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Phrase Structure Grammars
Formal Grammars

A formal grammar is defined by a set of rules with terminal and non-terminal
symbols.

❑ Rules transform non-terminal symbols into other terminal or non-terminal
symbols.

❑ Terminal symbols (≈ words) cannot be transformed any further.
❑ Non-terminals express clusters or generalizations of terminals.

Grammar (Σ, N, S,R)

Σ An alphabet (i.e., a finite set of terminal symbols).
N A finite set of non-terminal symbols.
S A start non-terminal symbol, S ∈ N .
R A finite set of production rules, R ⊆ (Σ ∪N)+ \ Σ∗ × (Σ ∪N)∗.
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Phrase Structure Grammars
Chomsky Hierarchy

Formal grammars can be ordered in four types:

❑ Chomsky-0 (recursively enumerable). Any (Σ, N, S,R) as defined.
❑ Chomsky-1 (context-sensitive). Only rules U → V with |U | ≤|V |.
❑ Chomsky-2 (context-free). Only rules U → V with U ∈ N .
❑ Chomsky-3 (regular). Only rules U → V with U ∈ N

and V ∈ {ε, v, vW}, v ∈ Σ, W ∈ N .

In NLP most commonly used are
regular and context-free grammars.
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Remarks:

❑ Context-sensitive grammars allow multiple symbols on the left side (but at least one
non-terminal) and multiple symbold on the right side without contraints.

S → abc/aAbc, Ab→ bA, Ac→ Bbcc, bB → Bb, aB → aa/aaA

❑ Context-free grammars require a single non-teminal symbol on the left side. For example:
N = {S,X},Σ = {a, b}, S → ab, S → aXb, X → ab, X → aXb

❑ Regular grammars are particularly useful in inferring information when language follows clear
sequential patterns (i.e. pattern parsing). Consider our lecture on regular expressions for
details.

NLP:V-15 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023



Phrase Structure Grammars
Context-free grammars (CFG)

A phrase structure grammar is a syntactic structure based on the constituency
relation between words.

Phrase structure grammars can be modeled as context-free grammars:

(Σ, S, Nphr ∪Npos, Rphr ∪Rpos)

Σ The alphabet.
S The start symbol.

Nphr A finite set of structural non-terminal symbols. NP, VP, . . .

Npos A finite set of lexical pre-terminal symbols. NN, VB, PRP, . . .

Nphr ∩Npos = ∅

Rphr A finite set of structure production rules. S→ NP VP, . . .

U → V , U ∈ Nphr V ∈ (Nphr ∪Npos)
∗

Rpos A finite set of lexicon production rules. NP→ DET NN NN, . . .

U → v, U ∈ Npos v ∈ Σ
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Phrase Structure Grammars
Context-free grammars (CFG)

Some typical (English) phrase structures:

Structural rule Example
Clause Structures
Declarative Clause S→ NP VP I take the flight tomorrow
Imperative Clause S→ VP Show me the next train
Yes-no Question S→ Aux NP VP Do you get off there?

Noun Phrase Structures
Determiners NP→ DET NP the flight
Adjective Phrases NP→ JJ NP the earliest flight
Gerundive NP→ NP VP Show me the flights leaving today

Verb Phrase Structures
Verb Phrase VP→ Verb NP take the train
Sentential Complement VP→ Verb S I think I want to take the train
Two Verb Phrases VP→ Verb VP I want to arrange three flights

Coordinations
Coordination NP→ NP and NP the flights and the cost
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Phrase Structure Grammars
Context-free grammars (CFG)

Some typical (English) phrase structures:
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Phrase Structure Grammars
Context-free grammars (CFG)

Some typical (English) phrase structures:

Structural rule Example
Clause Structures
Declarative Clause S→ NP VP I take the flight tomorrow
Imperative Clause S→ VP Show me the next train
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Phrase Structure Grammars
Context-free grammars (CFG)

Some typical (English) phrase structures:
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Two Verb Phrases VP→ Verb VP I want to arrange three flights
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Phrase Structure Grammars
CFG: Example Grammar

Structural rules Lexical rules
s1 S → NP VP l1 N→ people
s2 VP→ V NP l2 |→ fish
s3 |→ V NP PP l3 |→ tanks
s4 NP→ NP NP l4 |→ rods
s5 |→ NP PP // binary l5 V→ people
s6 |→ N // unary l6 |→ fish
s7 |→ ε // empty l7 |→ tanks
s8 PP→ P NP l8 P→ with

Alternative:

Structural rules Lexical rules
S → NP VP
NP→ NP NP | NP PP | N | ε N→ people | fish | tanks | rods
VP→ V NP | V NP PP V→ people | fish | tanks
PP→ P NP P→ with
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Phrase Structure Grammars
CFG Construction: Treebanks

❑ A phrase structure grammar consists of many (10k) rules.
❑ These rules are extracted from corpora with tree-structured expert

annotations: treebanks. The most popular Treebanks are:

1. The Penn Treebank (PTB) for constituency trees. [Marcus et al., 1993]

2. The Universal Dependencies treebank for dependency structures.

Example from the Brown Corpus:

((S
(NP-SBJ (DT That)
(JJ cold) (, ,)
(JJ empty) (NN sky) )

(VP (VBD was)
(ADJP-PRD (JJ full)
(PP (IN of)
(NP (NN fire)
(CC and)
(NN light) ))))

(. .) ))

Structural rules
S → NP-SBJ VP
NP-SBJ → DT JJ , JJ NN
VP → VBD ADJP-PRD
ADJP-PRD → JJ PP
PP → IN NP
NP → NN CC NN

Lexical rules
NN → sky | fire | light
VBD→ was
JJ → cold | empty | full
DT → That
IN → of
CC → and
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Phrase Structure Grammars
Constituency Parsing

Classical parsing

❑ Hand-crafted grammar (CFG or more complex), along with a lexicon.
❑ Usage of grammar-based systems to prove parses from words.
❑ This scales badly and fails to give high coverage of language.

Example: “Fed raises interest rates 0.5% in effort to control inflation”

❑ Minimal grammar: 36 parses
❑ Real-size broad-coverage grammar: Millions of parses
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Phrase Structure Grammars
CFG Modifications for Parsing

Parsing with a CFG from a Treebank often yields long, specific, and rare rules:

❑ Parsing is inefficient.
❑ Parsing generalizes poorly.
❑ Syntactic disambiguation is difficult.

Some rules from Penn:
NP → DT JJ NN
NP → DT JJ NN NN
NP → DT JJ JJ NN
NP → RB DT JJ NN NN
NP → RB DT JJ JJ NNS
NP → DT NNP NNP NNP NNP JJ NN
NP → DT VBG JJ NNP NNP CC NNP
NP → DT JJ NNS , NNS CC NN NNS NN
NP → NP JJ , JJ “ SBAR ” NNS

CFGs are often modified for parsing:

Probabilistic CFG Extract the likelihood of each rule. Use the most
likely rule when parsing.

Chomsky Normal Form Normalize rules into (equivalent) binary ones.
Lexicalization Add prior knowledge from a lexicon.
Linearization Transform trees to sequences.
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Phrase Structure Grammars
Probabilistic CFG

A probabilistic context-free grammar (PCFG) is a CFG where each production rule
is assigned a probablility.

PCFG (Σ, N, S,R, P )

P A probability function R→ [0, 1] from production rules to probabilities, such
that

∀U ∈ N :
∑

(U→V )∈R

P (U → V ) = 1

❑ The probability P (t) of a parse tree t is the product of the probabilities of the
rules used to generate it.

❑ The probability P (s) of a clause s is the sum of the probabilities of the parses
which yield s.
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Phrase Structure Grammars
Probabilistic CFG

S 1.0

people  fish  tanks  with  rods

VP 0.4

PP 1.0

NP 0.7

NP 0.7

NP 0.7

N 0.5 V 0.6 N 0.2 P 1.0 N 0.1

t1

S 1.0

people  fish  tanks  with  rods

VP 0.6

PP 1.0NP 0.7

NP 0.7

NP 0.2

N 0.5 V 0.6 N 0.2 P 1.0 N 0.1

t2

NP 0.7

P (t1) = 1.0 · 0.7 · 0.4 · 0.5 · 0.6 · 0.7 · 1.0 · 0.2 · 1.0 · 0.7 · 0.1
= 0.0008232

P (t2) = 1.0 · 0.7 · 0.6 · 0.5 · 0.6 · 0.2 · 0.7 · 1.0 · 0.2 · 1.0 · 0.7 · 0.1
= 0.00024696

P (s) = P (t1) + P (t2) = 0.0008232 + 0.00024696

= 0.00107016

Structural rules P
S→ NP VP 1.0
VP→ V NP 0.6
VP→ V NP PP 0.4
NP→ NP NP 0.1
NP→ NP PP 0.2
NP→ N 0.7
PP→ P NP 1.0

Lexical rules P
N→ people 0.5
N→ fish 0.2
N→ tanks 0.2
N→ rods 0.1
V→ people 0.1
V→ fish 0.6
V→ tanks 0.3
P→ with 1.0
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Phrase Structure Grammars
Chomsky Normal Form

A CFG is in Chomsky Normal Form if all rules in R are in either of the forms:

U → VW Two non-terminals on the right side.

U → v One terminal symbol on the right side.

S → e The empty clause without symbols.

Two grammars are (weakly) equivalent if they generate the same set of strings.

❑ Grammars can be equivalenty transformed by changing production rules.
❑ We can transform a CFG to parse it more efficiently.
❑ The Chomsky Normal Form is a binary branching normalization

that is highly useful for parsing.
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Phrase Structure Grammars
Chomsky Normal Form

A CFG is in Chomsky Normal Form if all rules in R are in either of the forms:

U → VW Two non-terminals on the right side.

U → v One terminal symbol on the right side.

S → e The empty clause without symbols.

Transformation Idea:

1. Split n-ary production rules with helper non-terminals.
VP→ NP VP NP → VP→ NP α ∪ α → VP NP

2. Remove empty rules.
NP→ ϵ ∪ VP→ V NP → VP→ V NP ∪ VP→ V)

3. Replace unary structure rules with direct rules.
NP→ PP ∪ PP→ P N → PP→ P N ∪ NP→ P N)
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Phrase Structure Grammars
Chomsky Normal Form

A CFG is in Chomsky Normal Form if all rules in R are in either of the forms:

U → VW Two non-terminals on the right side.

U → v One terminal symbol on the right side.

S → e The empty clause without symbols.

Transformation of Penn (PTB) trees to Chomsky Normal Form (CNF):

ε      Listen

P-SUBJ

-none- VB

Original
PTB Tree

VP

S-HLN

ROOT

ε      Listen

NP

-none- VB

VP

S

ROOT

No PTB
function tags

Listen
VB

VP

S

ROOT

No
empties

Listen
VB

S

ROOT

No unaries
(high)

Listen
VB

VP

ROOT

No unaries
(low)
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Phrase Structure Grammars
CNF Transformation

Signature

❑ Input. The production rules R = Rphr ∪Rpos of a CFG.
❑ Output. The production rules R∗ of the normalized version of the CFG.

toChomskyNormalForm(Production rules R)

1. while an empty (U → ε) ∈ R do

2.

3. // Replace empty rules

4.

5. while a unary (U → V ) ∈ R do

6.

7.

8. // Replace unary rules

9.

10.

11. while an n-ary (U → V1 . . . Vn) ∈ R do

12. // Split n-ary rules with n ≥ 3

13. return R
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Phrase Structure Grammars
CNF Transformation: Replace Empty Rules

1. while an empty (U → ε) ∈ R do
2. R ← R \ {U → ε}
3. for each rule (V→ V1 . . .Vk U W1 . . .Wl) ∈ R do // k, l ≥ 0
4. R ← R ∪ {V → V1 . . . Vk W1 . . .Wl}

Structural rules Rold Lexical rules
S → NP VP

VP → V NP | V NP PP V→ people | fish | tanks
NP → NP NP | NP PP | N | NP → ε N→ people | fish | tanks | rods
PP → P NP P→ with

Structural rules Rno empties Lexical rules
S → NP VP | VP

VP → V NP | V | V NP PP | V PP V→ people | fish | tanks
NP → NP NP | NP | NP PP | PP | N N→ people | fish | tanks | rods
PP → P NP | P P→ with
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Phrase Structure Grammars
CNF Transformation: Replace Unary Rules (1)

5. while a unary (U → V) ∈ R do
6. R ← R \ {U → V}
7. if U ̸= V then
8. for each (V→ V1 . . .Vk) ∈ R do R ← R ∪ {U → V1 . . . Vk}
9. if not (W → V1 . . . Vk V W1 . . .Wl) ∈ R then

10. for each (V → V1 . . . Vk) ∈ R do R ← R \ {V → V1 . . . Vk}

Structural rules Rno empties Lexical rules
S → NP VP | VP

VP → V NP | V | V NP PP | V PP V→ people | fish | tanks
NP → NP NP | NP | NP PP | PP | N N→ people | fish | tanks | rods
PP → P NP | P P→ with

Structural rules Rno unaries 1 Lexical rules
S → NP VP | V NP | V | V NP PP | V PP

VP → V NP | V | V NP PP | V PP V→ people | fish | tanks
NP → NP NP | NP | NP PP | PP | N N→ people | fish | tanks | rods
PP → P NP | P P→ with
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Phrase Structure Grammars
CNF Transformation: Replace Unary Rules (2)

5. while a unary (U → V) ∈ R do
6. R ← R \ {U → V}
7. if U ̸= V then
8. for each (V→ V1 . . .Vk) ∈ R do R ← R ∪ {U → V1 . . . Vk}
9. if not (W → V1 . . . Vk V W1 . . .Wl) ∈ R then

10. for each (V → V1 . . . Vk) ∈ R do R ← R \ {V → V1 . . . Vk}

Structural rules Rno unaries 1 Lexical rules
S → NP VP | V NP | V | V NP PP | V PP

VP → V NP | V | V NP PP | V PP V→ people | fish | tanks
NP → NP NP | NP | NP PP | PP | N N→ people | fish | tanks | rods
PP → P NP | P P→ with

Structural rules Rno unaries 2 Lexical rules
S → NP VP | V NP | V | V NP PP | V PP

VP → V NP | V NP PP | V PP V→ people | fish | tanks
VP→ people | fish | tanks

NP → NP NP | NP | NP PP | PP | N N→ people | fish | tanks | rods
PP → P NP | P P→ with
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Phrase Structure Grammars
CNF Transformation: Replace Unary Rules (3-7)

5. while a unary (U → V) ∈ R do
6. R ← R \ {U → V}
7. if U ̸= V then
8. for each (V→ V1 . . .Vk) ∈ R do R ← R ∪ {U → V1 . . . Vk}
9. if not (W → V1 . . . Vk V W1 . . .Wl) ∈ R then

10. for each (V → V1 . . . Vk) ∈ R do R ← R \ {V → V1 . . . Vk}

Structural rules Rno unaries 2 Lexical rules
S → NP VP | V NP | V | V NP PP | V PP
VP → V NP | V NP PP | V PP V→ people | fish | tanks

VP→ people | fish | tanks
NP → NP NP | NP | NP PP | PP | N N→ people | fish | tanks | rods
PP → P NP | P P→ with

Structural rules Rno unaries Lexical rules
S → NP VP | V NP | V NP PP | V PP S→ people | fish | tanks
VP → V NP | V NP PP | V PP V→ people | fish | tanks

VP→ people | fish | tanks
NP → NP NP | NP PP | P NP N→ people | fish | tanks | rods
PP → P NP P→ with

NP→ people | fish | tanks | rods | with
PP→ with
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Phrase Structure Grammars
CNF Transformation: Split n-ary rules with n ≥ 3

11. while an n-ary (U → V1 . . . Vn) ∈ R do // n ≥ 3
12. R ← (R \ {U → V1, V2, . . . Vn}) ∪ {U → V1U_V1, U_V1 → V2 . . . Vn}

Structural rules Rno unaries Lexical rules
S → NP VP | V NP | V NP PP | V PP S→ people | fish | tanks
VP → V NP | V NP PP | V PP V→ people | fish | tanks

VP→ people | fish | tanks
NP → NP NP | NP PP | P NP N→ people | fish | tanks | rods
PP → P NP P→ with

NP→ people | fish | tanks | rods | with
PP→ with

Structural rules RCNF Lexical rules
S → NP VP | V NP | V S_V | V PP S→ people | fish | tanks
S_V → NP PP
VP → V NP | V VP_V | V PP V→ people | fish | tanks
VP_V → NP PP VP→ people | fish | tanks
NP → NP NP | NP PP | P NP N→ people | fish | tanks | rods
PP → P NP P→ with

NP→ people | fish | tanks | rods | with
PP→ with
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Phrase Structure Grammars
Chomsky Normal Form Transformation: Pseudocode

Signature

❑ Input. The production rules R = Rphr ∪Rpos of a CFG.
❑ Output. The production rules R∗ of the normalized version of the CFG.

toChomskyNormalForm(Production rules R)

1. while an empty (U → ε) ∈ R do

2. R ← R \ {U → ε}
3. for each rule (V → V1 . . . Vk U W1 . . .Wl) ∈ R do // k, l ≥ 0

4. R ← R ∪ {V → V1 . . . Vk W1 . . .Wl}
5. while a unary (U → V ) ∈ R do

6. R ← R \ {U → V }
7. if U ̸= V then

8. for each (V → V1 . . . Vk) ∈ R do R ← R ∪ {U → V1 . . . Vk}
9. if not (W → V1 . . . Vk V W1 . . .Wl) ∈ R then

10. for each (V → V1 . . . Vk) ∈ R do R ← R \ {V → V1 . . . Vk}
11. while an n-ary (U → V1 . . . Vn) ∈ R do // n ≥ 3

12. R ← (R \ {U → V1 . . . Vn}) ∪ {U → V1 U_V1, U_V1 → V2 . . . Vn}
13. return R

NLP:V-36 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023



Remarks:

❑ The original algorithm presented by Chomsky has 5 steps: START, TERM, BIN, DEL, and
UNIT.

❑ toChomskyNormalForm only uses DEL, UNIT, and BIN in that order. The order can be
changed, but DEl must come before UNIT.

❑ START eliminated S on the RHS, which should not occur in natural language.
❑ TERM splits rules with mixed terminals and non-terminals. We assume that the initial

Grammar was extraced without such constructs.
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Phrase Structure Grammars
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

❑ CKY finds the most likely parse tree from the PCFGs probabilities.
❑ With a CFG in CNF, CKY parses in cubic time and quadratic space.

With respect to the length of the sentence and the number of non-terminals.

fish people fish tanks
1 2 3 4

fish people fish tanks

N N V N

NP

NP

VP

S
Parse
triangle

Most likely
parse tree

(1,1) (2,2) (3,3) (4,4)
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Parsing based on a PCFG
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

❑ CKY finds the most likely parse tree from the PCFGs probabilities.
❑ With a CFG in CNF, CKY parses in cubic time and quadratic space.

With respect to the length of the sentence and the number of non-terminals.

fish people fish tanks
1 2 3 4

fish people fish tanks

N N V N

NP

NP

VP

S
Parse
triangle

Most likely
parse tree

(1,1) (2,2) (3,3) (4,4)

(1,2)
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Parsing based on a PCFG
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

❑ CKY finds the most likely parse tree from the PCFGs probabilities.
❑ With a CFG in CNF, CKY parses in cubic time and quadratic space.

With respect to the length of the sentence and the number of non-terminals.

fish people fish tanks
1 2 3 4

fish people fish tanks

N N V N

NP

NP

VP

S
Parse
triangle

Most likely
parse tree

(1,1) (2,2) (3,3) (4,4)

(3,4)(1,2) (2,3)
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Parsing based on a PCFG
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

❑ CKY finds the most likely parse tree from the PCFGs probabilities.
❑ With a CFG in CNF, CKY parses in cubic time and quadratic space.

With respect to the length of the sentence and the number of non-terminals.

fish people fish tanks
1 2 3 4

fish people fish tanks

N N V N

NP

NP

VP

S
Parse
triangle

Most likely
parse tree

(1,1) (2,2) (3,3) (4,4)

(3,4)

(1,3)

(1,2) (2,3)
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Parsing based on a PCFG
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

❑ CKY finds the most likely parse tree from the PCFGs probabilities.
❑ With a CFG in CNF, CKY parses in cubic time and quadratic space.

With respect to the length of the sentence and the number of non-terminals.

fish people fish tanks
1 2 3 4

fish people fish tanks

N N V N

NP

NP

VP

S
Parse
triangle

Most likely
parse tree

(1,1) (2,2) (3,3) (4,4)

(1,2) (2,3) (3,4)

(1,3) (2,4)
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Parsing based on a PCFG
Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

❑ CKY finds the most likely parse tree from the PCFGs probabilities.
❑ With a CFG in CNF, CKY parses in cubic time and quadratic space.

With respect to the length of the sentence and the number of non-terminals.

fish people fish tanks
1 2 3 4

fish people fish tanks

N N V N

NP

NP

VP

S
Parse
triangle

Most likely
parse tree

(1,1) (2,2) (3,3) (4,4)

(1,2) (2,3) (3,4)

(1,4)

(1,3) (2,4)
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Remarks:

❑ The binarization from the CNF is crucial for cubic time.
❑ CKY can be extended to include Unaries and Empties without increasing time complexity.

This just makes the algorithm more messy:

people fish tankspeople fish tanks

additional cells
for empties

(0,0) (2,2) (3,3)(1,1)

(0,1) (1,2) (2,3)

(0,2) (1,3)

(0,3)

(1,1) (2,2) (3,3)

(1,2) (2,3)

(1,3)
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Phrase Structure Grammars
CKY Parsing: Pseudo Code 1/2

Signature
❑ Input. A sentence (represented by a list of tokens), a binarized PCFG.
❑ Output. The most likely parse tree of the sentence.

extendedCKYParsing(List<Token> tokens,PCFG (Σ, N, S,R, P ))

1. double [][][] probs ← new double[#tokens][#tokens][#N]
2. for int i ← 1 to #tokens do // Lexical rules (and unaries)
3. for each U ∈ N do
4. if (U→tokens[i]) ∈ P then
5. probs[i][i][U] ← P(U→tokens[i])
6.
7.
8.
9.

10. // ... handle unaries...
11.
12.
13.
14.
15. // ... continued on next slide...
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Parsing based on a PCFG
CKY Parsing: Pseudo Code 1/2

Signature
❑ Input. A sentence (represented by a list of tokens), a binarized PCFG.
❑ Output. The most likely parse tree of the sentence.

extendedCKYParsing(List<Token> tokens,PCFG (Σ, N, S,R, P ))

1. double [][][] probs ← new double[#tokens][#tokens][#N]
2. for int i ← 1 to #tokens do // Lexical rules (and unaries)
3. for each U ∈ N do
4. if (U→tokens[i]) ∈ P then
5. probs[i][i][U] ← P(U→tokens[i])
6. boolean added ← ‘true’ // As of here: Handle unaries
7. while added = ‘true’ do
8. added ← ‘false’
9. for each U,V ∈ N do

10. if probs[i][i][V]>0 and (U → V) ∈ P then
11. double prob ← P (U → V) · probs[i][i][V]
12. if prob > probs[i][i][U] then
13. probs[i][i][U] ← prob
14. added ← ‘true’
15. // ... continued on next slide...
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Phrase Structure Grammars
CKY Parsing: Pseudo Code 2/2

// ... lines 1-14 on previous slide...
15. for int length ← 2 to #tokens do // Structural rules
16. for int beg ← 1 to #tokens - length + 1 do
17. int end ← beg + length - 1
18. for int split ← beg to end-1 do
19.
20.

// ...
21.
22.
23.
24.
25.
26. // ... handle unaries...
27.
28.
29.
30.
31. return buildTree(probs) // Reconstruct tree from triangle
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Phrase Structure Grammars
CKY Parsing: Pseudo Code 2/2

// ... lines 1-14 on previous slide...
15. for int length ← 2 to #tokens do // Structural rules
16. for int beg ← 1 to #tokens - length + 1 do
17. int end ← beg + length - 1
18. for int split ← beg to end-1 do
19. for int U,V,W ∈ N do
20. int prob ← probs[beg][split][V] ·

probs[split+1][end][W] · P (U → V W)
21. if prob > probs[beg][end][U] then
22. probs[beg][end][U] ← prob
23.
24.
25.
26. // ... handle unaries...
27.
28.
29.
30.
31. return buildTree(probs) // Reconstruct tree from triangle
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Phrase Structure Grammars
CKY Parsing: Pseudo Code 2/2

// ... lines 1-14 on previous slide...
15. for int length ← 2 to #tokens do // Structural rules
16. for int beg ← 1 to #tokens - length + 1 do
17. int end ← beg + length - 1
18. for int split ← beg to end-1 do
19. for int U,V,W ∈ N do
20. int prob ← probs[beg][split][V] ·

probs[split+1][end][W] · P (U → V W)
21. if prob > probs[beg][end][U] then
22. probs[beg][end][U] ← prob
23. boolean added ← ‘true’ // As of here: Handle unaries
24. while added do
25. added ← ‘false’
26. for U,V ∈ N do
27. prob = P (U → V) · probs[beg][end][V];
28. if prob > probs[beg][end][U] then
29. probs[beg][end][U] ← prob
30. added ← ‘true’
31. return buildTree(probs) // Reconstruct tree from triangle
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Phrase Structure Grammars
CKY Parsing: Example

A binarized PCFG

Structural rules

s1 S→ NP VP 0.9
s1’ S→ VP 0.1
s2 VP→ V NP 0.5
s2’ VP→ V 0.1
s3’ VP→ V VP_V 0.3
s3” VP→ V PP 0.1
s3”’ VP_V→ NP PP 1.0
s4 NP→ NP NP 0.1
s5 NP→ NP PP 0.2
s6 NP→ N 0.7
s7 PP→ P NP 1.0

people fish

NP
V
N

0.35
0.1
0.5

VP
NP
V
N

0.06
0.14
0.6
0.2

Filling cells

❑ Compute probabilities for each cell.
❑ Keep only highest for each left side.
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Phrase Structure Grammars
CKY Parsing: Example

A binarized PCFG

Structural rules

s1 S→ NP VP 0.9
s1’ S→ VP 0.1
s2 VP→ V NP 0.5
s2’ VP→ V 0.1
s3’ VP→ V VP_V 0.3
s3” VP→ V PP 0.1
s3”’ VP_V→ NP PP 1.0
s4 NP→ NP NP 0.1
s5 NP→ NP PP 0.2
s6 NP→ N 0.7
s7 PP→ P NP 1.0

people fish

NP
V
N

0.35
0.1
0.5

VP
NP
V
N

0.06
0.14
0.6
0.2

VP –> V NP    0.007
= 0.1 • 0.14 • 0.5

Filling cells

❑ Compute probabilities for each cell.
❑ Keep only highest for each left side.
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Phrase Structure Grammars
CKY Parsing: Example

A binarized PCFG

Structural rules

s1 S→ NP VP 0.9
s1’ S→ VP 0.1
s2 VP→ V NP 0.5
s2’ VP→ V 0.1
s3’ VP→ V VP_V 0.3
s3” VP→ V PP 0.1
s3”’ VP_V→ NP PP 1.0
s4 NP→ NP NP 0.1
s5 NP→ NP PP 0.2
s6 NP→ N 0.7
s7 PP→ P NP 1.0

people fish

NP
V
N

0.35
0.1
0.5

VP
NP
V
N

0.06
0.14
0.6
0.2

NP –> NP NP
  S –> NP VP
S –> VP    

VP –> V NP    0.007
= 0.1 • 0.14 • 0.5

0.0049
0.0189
0.007

Filling cells

❑ Compute probabilities for each cell.
❑ Keep only highest for each left side.
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Phrase Structure Grammars
CKY Parsing: Example

A binarized PCFG

Structural rules

s1 S→ NP VP 0.9
s1’ S→ VP 0.1
s2 VP→ V NP 0.5
s2’ VP→ V 0.1
s3’ VP→ V VP_V 0.3
s3” VP→ V PP 0.1
s3”’ VP_V→ NP PP 1.0
s4 NP→ NP NP 0.1
s5 NP→ NP PP 0.2
s6 NP→ N 0.7
s7 PP→ P NP 1.0

people fish

NP
V
N

0.35
0.1
0.5

VP
NP
V
N

0.06
0.14
0.6
0.2

NP –> NP NP
  S –> NP VP
S –> VP    

VP –> V NP    0.007
= 0.1 • 0.14 • 0.5

0.0049
0.0189
0.007

Filling cells

❑ Compute probabilities for each cell.
❑ Keep only highest for each left side.
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Remarks:

❑ CKY complexity of pseudo code part 1 is O(n · |N |2)
– O(n) times for-loop in lines 1–14, n = # tokens.
– O(|N |) times for-loop in lines 3–5.
– O(|N |2) times while-loop in lines 7–14.

❑ CKY complexity of pseudo code part 2 is O(n3 · |N |3)
– O(n) times for-loop in lines 15–30.
– O(n) times for-loop in lines 16–30.
– O(n) times for-loop in lines 18–22.
– O(|N |3) times for-loop in lines 19–22.
– O(|N |2) times while-loop in lines 24–30.
– O(n2) for building the tree in line 31.

❑ Extended CKY parsing has a runtime of O(n3 · |N |3).
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Remarks:

❑ CKY Parsing: Evaluation of Effectiveness
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Remarks:

❑ CKY Parsing: Evaluation of Effectiveness (continued)

8 gold standard brackets
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6:9), NP-(7,9), NP-(9:10)

7 candidate brackets
S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6:10), NP-(7,10)

Effectiveness in the example

– Labeled precision (LP). 0.429 = 3 / 7
– Labeled recall (LR). 0.375 = 3 / 8
– Labeled F1-score. 0.400 = 2 · LP · LR / (LP + LR)
– POS tagging accuracy. 1.000 = 11 / 11

Effectiveness of CKY in general [Charniak, 1997]

– Labeled F1 ∼0.73 when trained and tested on Penn Treebank.
– CKY is robust (i.e., usually parses everything, but returns tiny probabilities).
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Phrase Structure Grammars
Lexicalization

Problem: Probabilistic CFGs assume that the syntax is independent from the
terminal symbols.

❑ PCFGs use production rules for parsing and parse tree probabilities for
syntactic disambiguation.

❑ Information from the words is lost.
❑ Extending PCFGs by adding contraints from a lexicon is called lexicalization.

There are several PSG formalisms with varying degree of lexicalization:

❑ Lexical-Function Grammar [Bresnan, 1982]

❑ Head-driven Phrase Structure Grammar [Pollard and Sag, 1994]

❑ Tree-Adjoining Grammar [Joshi, 1985]

❑ Combinatory Categorical Grammar
❑ . . .
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Phrase Structure Grammars
Lexicalized PCFG parsing[Collins, 1999]

Idea: The head word of a phrase gives a good representation of the phrase’s
structure and meaning.

P (VP→ VBD PP) = 0.00151

P (VP→ VBD PP | said) = 0.00001

P (VP→ VBD PP | gave) = 0.01980

P (VP→ VBD PP | walked) = 0.02730

S walked

Sue walked into the store

VP walked

PP into

P

NP store

NP VBD DT NN

NP Sue
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Phrase Structure Grammars
Unlexicalization[Klein and Manning, 2003]

Idea: Lexicality is less important than grammatical features like verb form, presence
of a verb auxiliary, . . .

❑ Rules are not systematically specified down to the level of lexical items.
❑ No semantic lexicalization for nouns, such as “NPstocks”.
❑ Instead: Structural “lexicalization”, such as “NPS

CC”.
Meaning: Parent node is “S” and noun phrase is coordinating.

❑ Keep functional lexicalization of closed-class words, such as “VB-have”.
❑ Extension: learn the information that is stored for each non-terminal from the

annotations. [Petrov and Knight, 2007]
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Phrase Structure Grammars
Linearized parsing[Vinyals, Kaiser, et al., 2015]

Idea: Linearize the parse tree and use sequence processing. i.e. conditional
language modeling. The sentence is the input, the linearized parse tree the target.

Linearize with a depth-first traversal of the parse tree:

(S At the start of the traversal

(D If descending to a non-terminal D
)A If ascending from a non-terminal A
t If descending to a terminal t

)S At the end of the traversal

Example with total outputs after each state:

1. (S
2. (S (NP
3. (S (NP JJ
4. (S (NP JJ (NP
5. (S (NP JJ (NP JJ
6. (S (NP JJ (NP JJ NN
7. (S (NP JJ (NP JJ NN )NP

...
14. (S (NP JJ (NP JJ NN )NP )NP (VP VB ADV)V P )S

S

NP

NP VP

colorless green ideas sleep furiously
NNJJ JJ VB ADV
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Remarks:

❑ Vinyals, Kaiser, et al. present linearaization as “Grammar as a Foreign Language”.
❑ They use a standard (in 2015 SoTA) machine translation neural network: an Encoder

produces a representation of the text and a Decoder predicts the linearized parse tree.
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Phrase Structure Grammars
Evaluation[Sekine and Collins, evalb]

Given two different hypothesis parses, determine which is most similar to the
reference parse by comparing common constituents.

❑ Each constituent spans a continuous range of
text and has a label.

❑ Define each constituent as a triplet
(label, start, end).

❑ Precision: how many triplets in the hypothesis
parse are also in the reference. correctness

❑ Recall: how many triplets in the reference are
also in the hypothesis. sensitivity, completeness

S

NP

NP VP

colorless green ideas sleep furiously
NNJJ JJ VB ADV

S

NPNP VP

colorless green ideas sleep furiously
NNJJ JJ VB ADV

0 1 2 3 4

0 1 2 3 4

Reference

Hypothesis
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Phrase Structure Grammars
Evaluation[Sekine and Collins, evalb]

Given two different hypothesis parses, determine which is most similar to the
reference parse by comparing common constituents.

Parsers are evaluated with the harmonic mean (F1)
of the (averaged) labeled precision (LP) and labeled
recall (LR):

LP =
|Triplets in hypothesis that are also in reference|

|Triplets in hypothesis parse|

LR =
|Triplets in hypothesis that are also in reference|

|Triplets in reference parse|

F1 =
2 · LP · LR
LP + LR

S

NP

NP VP

colorless green ideas sleep furiously
NNJJ JJ VB ADV

S

NPNP VP

colorless green ideas sleep furiously
NNJJ JJ VB ADV

0 1 2 3 4

0 1 2 3 4

Reference

Hypothesis
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Phrase Structure Grammars
Evaluation[Sekine and Collins, evalb]

Given two different hypothesis parses, determine which is most similar to the
reference parse by comparing common constituents.

Parsers are evaluated with the harmonic mean (F1)
of the (averaged) labeled precision (LP) and labeled
recall (LR):

LP =
|Triplets in hypothesis that are also in reference|

|Triplets in hypothesis parse|
=

3

4

LR =
|Triplets in hypothesis that are also in reference|

|Triplets in reference parse|
=

3

4

F1 =
2 · LP · LR
LP + LR

=
2 · 0.75 · 0.75
0.75 + 0.75

= 0.75

Constituent Triples
Reference parse S(0,4) NP(0,2) NP(1,2) VP(3,4)

Hypothesis parse S(0,4) NP(0,0) NP(1,2) VP(3,4)

S

NP

NP VP

colorless green ideas sleep furiously
NNJJ JJ VB ADV

S

NPNP VP

colorless green ideas sleep furiously
NNJJ JJ VB ADV

0 1 2 3 4

0 1 2 3 4

Reference

Hypothesis
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Remarks:

❑ Those evaluation measures were developed at the PARSEVAL Workshop in 1998 and are
often refered with this name.

❑ Evalb is the reference implementation of the PARSEVAL measures.
❑ Evalb also includes the cross-bracket and unlabeled P/R metrtics.

NLP:V-65 Syntax © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023



Phrase Structure Grammars
Evaluation: Comparison of Methods

❑ All in exactly the same setting on the Penn Treebank.

Approach Source Labeled F1

Extended CKY parsing [Charniak, 1997] 0.73
Lexicalized parsing [Collins, 1999] 0.89
Unlexicalized parsing [Klein and Manning, 2003] 0.86
Learned unlexicalized parsing [Petrov and Klein, 2007] 0.90
Combining parsers (Ensemble) [Fossum and Knight, 2009] 0.92
Linearized parsing (Learning) [Vinyals, Kaiser, et al., 2015] 0.92
CKY + learned disambiguation [Zhang et al., 2020] 0.96

❑ Besides F1 score, the time to parse 1,000 sentences is often considered too.
❑ Linearized methods are usually very fast. Ensemble methodes perform well

but are slow.
❑ CKY profits a lot from batching and parallelization.
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