP:V-90 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Dependency Grammars
Evaluation: Comparison of Methods

❑ All on the same setting: Stanford Dependency conversion of the Penn
Treebank.

Approach Source UAS LAS

Large Language Models [Mrini et al., 2019] 97.4 96.3
Transition (beam search, dense features) [Weiss, 2015] 94.0 92.0
Transition (arc-hybrid, LSTM features) [Kiperwasser and Goldberg, 2016] 93.9 91.9
Transition (arc-hybrid, LSTM features) [Dallesteros, 2016] 93.8 91.5
Graph (LSTM features) [Kiperwasser and Goldberg, 2016] 93.0 90.9
Transition (arc-eager, beam search) [Zhang and Nivre, 2011] 92.9

❑ Note that the progress since 2011 is marginal.

NLP:V-91 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://aclanthology.org/Q16-1023.pdf
https://aclanthology.org/Q16-1023.pdf
https://aclanthology.org/P11-2033.pdf

