Chapter NLP:V
V. Syntax

(I I R

NLP:V-12 Syntax

Introduction

Phrase Structure Grammars
Dependency Grammars
Features and Unification

© WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Phrase Structure Grammars
Formal Grammars

A formal grammar is defined by a set of rules with terminal and
symbols.
o Rules transform non-terminal symbols into other terminal or non-terminal
symbols.
o Terminal symbols (=~ words) cannot be transformed any further.
o Non-terminals express clusters or generalizations of terminals.

Grammar (X, N, S, R)
>, An alphabet (i.e., a finite set of terminal symbols).
A finite set of non-terminal symbols.
A start non-terminal symbol, S € V.
R Afinite set of production rules, R C (X UN)"\ X* x (XUN)*.

Phrase Structure Grammars
Chomsky Hierarchy

Formal grammars can be ordered in four types:

Chomsky-0 (recursively enumerable). Any (3, N, S, R) as defined.
Chomsky-1 (context-sensitive). Only rules U — V with |U| <|V].
Chomsky-2 (context-free). Only rules U — V with U € N.

Chomsky-3 (regular). Only rules U — V with U € N
andV € {e,v, oW} ve X, W e N,

o U 0o U

In NLP most commonly used are
regular and context-free grammars.

Remarks:

a

Context-sensitive grammars allow multiple symbols on the left side (but at least one
non-terminal) and multiple symbold on the right side without contraints.
S — abc/aAbc, Ab— bA, Ac— Bbce, bB — Bb, aB — aa/aaA

Context-free grammars require a single non-teminal symbol on the left side. For example:
N={S8X},¥={a,b}, S—ab, S—aXb, X —ab, X — aXb

Regular grammars are particularly useful in inferring information when language follows clear

sequential patterns (i.e. pattern parsing). Consider our lecture on regular expressions for

details.

Phrase Structure Grammars
Context-free grammars (CFQG)

A phrase structure grammar is a syntactic structure based on the constituency
relation between words.

Phrase structure grammars can be modeled as context-free grammars:

(Z, S,]\/vp],,ﬂ U M)om)

>, The alphabet.
S The start symbol.
N, A finite set of structural non-terminal symbols. NP, VP, ...
N, Afinite set of lexical pre-terminal symbols. NN, VB, PRP, ...
Ny 0V Npos = 0
A finite set of structure production rules. S — NP VP, ...
U—V,U€ Ny VE(NyprUNpyos)*

A finite set of lexicon production rules. NP — DET NN NN, ...
U—=v,U€Nys vek

Phrase Structure Grammars
Context-free grammars (CFQG)

Some typical (English) phrase structures:

Structural rule Example

Clause Structures

Declarative Clause S —- NP I

Imperative Clause S— VP Show me the next train
Yes-no Question S — Aux NP Do you

Noun Phrase Structures

Determiners NP — DET NP the flight

Adjective Phrases NP — JJ NP the earliest flight

Gerundive NP — NP VP Show me the flights leaving today
Verb Phrase Structures

Verb Phrase VP — Verb NP take the train

Sentential Complement VP — Verb S | think | want to take the train
Two Verb Phrases VP — Verb VP | want to arrange three flights

Coordinations
Coordination NP — NP and NP the flights and the cost

Phrase Structure Grammars
Context-free grammars (CFQG)

Some typical (English) phrase structures:

Structural rule Example

Clause Structures

Declarative Clause S — NP VP | take the flight tomorrow
Imperative Clause S— VP Show me the next train
Yes-no Question S — Aux NP VP Do you get off there?

Noun Phrase Structures

Determiners NP —DET the

Adjective Phrases NP — JJ earliest flight

Gerundive NP — NP flights

Verb Phrase Structures

Verb Phrase VP — Verb NP take the train

Sentential Complement VP — Verb S | think | want to take the train
Two Verb Phrases VP — Verb VP | want to arrange three flights

Coordinations
Coordination NP — NP and NP the flights and the cost

Phrase Structure Grammars
Context-free grammars (CFQG)

Some typical (English) phrase structures:

Structural rule Example

Clause Structures

Declarative Clause S — NP VP | take the flight tomorrow
Imperative Clause S— VP Show me the next train
Yes-no Question S — Aux NP VP Do you get off there?

Noun Phrase Structures

Determiners NP — DET NP the flight

Adjective Phrases NP — JJ NP the earliest flight

Gerundive NP — NP VP Show me the flights leaving today
Verb Phrase Structures

Verb Phrase VP — Verb NP take the train

Sentential Complement VP — Verb S think | want to take the train
Two Verb Phrases VP — Verb VP want to arrange three flights

Coordinations
Coordination NP — NP and NP the flights and the cost

Phrase Structure Grammars
Context-free grammars (CFQG)

Some typical (English) phrase structures:

Structural rule Example

Clause Structures

Declarative Clause S — NP VP | take the flight tomorrow
Imperative Clause S— VP Show me the next train
Yes-no Question S — Aux NP VP Do you get off there?

Noun Phrase Structures

Determiners NP — DET NP the flight

Adjective Phrases NP — JJ NP the earliest flight

Gerundive NP — NP VP Show me the flights leaving today
Verb Phrase Structures

Verb Phrase VP — Verb NP take the train

Sentential Complement VP — Verb S | think | want to take the train
Two Verb Phrases VP — Verb VP | want to arrange three flights

Coordinations
Coordination NP — NP and the flights and

Phrase Structure Grammars
CFG: Example Grammar

Structural rules

Lexical rules

s1 S - NPVP
s2 VP — VNP
s3 |- VNPPP
s4 NP — NP NP
s5 |—NPPP

s6 | = N
s/ | — ¢
s8 PP — P NP

11 N — people
2 | — fish

I3 | — tanks
14 | — rods
5 V — people
6 | — fish

7 | — tanks
I8 P — with

Phrase Structure Grammars

CFG Construction: Treebanks

o A phrase structure grammar consists of many (10Kk) rules.

o These rules are extracted from corpora with tree-structured expert
annotations: treebanks. The most popular Treebanks are:

1. The Penn Treebank (PTB) for constituency trees. [Marcus et al., 1993]
2. The Universal Dependencies treebank for dependency structures.

Example from the Brown Corpus:

((S

(NP-SBJ (DT That)

Structural rules

Lexical rules

(JJ cold) ¢(, ,)
(JJ empty) (NN sky)) S
(VP (VBD was) NP-SBJ
full
(IN of) VP
(NP (NN fire)
(cc and) PP
(NN light))))) NP

Li L4l

NP-SBJ VP
DT JJ , JJ NN
VBD ADJP-PRD

IN NP
NN CC NN

NN — sky | fire | light
VBD — was

JJ — cold | empty | full
DT — That

IN — of

cc — and

(. 2))

Phrase Structure Grammars
Constituency Parsing

Classical parsing
o Hand-crafted grammar (CFG or more complex), along with a lexicon.
o Usage of grammar-based systems to prove parses from words.
o This scales badly and fails to give high coverage of language.

Example: “Fed raises interest rates 0.5% in effort to control inflation

o Minimal grammar: 36 parses
o Real-size broad-coverage grammar: Millions of parses

Phrase Structure Grammars
CFG Modifications for Parsing

Parsing with a CFG from a Treebank often yields long, specific, and rare rules:

o Parsing is inefficient.

o Parsing generalizes poorly. NP

Some rules from Penn:

NP

NP

o Syntactic disambiguation is difficult. NP

NP
NP
NP
NP
NP

CFGs are often modified for parsing:

Probabilistic CFG

Chomsky Normal Form
Lexicalization
Linearization

A

DT
DT
DT
RB
RB
DT
DT
DT
NP

JJ NN

JJ NN NN

JJ JJ NN

DT JJ NN NN

DT JJ JJ NNS

NNP NNP NNP NNP JJ NN

VBG JJ NNP NNP CC NNP

JJ NNS , NNS CC NN NNS NN
JJ , JJ “ SBAR " NNS

Extract the likelihood of each rule. Use the most
likely rule when parsing.

Normalize rules into (equivalent) binary ones.
Add prior knowledge from a lexicon.
Transform trees to sequences.

Phrase Structure Grammars
Probabilistic CFG

A probabilistic context-free grammar (PCFQG) is a CFG where each production rule
IS assigned a probabilility.

PCFG (X, N, S, R,)

P A probability function R — |0, 1] from production rules to probabilities, such
that
VUEN: Y PU—=V)=1
(U—V)eR

o The probability P(t) of a parse tree ¢ is the product of the probabilities of the
rules used to generate it.

o The probability P(s) of a is the sum of the probabilities of the parses
which yield s.

Phrase Structure Grammars

Probabilistic CFG

t1 S
/\
NP VP
? T~
NP PP

people fish tanks with rods

AN
e

2 S

/\
NP VP
3 /\
NP
N
NP PP

NP

people fish tanks with rods

P(t;) = 1.0-0.7-04-0.5-0.6-0.7-1.0-0.2-1.0-0.7- 0.1

= 0.0008232

P(ty) = 1.0-0.7-0.6-0.5-06-02-0.7-1.0-0.2-1.0-0.7-0.1

= 0.00024696

P(s) = P(t1)+ P(ty) = 0.0008232 + 0.00024696

= 0.00107016

Structural rules

S — NP VP
VP — V NP
VP — V NP PP
NP — NP NP
NP — NP PP
NP — N

PP — P NP

Lexical rules

N — people
N — fish

N — tanks
N — rods

V — people
V — fish

V — tanks
P — with

Phrase Structure Grammars
Chomsky Normal Form

A CFG is in Chomsky Normal Form if all rules in R are in either of the forms:

U — VW Two non-terminals on the right side.
U—wv One terminal symbol on the right side.
S —e The empty clause without symbols.

Two grammars are (weakly) equivalent if they generate the same set of strings.

o Grammars can be equivalenty transformed by changing production rules.
o We can transform a CFG to parse it more efficiently.
o The Chomsky Normal Form is a binary branching normalization

that is highly useful for parsing.

Phrase Structure Grammars
Chomsky Normal Form

A CFG is in Chomsky Normal Form if all rules in R are in either of the forms:

U — VIW Two non-terminals on the right side.
U—wv One terminal symbol on the right side.
S —e The empty clause without symbols.

Transformation ldea:

1. Split n-ary production rules with helper non-terminals.
— VP —=NPa Ua —VPNP

2. Remove empty rules.
UVP—-VNP — VP—-VNP U VP=V)

3. Replace unary structure rules with direct rules.
UPP—-PN — PP—-PNUNP-=PN)

Phrase Structure Grammars
Chomsky Normal Form

A CFG is in Chomsky Normal Form if all rules in R are in either of the forms:

U — VIW Two non-terminals on the right side.
U—wv One terminal symbol on the right side.
S —e The empty clause without symbols.

Transformation of Penn (PTB) trees to Chomsky Normal Form (CNF):

Original No PTB No unaries No unaries
PTB Tree function tags (high) (low)
ROOT ROOT ROOT ROOT ROOT
S-HLN /S\ S S
P-SUBJ VP NP VP VP VP
-nc;ne- Vé -nc;ne- VB VB VB V‘B

¢ Listen ¢ Listen Listen Listen Listen

Phrase Structure Grammars
CNF Transformation

Signature

a Input. The production rules R = R, U R, of a CFG.
o Output. The production rules R* of the normalized version of the CFG.

1. while an empty (U —¢)€ R do

2.

3. // Replace empty rules

4.

5. while a unary (U—V)€R do

6.

7.

8. // Replace unary rules

9.
10.
11. while an n-ary (U—V;...V,) € R do
12. // Split n-ary rules with n>3
13. return R

Phrase Structure Grammars
CNF Transformation: Replace Empty Rules

W N

while an empty (U —¢)€ R do
R <« R\{U — ¢}
for each rule (V—-V;...VL, UW;... W))€R do

R +— RU{

}

Structural rules R%“

Lexical rules

S — NP VP
VP — V NP | V NP PP vV — people | fish | tanks

NP — NP NP | NP PP | N | NP—= N — people | fish | tanks | rods
PP — P NP P — with

Structural rules R"° empties Lexical rules

S — NP VP |

vP — V NP | | V NP PP | v — people | fish | tanks

NP — NP NP | | NP PP | | N N — people | fish | tanks | rods

PP — P NP

P — with

Phrase Structure Grammars
CNF Transformation: Replace Unary Rules (1)

5. while a unary (U - V)€ R do
6. R <~ R\{U — V}
7. if U #V then
8. for each (V—-V;...Vy)€eR do R + RU({
9. if not (W —=V,...Vp, VIWi...W;) € R then
10. for each (V—>V;...V,)€ R do R < R\{V -V ...V}
Structural rules R"© empties Lexical rules
S — NP VP | WP
VP —- VNP | V | VNP PP | V PP VvV — people | fish | tanks
NP — NP NP | NP | NP PP | PP | N N — people |fish|tanks | rods
PP — P NP | P P — with
Structural rules R"° unaries Lexical rules
S — NP VP | | | |
VP - VNP | V | VNPPP | VPP vV — people | fish | tanks
NP — NP NP | NP | NP PP | PP | N N — people | fish | tanks | rods

PP — P NP | P P — with

Phrase Structure Grammars
CNF Transformation: Replace Unary Rules (2)

5. while a unary (U - V)€ R do
6. R <~ R\{U — V}
7. if U #V then
8. for each (V—-V;...Vy)€eR do R + RU({
9. if not (W —=V,...Vp, VIWi...W;) € R then
10. for each (V—>V;...V,)€ R do R < R\{V -V ...V}
Structural rules R unaries 1 Lexical rules
S —+ NP VP | VNP | V | VNP PP | V PP
VP —- VNP | ¥ | VNP PP | V PP vV — people | fish | tanks
NP — NP NP | NP | NP PP | PP | N N — people | fish | tanks | rods
PP —- P NP | P P — with
Structural rules R unaries 2 Lexical rules
S —+ NP VP | VNP | V | VNP PP | V PP
VP —- VNP | VNP PP | V PP V — people | fish | tanks
— | fish |
NP — NP NP | NP | NP PP | PP | N N — people | fish | tanks | rods

PP — P NP | P P — with

Phrase Structure Grammars
CNF Transformation: Replace Unary Rules (3-7)

5. while a unary (U - V)€ R do
6. R <~ R\{U — V}
7. if U #V then
8. for each (V—-V;...Vy)€eR do R + RU({
9. if not (W —=V,...Vp, VIWi...W;) € R then
10. for each (V—>V;...V,)€ R do R < R\{V -V ...V}
Structural rules R"° unaries 2 Lexical rules
S - NP VP | VNP | ¥ | VNP PP | V PP
VP —- V NP | V NP PP | V PP vV — people | fish | tanks
VP — people | fish | tanks
NP — NP NP | NP | NP PP | PP | N N — people | fish | tanks | rods
PP — P NP | P P — with
Structural rules R"° unaries Lexical rules
S —- NP VP | VNP | VNP PP | V PP — | |
VP —- VNP | VNP PP | V PP VvV — people | fish | tanks
VP — people | fish | tanks
NP — NP NP | NP PP | N — people | fish | tanks | rods
PP — P NP P — with

_>
_>

Phrase Structure Grammars
CNF Transformation: Split n-ary rules with n > 3

11. while an n-ary (U —V;...V,) € R do

12. R + (R\{U—>V1,) U {U—)Vl U_Vl, U_Vl — }
Structural rules R"© unaries Lexical rules
S — NP VP | VNP | VW NP-PP | V PP S — people | fish |tanks
VP — V NP | ¥V NP-PP | V PP vV — people | fish | tanks
VP — people | fish | tanks
NP — NP NP | NP PP | P NP N — people | fish | tanks | rods
PP — P NP P — with
NP — people | fish | tanks | rods | with
PP — with
Structural rules RONF Lexical rules
S - Np VP | VNP | VSV | vrPP S — people|fish|tanks
SV -
VP —- VNP | V VPV | v PP VvV — people | fish | tanks
VPV — VP — people | fish | tanks
NP — NP NP | NP PP | P NP N — people | fish | tanks | rods
PP — P NP P — with

NP — people | fish | tanks | rods | with
PP — with

Phrase Structure Grammars
Chomsky Normal Form Transformation: Pseudocode

Signature

0 J o O w NN

e
w N P O W

a Input. The production rules R = R, U R, of a CFG.
o Output. The production rules R* of the normalized version of the CFG.

while an empty (U —¢)€ R do
R + R\{U — ¢}
for each rule (V—->WV,...V;UW;...W;) € R do
R« RUV S Vi...Vi Wi...W}}
while a unary (U—V)€R do
R « R\{U V)
if U#YV then
for each (V—-V;...V;) e R do R + RU{U = V;...V;}
if not (W —->WV,...Vp, VW;...W;) € R then
for each (V—-V;...V;)€ R do R < R\{V —-V...V;}
while an n-ary (U—V,...V,) € R do
R« (R\{USVi.. V)W U{USViUVI, UVi = Vs...V,)

return R

Remarks:
Q The original algorithm presented by Chomsky has 5 steps: START, TERM, BIN, DEL, and
UNIT.

QO toChomskyNormalForm only uses DEL, UNIT, and BIN in that order. The order can be
changed, but DEI must come before UNIT.

START eliminated s on the RHS, which should not occur in natural language.

O TERM splits rules with mixed terminals and non-terminals. We assume that the initial
Grammar was extraced without such constructs.

(W]

Phrase Structure Grammars
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

o CKY finds the most likely parse tree from the PCFGs probabilities.
o With a CFG in CNF, CKY parses in cubic time and quadratic space.

Parse
triangle

Most likely
parse tree g

fish people fish tanks fish people fish tanks

Parsing based on a PCFG
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

o CKY finds the most likely parse tree from the PCFGs probabilities.
o With a CFG in CNF, CKY parses in cubic time and quadratic space.

Parse
triangle

Most likely
parse tree g

N

NP VP
A /\
. | NP

fish people fish tanks fish people fish tanks

Parsing based on a PCFG
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

o CKY finds the most likely parse tree from the PCFGs probabilities.
o With a CFG in CNF, CKY parses in cubic time and quadratic space.

Parse Most likely
parse tree g

fish people fish tanks fish people fish tanks

Parsing based on a PCFG
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

o CKY finds the most likely parse tree from the PCFGs probabilities.
o With a CFG in CNF, CKY parses in cubic time and quadratic space.

Parse Most likely
triangle parse tree g

N
Y ia IOy

fish people fish tanks fish people fish tanks

Parsing based on a PCFG
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

o CKY finds the most likely parse tree from the PCFGs probabilities.
o With a CFG in CNF, CKY parses in cubic time and quadratic space.

Parse
triangle

Most likely
parse tree g

N

NP VP
A /\
; NP

fish people fish tanks fish people fish tanks

Parsing based on a PCFG
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

o CKY finds the most likely parse tree from the PCFGs probabilities.
o With a CFG in CNF, CKY parses in cubic time and quadratic space.

Parse
triangle

Most likely
parse tree g

N

NP VP
A /\
. | NP

fish people fish tanks fish people fish tanks

Remarks:

Q The binarization from the CNF is crucial for cubic time.

O CKY can be extended to include Unaries and Empties without increasing time complexity.
This just makes the algorithm more messy:

additional cells
for empties

people fish tanks people fish ~tanks

Phrase Structure Grammars
CKY Parsing: Pseudo Code 1/2

Signature
o Input. A sentence (represented by a list of tokens), a binarized PCFG.

o Output. The most likely parse tree of the sentence.

1. double [][][] probs < new double[#tokens] [#tokens] [#N]
2. for int i + 1 to #tokens do

3. for each U € N do

4. if (U—>tokens[i]) € P then

5. probs[i] [1] [U] <« P(U—tokens[i])
6.

7.

8.

9.

10.

11.

12.

13.

14

=
Ul

Parsing based on a PCFG
CKY Parsing: Pseudo Code 1/2

Signature
o Input. A sentence (represented by a list of tokens), a binarized PCFG.
o Output. The most likely parse tree of the sentence.

extendedCKYParsing (List<Token> tokens, PCFG (X, N, S, R, P))

1. double [][][] probs < new double[#tokens] [#tokens] [#N]
2. for int i + 1 to #tokens do // lexical rules (and unaries)
3. for each U € N do

4. if (U—>tokens[i]) € P then

5. probs[i] [1] [U] <« P(U—tokens[i])

6. boolean added <« ‘true’ // As of here: Handle unaries
7. while added = ‘true’ do

8. added < ‘false’

9. for each U,V € N do
10. if probs[i][1][V]>0 and (U — V) € P then
11. double prob <+ P(U — V) - probs[i][1] [V]
12. if prob > probs[i][1][U] then
13. probs[i] [1] [U] < prob
14. added <« ‘true’
15. // ... continued on next slide...

NLP:V-46 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Phrase Structure Grammars
CKY Parsing: Pseudo Code 2/2

15. for int length < 2 to #tokens do

16. for int beg < 1 to #tokens - length + 1 do
17. int end < beg + length -1

18. for int split < beg to end-1 do

19.

20.

21.
22.
23.
24.
25.
26.
27 .
28.
29.
30.
31. return buildTree (probs)

Phrase Structure Grammars
CKY Parsing: Pseudo Code 2/2

// ... lines 1-14 on previous slide..
15. for int length < 2 to #tokens do // Structural rules
16. for int beg < 1 to #tokens - length + 1 do
17. int end < beg + length -1
18. for int split < beg to end-1 do
19. for int U,V,W € N do
20. int prob < probs[beg] [split] [V]
probs[split+1] [end] [W] - P(U — V W)
21. if prob > probs[beg] [end] [U] then
22 . probs[beg] [end] [U] <4 prob
23.
24 .
25.
26. // ... handle unaries...
27.
28.
29.
30.
31. return buildTree (probs) // Reconstruct tree from triangle

NLP:V-48 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Phrase Structure Grammars
CKY Parsing: Pseudo Code 2/2

// ... lines 1-14 on previous slide...
15. for int length < 2 to #tokens do // Structural rules
16. for int beg < 1 to #tokens - length + 1 do
17. int end < beg + length -1
18. for int split < beg to end-1 do
19. for int U,V,W € N do
20. int prob < probs[beg] [split] [V]
probs[split+1] [end] [W] - P(U — V W)
21. if prob > probs[beg] [end] [U] then
22 . probs [beg] [end] [U] <4 prob
23. boolean added <« ‘true’ // As of here: Handle unaries
24 . while added do
25. added <« ‘false’
26. for U,V € N do
27. prob = P(U — V) - probs[beg] [end] [V];
28. if prob > probs[beg] [end] [U] then
29. probs[beg] [end] [U] < prob
30. added < ‘true’
31. return buildTree (probs) // Reconstruct tree from triangle

NLP:V-49 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Phrase Structure Grammars
CKY Parsing: Example

A binarized PCFG
Structural rules

st S—NPVP 0.9

si” S—VP 0.1

s2 VP —= VNP 0.5

s22 VP =V 0.1

s VP—-VVP_V 03

s3” VP — VPP 0.1

s3” VP_V—-NPPP 1.0

s4 NP — NPNP 0.1 people fish
s NP — NP PP 0.2 .

6 NP — N 0.7 Filling cells

s7 PP—-PNP 1.0 a Compute probabilities for each cell.

o Keep only highest for each left side.

Phrase Structure Grammars
CKY Parsing: Example

A binarized PCFG

Structural rules

/P —>V NP 0.007
=0.1-0.14-0.5

st S—NPVP 0.9

si” S—VP 0.1

s2 VP —= VNP 0.5

s22 VP =V 0.1

s VP—-VVP_V 03

s3” VP — VPP 0.1

s3” VP_V—-NPPP 1.0

s4 NP — NPNP 0.1 people fish
s NP — NP PP 0.2 .

6 NP — N 0.7 Filling cells

s7 PP—-PNP 1.0 a Compute probabilities for each cell.

o Keep only highest for each left side.

Phrase Structure Grammars
CKY Parsing: Example

A binarized PCFG

Structural rules

/P —>V NP 0.007
=0.1-0.14-0.5

s S - NP VP 0.9 NP —> NP NP 0.0049
S — NP VP 0.0189
s’ S — VP 0.1 :
s2 VP —= VNP 0.5
s22 VP -V 0.1
s VP—-VVP.V 03
s3” VP —- VPP 0.1
s3” VP_.V—-NPPP 1.0
s4 NP — NP NP 0.1 people fish
s5 NP — NP PP 0.2 Fill '
s6 NP N 0.7 ing cetls
s7 PP—-PNP 1.0 a Compute probabilities for each cell.

o Keep only highest for each left side.

Phrase Structure Grammars
CKY Parsing: Example

A binarized PCFG

Structural rules

/P —>V NP 0.007
=0.1-0.14-0.5

s S - NPVP 0.9 NP —> NP NP 0.0049
S — NP VP 0.0189
st S—VP 0.1 ,
s2 VP —= VNP 0.5
s22 VP -V 0.1
s VP—-VVP.V 03
s3” VP —- VPP 0.1
s3” VP_.V—-NPPP 1.0
s4 NP — NPNP 0.1 people fish
s5 NP — NP PP 0.2 Fill '
s6 NP N 0.7 ing cetls
s7 PP—-PNP 1.0 a Compute probabilities for each cell.

o Keep only highest for each left side.

Remarks:

O CKY complexity of pseudo code part 1is O(n - |N|?)

O(n) times for-loop in lines 1-14, n = # tokens.
O(|N]) times for-loop in lines 3-5.
O(|N|?) times while-loop in lines 7-14.

0 CKY complexity of pseudo code part 2 is O(n? - |N|?)

O(n) times for-loop in lines 15-30.
O(n) times for-loop in lines 16-30.
O(n) times for-loop in lines 18-22.
O(|N|?) times for-loop in lines 19-22.
O(|N|?) times while-loop in lines 24-30.
O(n?) for building the tree in line 31.

0 Extended CKY parsing has a runtime of O(n? - |[N|?).

Remarks:

O CKY Parsing: Evaluation of Effectiveness
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), NP-(9:10)

Gold standard brackets:
I

S
7

NP VP NP .

T — - I I
NNS NNS VBD VP NN |1

| | | — 7 |
o Sales | executives » were VBG NP PP yesterday|io
| — T~
3 examining DT NNS IN NP

I _| I

4 the s figuresg with] NN
| |

7 great g care q

Candidate brackets: S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)
1

S
p———
NP VP .
NNS NNS VED VP 1
I | I J— e —_—
VBG NP PP
/\

o Sales | executives » were
NP

| — T~
3 examining DT NNS IN
| | | —_—7
4 the s figuresg with]J NN NN
| | |
7 great g care g |yesterday|io

© WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

NLP:V-55 Syntax

Remarks:

a CKY Parsing: Evaluation of Effectiveness (continued)

8 gold standard brackets
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6:9), NP-(7,9), NP-(9:10)

7 candidate brackets

: , VP-(2:10), VP-(3:10), , PP-(6:10), NP-(7,10)

Effectiveness in the example

Labeled precision (LP). 0.429 =3/7

Labeled recall (LR). 0.375=3/8

Labeled F;-score. 0.400=2-LP-LR/(LP + LR)
POS tagging accuracy. 1.000=11/11

Effectiveness of CKY in general [Charniak, 1997]

Labeled F; ~0.73 when trained and tested on Penn Treebank.

— CKY is robust (i.e., usually parses everything, but returns tiny probabilities).

Phrase Structure Grammars
Lexicalization

Problem: Probabilistic CFGs assume that the syntax is independent from the
terminal symbols.

o PCFGs use production rules for parsing and parse tree probabilities for
syntactic disambiguation.

o Information from the words is lost.

o Extending PCFGs by adding contraints from a lexicon is called lexicalization.

Phrase Structure Grammars
Lexicalized PCFG parsingicoliins, 1999]

Idea: The head word of a phrase gives a good representation of the phrase’s
structure and meaning.

S
/\
NP VP
P(VP — VBD PP) = 0.00151 T
P(VP — VBD PP | said) = 0.00001 PP
P(VP — VBD PP | gave) = 0.01980 N
P(VP — VBD PP | walked) = 5 5 ? NP
N

Sue walked into the store

Phrase Structure Grammars
Unlexicalization|kiein and Manning, 2003]

Idea: Lexicality is less important than grammatical features like verb form, presence
of a verb auxiliary, . . .
Rules are not systematically specified down to the level of lexical items.
o No semantic lexicalization for nouns, such as “NPsiocxs”.
o Instead: Structural “lexicalization”, such as “NPZ.".

o Keep functional lexicalization of closed-class words, such as “VB-have”.

Extension: learn the information that is stored for each non-terminal from the
annotations. [Petrov and Knight, 2007]

Phrase Structure Grammars
Linearized parsing|vinyals, Kaiser, et al., 2015]

Idea: Linearize the parse tree and use sequence processing. i.e. conditional
language modeling. The sentence is the input, the linearized parse tree the target.

Linearize with a depth-first traversal of the parse tree:

(S At the start of the traversal

(D 1If descending to a non-terminal D
)4 If ascending from a non-terminal A
t If descending to a terminal t

)s At the end of the traversal

S
Example with total outputs after each state: T
NP VP
1. (S T~ A
2. (S (NP ; NP g
3. (S (NP JJ :
4. (S (NP JJ (NP /\
5. (S (NP JJ (NP JJ
6. (S (NP JJ (NP JJ NN : :
7. (8 (NP J7 (NP 7 NN)wp colorless green ideas sleep furiously

14. (S (NP JJ (NP JJ NN)nyp)np (VP VB ADV)yp)g

https://proceedings.neurips.cc/paper/2015/file/277281aada22045c03945dcb2ca6f2ec-Paper.pdf

Remarks:

Q Vinyals, Kaiser, et al. present linearaization as “Grammar as a Foreign Language”.

O They use a standard (in 2015 SoTA) machine translation neural network: an Encoder
produces a representation of the text and a Decoder predicts the linearized parse tree.

Phrase Structure Grammars
Evaluation[sekine and Collins, evalb]

Given two different hypothesis parses, determine which is most similar to the

by comparing common constituents.

o Each constituent spans a continuous range of
text and has a label.

o Define each constituent as a triplet
(label, start, end).

o Precision: how many triplets in the hypothesis
parse are also in the reference. correctness

o Recall: how many triplets in the reference are
also in the hypothesis. sensitivity, completeness

Reference S
/\
NP VP
| N

0 1 2, 3 4,
colorless green ideas sleep furiously

Hypothesis S
NP NP VP

0 1 2 3 4
colorless green ideas sleep furiously

https://nlp.cs.nyu.edu/evalb/

Phrase Structure Grammars
Evaluation[sekine and Collins, evalb]

Given two different hypothesis parses, determine which is most similar to the
by comparing common constituents.

Parsers are evaluated with the harmonic mean (F,) Reference S
. . /\
of the (averaged) labeled precision (LP) and labeled NP vp
recall (LR): /\NP SN
LP — | Triplets in hypothesis that are also in | “colorless green ideas sleep furiously

| Triplets in hypothesis parse|

. . _ . Hypothesis S
| Triplets in hypothesis that are also in |

LR = - : NP NP VP
Triplets in 1
T | N
2-LP-LR “colorless 7green‘zldeasssleep4furiously

- LP+LR

https://nlp.cs.nyu.edu/evalb/

Phrase Structure Grammars
Evaluation[sekine and Collins, evalb]

Given two different hypothesis parses, determine which is most similar to the
by comparing common constituents.

Parsers are evaluated with the harmonic mean (F;)
of the (averaged) labeled precision (LP) and labeled

recall (LR): Reference S
/\
Lp— | Triplets in hypothesis that are also in | 3 NP
B | Triplets in hypothesis parse| 4 7N
0 1 2 3 4

: : : . lorl i leep furiousl

LR — | Triplets in hypothesis that are also in | 3 colorless green ideas sleep furiously
| Triplets in | 4 Hypothesis S
2-LP-LR 2-0.75-0.75 NP NP VP
F = = =0.75 |
'"IPTLR _ 0751075 N Y

0 1 2 3 4.
colorless green ideas sleep furiously

Constituent Triples
Reference parse S(0,4) NP(0,2) NP(1,2) VP(3,4)
Hypothesis parse S(0,4) NP(0,0) NP(1,2) VP(3,4)

https://nlp.cs.nyu.edu/evalb/

Remarks:
Q Those evaluation measures were developed at the PARSEVAL Workshop in 1998 and are
often refered with this name.

O Evalb is the reference implementation of the PARSEVAL measures.
O Evalb also includes the cross-bracket and unlabeled P/R metrtics.

Phrase Structure Grammars
Evaluation: Comparison of Methods

o Allin exactly the same setting on the Penn Treebank.

Approach Source Labeled F,
Extended CKY parsing [Charniak, 1997] 0.73
Lexicalized parsing [Collins, 1999] 0.89
Unlexicalized parsing [Klein and Manning, 2003] 0.86
Learned unlexicalized parsing [Petrov and Klein, 2007] 0.90
Combining parsers (Ensemble) [Fossum and Knight, 2009] 0.92
Linearized parsing (Learning) [Vinyals, Kaiser, et al., 2015] 0.92
CKY + learned disambiguation [zhang et al., 2020] 0.96

o Besides F; score, the time to parse 1,000 sentences is often considered too.

o Linearized methods are usually very fast. Ensemble methodes perform well
but are slow.

o CKY profits a lot from batching and parallelization.

hhttps://dl.acm.org/doi/pdf/10.5555/1620853.1620923
https://proceedings.neurips.cc/paper/2015/file/277281aada22045c03945dcb2ca6f2ec-Paper.pdf
https://www.ijcai.org/proceedings/2020/0560.pdf

