Chapter NLP:V

V. Syntax

- □ Introduction
- □ Phrase Structure Grammars
- Dependency Grammars
- Features and Unification

Formal Grammars

A formal grammar is defined by a set of rules with terminal and non-terminal symbols.

- Rules transform non-terminal symbols into other terminal or non-terminal symbols.
- $exttt{ iny}$ Terminal symbols (pprox words) cannot be transformed any further.
- Non-terminals express clusters or generalizations of terminals.

Grammar (Σ, N, S, R)

- An alphabet (i.e., a finite set of terminal symbols).
- N A finite set of non-terminal symbols.
- S A start non-terminal symbol, $S \in N$.
- R A finite set of production rules, $R \subseteq (\Sigma \cup N)^+ \setminus \Sigma^* \times (\Sigma \cup N)^*$.

Chomsky Hierarchy

Formal grammars can be ordered in four types:

- \Box Chomsky-0 (recursively enumerable). Any (Σ, N, S, R) as defined.
- \Box Chomsky-1 (context-sensitive). Only rules $U \to V$ with $|U| \le |V|$.
- \Box Chomsky-2 (context-free). Only rules $U \to V$ with $U \in N$.
- □ Chomsky-3 (regular). Only rules $U \to V$ with $U \in N$ and $V \in \{\varepsilon, v, vW\}$, $v \in \Sigma$, $W \in N$.

In NLP most commonly used are regular and context-free grammars.

Remarks:

 Context-sensitive grammars allow multiple symbols on the left side (but at least one non-terminal) and multiple symbold on the right side without contraints.

$$S \to abc/aAbc$$
, $Ab \to bA$, $Ac \to Bbcc$, $bB \to Bb$, $aB \to aa/aaA$

□ Context-free grammars require a single non-teminal symbol on the left side. For example:

$$N = \{S, X\}, \Sigma = \{a, b\}, S \rightarrow ab, S \rightarrow aXb, X \rightarrow ab, X \rightarrow aXb$$

 Regular grammars are particularly useful in inferring information when language follows clear sequential patterns (i.e. pattern parsing). Consider our lecture on regular expressions for details.

Context-free grammars (CFG)

A phrase structure grammar is a syntactic structure based on the constituency relation between words.

Phrase structure grammars can be modeled as context-free grammars:

$$(\Sigma, S, N_{phr} \cup N_{pos}, R_{phr} \cup R_{pos})$$

- Σ The alphabet.
- S The start symbol.
- N_{phr} A finite set of structural non-terminal symbols. NP, VP, ...
- N_{pos} A finite set of lexical pre-terminal symbols. NN, VB, PRP, ... $N_{phr} \cap N_{pos} = \emptyset$
- R_{phr} A finite set of structure production rules. S \rightarrow NP VP, ... $U \rightarrow V$, $U \in N_{phr}$ $V \in (N_{phr} \cup N_{pos})^*$
- R_{pos} A finite set of lexicon production rules. NP o DET NN NN, ... U o v, $U \in N_{pos}$ $v \in \Sigma$

Context-free grammars (CFG)

	Structural rule	Example
Clause Structures Declarative Clause Imperative Clause Yes-no Question	$S \rightarrow NP VP$ $S \rightarrow VP$ $S \rightarrow Aux NP VP$	I take the flight tomorrow Show me the next train Do you get off there?
Noun Phrase Structure Determiners Adjective Phrases Gerundive	$egin{aligned} \mathbf{PS} & & & \\ NP & \rightarrow DET \ NP & & \\ NP & \rightarrow JJ \ NP & & \\ NP & \rightarrow NP \ VP & & \end{aligned}$	the flight the earliest flight Show me the flights leaving today
Verb Phrase Structures Verb Phrase Sentential Complement Two Verb Phrases	$VP \to Verb \; NP$	take the train I think I want to take the train I want to arrange three flights
Coordinations Coordination	$NP \to NP$ and NP	the flights and the cost

Context-free grammars (CFG)

	Structural rule	Example
Clause Structures		
Declarative Clause	$S \to NP \; VP$	I take the flight tomorrow
Imperative Clause	$S \to VP$	Show me the next train
Yes-no Question	$S \to Aux\;NP\;VP$	Do you get off there?
Noun Phrase Structure	s	
Determiners	$NP \rightarrow DET NP$	the flight
Adjective Phrases	$NP \to JJ \; NP$	the earliest flight
Gerundive	$NP \to NP \; VP$	Show me the flights leaving today
Verb Phrase Structures	5	
Verb Phrase	$VP \to Verb\;NP$	take the train
Sentential Complement	$VP \to Verb\;S$	I think I want to take the train
Two Verb Phrases	$VP \to Verb\; VP$	I want to arrange three flights
Coordinations		
Coordination	$NP \rightarrow NP$ and NP	the flights and the cost

Context-free grammars (CFG)

	Structural rule	Example
Clause Structures		
Declarative Clause	$S \to NP \; VP$	I take the flight tomorrow
Imperative Clause	$S \to VP$	Show me the next train
Yes-no Question	$S \to Aux\;NP\;VP$	Do you get off there?
Noun Phrase Structure	s	
Determiners	$NP \to DETNP$	the flight
Adjective Phrases	$NP\toJJ\;NP$	the earliest flight
Gerundive	$NP \to NP \; VP$	Show me the flights leaving today
Verb Phrase Structures	5	
Verb Phrase	$VP o \mathit{Verb} {\color{red}NP}$	take the train
Sentential Complement	$VP o \mathit{Verb} S$	I think I want to take the train
Two Verb Phrases	VP o Verb VP	want to arrange three flights
Coordinations		
Coordination	$NP \rightarrow NP$ and NP	the flights and the cost

Context-free grammars (CFG)

	Structural rule	Example
Clause Structures		
Declarative Clause	$S \to NP \; VP$	I take the flight tomorrow
Imperative Clause	$S \to VP$	Show me the next train
Yes-no Question	$S \to Aux\;NP\;VP$	Do you get off there?
Noun Phrase Structure	s	
Determiners	$NP \to DETNP$	the flight
Adjective Phrases	$NP\toJJ\;NP$	the earliest flight
Gerundive	$NP \to NP \; VP$	Show me the flights leaving today
Verb Phrase Structures	5	
Verb Phrase	$VP \to Verb\; NP$	take the train
Sentential Complement	$VP \to Verb\;S$	I think I want to take the train
Two Verb Phrases	$VP \to Verb\;VP$	I want to arrange three flights
Coordinations		
Coordination	$NP \rightarrow NP$ and NP	the flights and the cost

CFG: Example Grammar

Str	uctural rules	Le	xical rules
s1	$S \to NP VP$	l1	N o people
s2	$VP \to V \; NP$	12	o fish
s3	$ \rightarrow V \; NP \; PP$	13	o tanks
s4	$NP \to NP \; NP$	14	o rods
s5	$ \rightarrow NP \; PP \; /\!/ \; binary$	15	V o people
s6	ightarrow N // unary	16	o fish
s7	ightarrow arepsilon // empty	17	o tanks
s8	$PP \to P \; NP$	18	$P \to with$

Alternative:

Structural rules	Lexical rules
$S^- o NP^- VP^-$	
NP o NP NP I NP PP I N I arepsilon	$N \rightarrow people \mid fish \mid tanks \mid rods$
$VP \to V \; NP \; \; V \; NP \; PP$	$V \rightarrow people \mid fish \mid tanks$
PP o P NP	P o with

CFG Construction: Treebanks

- → A phrase structure grammar consists of many (10k) rules.
- These rules are extracted from corpora with tree-structured expert annotations: treebanks. The most popular Treebanks are:
 - 1. The Penn Treebank (PTB) for constituency trees. [Marcus et al., 1993]
 - 2. The Universal Dependencies treebank for dependency structures.

Example from the Brown Corpus:

Structural rules				
S	\rightarrow	NP-SBJ VP		
NP-SBJ	\rightarrow	DT JJ , JJ NN		
VP	\rightarrow	VBD ADJP-PRD		
ADJP-PRD	\rightarrow	JJ PP		
PP	\rightarrow	IN NP		
NP	\rightarrow	NN CC NN		

Lexi	ical rules
NN	ightarrow sky fire light
VBD	ightarrow was
JJ	$\rightarrow cold \mid empty \mid full$
DT	\rightarrow That
IN	ightarrow of
CC	$\rightarrow \text{and}$

Constituency Parsing

Classical parsing

- Hand-crafted grammar (CFG or more complex), along with a lexicon.
- Usage of grammar-based systems to prove parses from words.
- This scales badly and fails to give high coverage of language.

Example: "Fed raises interest rates 0.5% in effort to control inflation"

- Minimal grammar: 36 parses
- Real-size broad-coverage grammar: Millions of parses

CFG Modifications for Parsing

Parsing with a CFG from a Treebank often yields long, specific, and rare rules:

- Parsing is inefficient.
- Parsing generalizes poorly.
- Syntactic disambiguation is difficult.

Some rules from Penn:

 $\text{NP} \rightarrow \text{DT} \text{ JJ} \text{ NN}$

 $ext{NP}
ightarrow ext{DT} ext{JJ} ext{NN} ext{NN}$

 $\text{NP} \rightarrow \text{DT} \text{ JJ} \text{ JJ} \text{ NN}$

 $ext{NP}
ightarrow ext{RB} ext{DT} ext{JJ} ext{NN} ext{NN}$

 $\text{NP} \rightarrow \text{RB} \ \text{DT} \ \text{JJ} \ \text{JNNS}$

 $\texttt{NP} \ \to \ \texttt{DT} \ \texttt{NNP} \ \texttt{NNP} \ \texttt{NNP} \ \texttt{NNP} \ \texttt{JJ} \ \texttt{NN}$

 $ext{NP}
ightarrow ext{DT VBG JJ NNP NNP CC NNP}$

 $ext{NP}
ightarrow ext{DT}$ JJ $ext{NNS}$, $ext{NNS}$ CC $ext{NN}$ $ext{NNS}$ $ext{NN}$

 $\text{NP} \rightarrow \text{NP} \text{JJ}$, JJ " SBAR " NNS

CFGs are often modified for parsing:

Probabilistic CFG Extract the likelihood of each rule. Use the most

likely rule when parsing.

Chomsky Normal Form Normalize rules into (equivalent) binary ones.

Lexicalization Add prior knowledge from a lexicon.

Linearization Transform trees to sequences.

Probabilistic CFG

A probabilistic context-free grammar (PCFG) is a CFG where each production rule is assigned a probability.

PCFG (Σ, N, S, R, P)

P A probability function $R \to [0,1]$ from production rules to probabilities, such that

$$\forall U \in N : \sum_{(U \to V) \in R} P(U \to V) = 1$$

- \Box The probability P(t) of a parse tree t is the product of the probabilities of the rules used to generate it.
- \Box The probability P(s) of a clause s is the sum of the probabilities of the parses which yield s.

Probabilistic CFG

$P(t_1)$	=	$1.0 \cdot 0.7 \cdot 0.4 \cdot 0.5 \cdot 0.6 \cdot 0.7 \cdot 1.0 \cdot 0.2 \cdot 1.0 \cdot 0.7 \cdot 0.1$
	=	0.0008232
$P(t_2)$	=	$1.0 \cdot 0.7 \cdot 0.6 \cdot 0.5 \cdot 0.6 \cdot 0.2 \cdot 0.7 \cdot 1.0 \cdot 0.2 \cdot 1.0 \cdot 0.7 \cdot$
	=	0.00024696
P(s)	=	$P(t_1) + P(t_2) = 0.0008232 + 0.00024696$
	=	0.00107016

Structural rules	Р
$S \rightarrow NP VP$	1.0
$VP \to V \; NP$	0.6
$VP \to V \; NP \; PP$	0.4
$NP \to NP \; NP$	0.1
$NP \to NP \; PP$	0.2
$NP\toN$	0.7
$PP \to P \; NP$	1.0
Lexical rules	Р
$\frac{\text{Lexical rules}}{\text{N} \rightarrow \text{people}}$	P 0.5
$N \rightarrow people$	0.5
$\begin{array}{c} N \to \text{people} \\ N \to \text{fish} \end{array}$	0.5
$\begin{array}{c} N \to people \\ N \to fish \\ N \to tanks \end{array}$	0.5 0.2 0.2
$\begin{array}{c} N \to people \\ N \to fish \\ N \to tanks \\ N \to rods \end{array}$	0.5 0.2 0.2 0.1
$\begin{array}{c} N \to people \\ N \to fish \\ N \to tanks \\ N \to rods \\ V \to people \end{array}$	0.5 0.2 0.2 0.1 0.1

0.1

Chomsky Normal Form

A CFG is in Chomsky Normal Form if all rules in R are in either of the forms:

U o VW Two non-terminals on the right side.

 $U \rightarrow v$ One terminal symbol on the right side.

 $S \to e$ The empty clause without symbols.

Two grammars are (weakly) equivalent if they generate the same set of strings.

- Grammars can be equivalenty transformed by changing production rules.
- We can transform a CFG to parse it more efficiently.
- □ The Chomsky Normal Form is a binary branching normalization that is highly useful for parsing.

Chomsky Normal Form

A CFG is in Chomsky Normal Form if all rules in R are in either of the forms:

U o VW Two non-terminals on the right side.

 $U \rightarrow v$ One terminal symbol on the right side.

 $S \to e$ The empty clause without symbols.

Transformation Idea:

1. Split n-ary production rules with helper non-terminals.

$$VP \rightarrow NP \ VP \ NP \ \rightarrow \ VP \rightarrow NP \ \alpha \ \cup \ \alpha \ \rightarrow VP \ NP$$

2. Remove empty rules.

$$\mathsf{NP} \to \epsilon \; \cup \; \mathsf{VP} \to \mathsf{V} \; \mathsf{NP} \quad \to \quad \mathsf{VP} \to \mathsf{V} \; \mathsf{NP} \; \cup \; \mathsf{VP} \to \mathsf{V})$$

3. Replace unary structure rules with direct rules.

$$NP \rightarrow PP \cup PP \rightarrow PN \rightarrow PP \rightarrow PN \cup NP \rightarrow PN$$

Chomsky Normal Form

A CFG is in Chomsky Normal Form if all rules in R are in either of the forms:

 $U \to VW$ Two non-terminals on the right side.

 $U \rightarrow v$ One terminal symbol on the right side.

 $S \to e$ The empty clause without symbols.

Transformation of Penn (PTB) trees to Chomsky Normal Form (CNF):

CNF Transformation

Signature

- $exttt{ input}$. The production rules $R = R_{phr} \cup R_{pos}$ of a CFG.
- \Box Output. The production rules R^* of the normalized version of the CFG.

toChomskyNormalForm (Production rules R)

```
while an empty (U \to \varepsilon) \in R do
 2.
 3.
                // Replace empty rules
 4.
         while a unary (U \rightarrow V) \in R do
 5.
 6.
 7.
 8.
                // Replace unary rules
 9.
10.
          while an n-ary (U \rightarrow V_1 \dots V_n) \in R do
11.
12.
                 // Split n-ary rules with n > 3
        return R
13.
```

CNF Transformation: Replace Empty Rules

```
1. while an empty ({\color{red} {\pmb U}} \to {\color{blue} {\pmb \varepsilon}}) \in R do 
2. R \leftarrow R \setminus \{{\color{red} {\pmb U}} \to {\color{blue} {\pmb \varepsilon}}\}
3. for each rule ({\bf V} \to {\bf V_1} \dots {\bf V_k} \ {\color{red} {\pmb U}} \ {\bf W_1} \dots {\bf W_l}) \in R do //\ k,l \geq 0
4. R \leftarrow R \cup \{V \to V_1 \dots V_k \ W_1 \dots W_l\}
```

Structural rules Rold	Lexical rules
extstyle ext	
$ extsf{VP} ightarrow extsf{V}$ $ extsf{NP}$ $ extsf{IP}$ $ extsf{V}$	$ extsf{V} ightarrow extsf{people}$ fish tanks
NP $ ightarrow$ NP NP NP PP N $rac{NP}{ ightarrow arepsilon}$	$ ext{N} o \text{people}$ fish tanks rods
$ exttt{PP} ightarrow exttt{P} exttt{NP}$	extstyle o with

Structural rules Rno empties	Lexical rules
$s \rightarrow NP VP \mid VP$	
$ extsf{VP} ightarrow extsf{V} \hspace{0.1cm} extsf{NP} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} extsf{NP} 0.1$	$ extsf{V} ightarrow extsf{people}$ fish tanks
$ ext{NP} ightarrow ext{NP} ext{ NP} ext{ NP} ext{ IP} ext{ NP} ext{ NP} ext{ IP} ext{ IN}$	$ ext{N} o \text{people}$ fish tanks rods
$PP \rightarrow P NP \mid P$	extstyle o with

CNF Transformation: Replace Unary Rules (1)

```
5. while a unary (U \to V) \in R do
6. R \leftarrow R \setminus \{U \to V\}
7. if U \neq V then
8. for each (V \to V_1 \dots V_k) \in R do R \leftarrow R \cup \{U \to V_1 \dots V_k\}
9. if not (W \to V_1 \dots V_k \ V \ W_1 \dots W_l) \in R then
10. for each (V \to V_1 \dots V_k) \in R do R \leftarrow R \setminus \{V \to V_1 \dots V_k\}
```

Structural rules Rno empties	Lexical rules
$S \rightarrow NP VP \mid \frac{VP}{}$	
$ ext{VP} ightarrow ext{V} ext{NP} ext{ V V NP PP V PP}$	$ extsf{V} ightarrow extsf{people}$ fish tanks
$ ext{NP} ightarrow ext{NP} ext{ NP} ext{ NP} ext{ NP} ext{ PP} ext{ NP} ext{ NP} ex$	$ exttt{N} ightarrow exttt{people}$ fish tanks rods
$ exttt{PP} ightarrow exttt{P} exttt{NP} exttt{ } exttt{P}$	$\mathtt{P} o with$

Structural rules R ^{no unaries 1}	Lexical rules
$ extsf{S} o extsf{NP} extsf{VP} extsf{VP} extsf{V} extsf{NP} extsf{VP} extsf{V} extsf{NP} extsf{PP} extsf{VP} extsf{VP} extsf{PP}$	
$VP o V NP \mid V \mid V NP PP \mid V PP$	imes $ o$ people fish tanks
NP $ ightarrow$ NP NP NP PP PP N	$ ext{N} o \text{people}$ fish tanks rods
$ exttt{PP} ightarrow exttt{P}$ $ exttt{P}$ $ exttt{P}$	$ exttt{P} o exttt{with}$

CNF Transformation: Replace Unary Rules (2)

```
5. while a unary (U \to \mathbf{V}) \in R do
6. R \leftarrow R \setminus \{U \to \mathbf{V}\}
7. if U \neq V then
8. for each (\mathbf{V} \to \mathbf{V_1} \dots \mathbf{V_k}) \in R do R \leftarrow R \cup \{U \to V_1 \dots V_k\}
9. if not (W \to V_1 \dots V_k \ V \ W_1 \dots W_l) \in R then
10. for each (V \to V_1 \dots V_k) \in R do R \leftarrow R \setminus \{V \to V_1 \dots V_k\}
```

Structural rules R ^{no unaries 1}	Lexical rules
S $ ightarrow$ NP VP V NP V NP PP V PP	
$ ext{VP} ightarrow ext{V} ext{NP} ext{ V NP PP V PP}$	$ extsf{V} ightarrow extsf{people}$ fish tanks
NP $ ightarrow$ NP NP NP PP PP N	$ exttt{N} ightarrow exttt{people}$ fish tanks rods
$ exttt{PP} ightarrow exttt{P}$ $ exttt{P}$	$ exttt{P} o exttt{with}$

Structural rules Rno unaries 2	Lexical rules
S $ ightarrow$ NP VP V NP V NP PP V PP	
$ ext{VP} ightarrow ext{V}$ $ ext{NP}$ $ ext{I}$ $ ext{V}$ $ ext{NP}$ $ ext{IP}$	${f V} ightarrow {f people}$ fish tanks
	$VP \rightarrow people \mid fish \mid tanks$
NP $ ightarrow$ NP NP NP PP PP N	$ ext{N} o \text{people}$ fish tanks rods
$ exttt{PP} ightarrow exttt{P} exttt{NP} exttt{ } exttt{P}$	$ extsf{P} o extsf{with}$

CNF Transformation: Replace Unary Rules (3-7)

```
5. while a unary (U \to V) \in R do
6. R \leftarrow R \setminus \{U \to V\}
7. if U \neq V then
8. for each (V \to V_1 \dots V_k) \in R do R \leftarrow R \cup \{U \to V_1 \dots V_k\}
9. if not (W \to V_1 \dots V_k \ V \ W_1 \dots W_l) \in R then
10. for each (V \to V_1 \dots V_k) \in R do R \leftarrow R \setminus \{V \to V_1 \dots V_k\}
```

Structural rules Rno unaries 2	Lexical rules
S $ ightarrow$ NP VP V NP $rac{f V}{}$ V NP PP V PP	
$ ext{VP} ightarrow ext{V} ext{NP} ext{ V NP PP V PP}$	$ extsf{V} ightarrow extsf{people}$ fish tanks
	$ extsf{VP} ightarrow extsf{people}$ fish tanks
$ ext{NP} ightarrow ext{NP} ext{ NP} ext{ NP} ext{ PP} ext{ } rac{ ext{P}}{ ext{N}}$	$ exttt{N} ightarrow exttt{people}$ fish tanks rods
$PP \rightarrow P NP \mid \frac{P}{P}$	$ exttt{P} o with$

Structural rules Rno unaries	Lexical rules
$ ext{S} o ext{NP VP } ext{V NP } ext{V NP } ext{PP } ext{V PP}$	$S \rightarrow \text{people} \mid \text{fish} \mid \text{tanks}$
$ ext{VP} ightarrow ext{V}$ $ ext{NP}$ $ ext{I}$ $ ext{V}$ $ ext{NP}$ $ ext{IP}$ $ ext{V}$ $ ext{PP}$	$ extsf{V} ightarrow extsf{people}$ fish tanks
	extstyle o extstyle extstyle
$ ext{NP} ightarrow ext{NP} ext{ NP} ext{ NP} ext{ P} ext{NP}$	$ exttt{N} ightarrow exttt{people}$ fish tanks rods
$ exttt{PP} ightarrow exttt{P} exttt{NP}$	extstyle o with
	$NP \rightarrow people \mid fish \mid tanks \mid rods \mid with$
	PP → with

CNF Transformation: Split n-ary rules with $n \ge 3$

```
11. while an n-ary (U \to V_1 \dots V_n) \in R do // n \ge 3
12. R \leftarrow (R \setminus \{U \to \mathbf{V_1}, V_2, \dots V_n\}) \cup \{U \to \mathbf{V_1} \cup \mathbf{U_1}, \ \mathbf{U_1} \to V_2 \dots V_n\}
```

Structural rules Rno unaries	Lexical rules
$S \rightarrow NP VP V NP V NP PP V PP$	$\mathtt{S} o people \mid fish \mid tanks$
$ ext{VP} ightarrow ext{V} ext{NP} ext{ } ext{PP} ext{ } ext{I} ext{V} ext{ } ext{PP}$	$ extsf{V} ightarrow extsf{people}$ fish tanks
	extstyle ext
NP $ ightarrow$ NP NP NP PP P NP	$ exttt{N} ightarrow exttt{people}$ fish tanks rods
$ exttt{PP} ightarrow exttt{P} exttt{NP}$	extstyle o with
	$\mathtt{NP} o people \mid fish \mid tanks \mid rods \mid with$
	$\mathtt{PP} o with$

Structural rules R ^{CNF}	Lexical rules
$S \rightarrow NP VP V NP V S_V V PP$	$\mathtt{S} o people$ fish tanks
S_V → NP PP VP → V NP V VP_V V PP VP_V → NP PP NP → NP NP NP PP P NP PP → P NP	$V o people \mid fish \mid tanks$ $VP o people \mid fish \mid tanks$ $N o people \mid fish \mid tanks \mid rods$ $P o with$ $NP o people \mid fish \mid tanks \mid rods \mid with$
	$\mathtt{PP} o with$

Chomsky Normal Form Transformation: Pseudocode

Signature

- □ Input. The production rules $R = R_{phr} \cup R_{pos}$ of a CFG.
- \Box Output. The production rules R^* of the normalized version of the CFG.

toChomskyNormalForm (Production rules R)

```
while an empty (U \to \varepsilon) \in R do
 2.
                R \leftarrow R \setminus \{U \rightarrow \varepsilon\}
                for each rule (V \to V_1 \dots V_k U W_1 \dots W_l) \in R do // k, l > 0
 3.
                      R \leftarrow R \cup \{V \rightarrow V_1 \dots V_k \mid W_1 \dots W_l\}
  4.
          while a unary (U \rightarrow V) \in R do
 5.
                R \leftarrow R \setminus \{U \rightarrow V\}
 6.
 7.
          if U \neq V then
                       for each (V \to V_1 \dots V_k) \in R do R \leftarrow R \cup \{U \to V_1 \dots V_k\}
 8.
                       if not (W \to V_1 \dots V_k \ V \ W_1 \dots W_l) \in R then
 9.
                             for each (V \to V_1 \dots V_k) \in R do R \leftarrow R \setminus \{V \to V_1 \dots V_k\}
10.
          while an n-ary (U \rightarrow V_1 \dots V_n) \in R do // n \ge 3
11.
                R \leftarrow (R \setminus \{U \rightarrow V_1 \dots V_n\}) \cup \{U \rightarrow V_1 U \_V_1, U \_V_1 \rightarrow V_2 \dots V_n\}
12.
          return R
13.
```

Remarks:

- ☐ The original algorithm presented by Chomsky has 5 steps: START, TERM, BIN, DEL, and UNIT.
- □ toChomskyNormalForm only uses DEL, UNIT, and BIN in that order. The order can be changed, but DEI must come before UNIT.
- □ START eliminated S on the RHS, which should not occur in natural language.
- ☐ TERM splits rules with mixed terminals and non-terminals. We assume that the initial Grammar was extraced without such constructs.

Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

- CKY finds the most likely parse tree from the PCFGs probabilities.
- With a CFG in CNF, CKY parses in cubic time and quadratic space.

Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

- CKY finds the most likely parse tree from the PCFGs probabilities.
- With a CFG in CNF, CKY parses in cubic time and quadratic space.

Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

- CKY finds the most likely parse tree from the PCFGs probabilities.
- With a CFG in CNF, CKY parses in cubic time and quadratic space.

Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

- CKY finds the most likely parse tree from the PCFGs probabilities.
- With a CFG in CNF, CKY parses in cubic time and quadratic space.

Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

- CKY finds the most likely parse tree from the PCFGs probabilities.
- With a CFG in CNF, CKY parses in cubic time and quadratic space.

Cocke-Kasami-Younger (CKY) Parsing

PCFGs in CNF can be parsed via dynamic programming:

- CKY finds the most likely parse tree from the PCFGs probabilities.
- With a CFG in CNF, CKY parses in cubic time and quadratic space.

Remarks:

- ☐ The binarization from the CNF is crucial for cubic time.
- CKY can be extended to include Unaries and Empties without increasing time complexity.
 This just makes the algorithm more messy:

CKY Parsing: Pseudo Code 1/2

Signature

- □ Input. A sentence (represented by a list of tokens), a binarized PCFG.
- Output. The most likely parse tree of the sentence.

```
extendedCKYParsing(List<Token> tokens, PCFG (\Sigma, N, S, R, P))
          double [][][] probs \leftarrow new double[\#tokens][\#tokens][\#N]
  1.
  2.
          for int i \leftarrow 1 to #tokens do // Lexical rules (and unaries)
  3.
              for each U \in N do
                  if (U \rightarrow tokens[i]) \in P then
  4.
  5.
                      probs[i][i][U] \leftarrow P(U \rightarrow tokens[i])
  6.
  7.
  8.
  9.
 10.
              // ... handle unaries...
 11.
 12.
 13.
 14.
 15.
          // ... continued on next slide...
```

CKY Parsing: Pseudo Code 1/2

Signature

- □ Input. A sentence (represented by a list of tokens), a binarized PCFG.
- Output. The most likely parse tree of the sentence.

```
extendedCKYParsing(List<Token> tokens, PCFG (\Sigma, N, S, R, P))
          double [][][] probs \leftarrow new double[#tokens][#tokens][#N]
  1.
  2.
          for int i \leftarrow 1 to #tokens do // Lexical rules (and unaries)
  3.
              for each U \in N do
                  if (U \rightarrow tokens[i]) \in P then
  4.
  5.
                      probs[i][i][U] \leftarrow P(U \rightarrow tokens[i])
  6.
             boolean added ← 'true' // As of here: Handle unaries
  7.
              while added = 'true' do
  8.
                  added ← 'false'
  9.
                  for each U, V \in N do
 10.
                      if probs[i][i][V]>0 and (U \rightarrow V) \in P then
                          double prob \leftarrow P(U \rightarrow V) \cdot \text{probs}[i][i][V]
 11.
 12.
                          if prob > probs[i][i][U] then
 13.
                              probs[i][i][U] ← prob
 14.
                              added ← 'true'
 15.
          // ... continued on next slide...
```

CKY Parsing: Pseudo Code 2/2

```
// ... lines 1-14 on previous slide...
15.
        for int length \leftarrow 2 to #tokens do // Structural rules
16.
            for int beg \leftarrow 1 to #tokens - length + 1 do
17.
                int end \leftarrow beg + length - 1
18.
                for int split ← beg to end-1 do
19.
20.
                   // ...
21.
22.
23.
24.
25.
               // ... handle unaries...
26.
27.
28.
29.
30.
31.
        return buildTree (probs) // Reconstruct tree from triangle
```

CKY Parsing: Pseudo Code 2/2

```
// ... lines 1-14 on previous slide...
15.
        for int length \leftarrow 2 to #tokens do // Structural rules
16.
            for int beg \leftarrow 1 to #tokens - length + 1 do
17.
                int end \leftarrow beg + length - 1
18.
                for int split ← beg to end-1 do
19.
                    for int U, V, W \in N do
                       int prob ← probs[beq][split][V] .
20.
                                     probs[split+1][end][W] \cdot P(U \rightarrow V W)
21.
                       if prob > probs[beg][end][U] then
22.
                           probs[beq][end][U] ← prob
23.
2.4.
25.
26.
               // ... handle unaries...
27.
28.
29.
30.
31.
        return buildTree (probs) // Reconstruct tree from triangle
```

CKY Parsing: Pseudo Code 2/2

```
// ... lines 1-14 on previous slide...
15.
        for int length \leftarrow 2 to #tokens do // Structural rules
16.
            for int beg \leftarrow 1 to #tokens - length + 1 do
17.
                int end \leftarrow beg + length - 1
18.
                for int split ← beg to end-1 do
19.
                    for int U, V, W \in N do
                       int prob ← probs[beq][split][V] .
20.
                                    probs[split+1][end][W] \cdot P(U \rightarrow V W)
21.
                       if prob > probs[beq][end][U] then
22.
                           probs[beal[end][U] ← prob
23.
                boolean added ← 'true' // As of here: Handle unaries
2.4.
                while added do
25.
                    added ← 'false'
26.
                    for U, V \in N do
27.
                       prob = P(U \rightarrow V) \cdot probs[beg][end][V];
28.
                       if prob > probs[beq][end][U] then
29.
                           probs[beq][end][U] ← prob
30.
                           added ← 'true'
31.
        return buildTree (probs) // Reconstruct tree from triangle
```

CKY Parsing: Example

A binarized PCFG

Structural rules			
s1	$S \to NP \; VP$	0.9	
s1'	$S \to VP$	0.1	
s2	$VP \to V \; NP$	0.5	
s2'	$VP \to V$	0.1	
s3'	$VP \to V \ VP _V$	0.3	
s3"	$VP \to V \; PP$	0.1	
s3"	$VP_V \to NP\;PP$	1.0	
s4	$NP \to NP \; NP$	0.1	
s5	$NP \to NP \; PP$	0.2	
s6	$NP\toN$	0.7	
s7	$PP \to P \; NP$	1.0	

- Compute probabilities for each cell.
- Keep only highest for each left side.

CKY Parsing: Example

A binarized PCFG

Structural rules			
s1	S o NP VP	0.9	
s1'	$S \to VP$	0.1	
s2	$VP \to V \; NP$	0.5	
s2'	$VP \to V$	0.1	
s3'	$VP \to V \ VP _V$	0.3	
s3"	$VP \to V \; PP$	0.1	
s3"	$VP_V \to NP\;PP$	1.0	
s4	$NP \to NP \; NP$	0.1	
s5	$NP \to NP \; PP$	0.2	
s6	$NP \to N$	0.7	
s7	$PP \to P \; NP$	1.0	

- Compute probabilities for each cell.
- Keep only highest for each left side.

CKY Parsing: Example

A binarized PCFG

Structural rules			
s1	$S \to NP \; VP$	0.9	
s1'	$S \to VP$	0.1	
s2	$VP \to V \; NP$	0.5	
s2'	$VP \to V$	0.1	
s3'	$VP \to V \ VP _V$	0.3	
s3"	$VP \to V \; PP$	0.1	
s3"	$VP_V \to NP\;PP$	1.0	
s4	$NP \to NP \; NP$	0.1	
s5	$NP \to NP \; PP$	0.2	
s6	$NP \to N$	0.7	
s7	$PP \to P \; NP$	1.0	

- Compute probabilities for each cell.
- Keep only highest for each left side.

CKY Parsing: Example

A binarized PCFG

Structural rules			
s1	$S \to NP \; VP$	0.9	
s1'	$S \to VP$	0.1	
s2	$VP \to V \; NP$	0.5	
s2'	$VP \to V$	0.1	
s3'	$VP \to V \ VP _V$	0.3	
s3"	$VP \to V \; PP$	0.1	
s3"	$VP_V \to NP\;PP$	1.0	
s4	$NP \to NP \; NP$	0.1	
s5	$NP \to NP \; PP$	0.2	
s6	$NP\toN$	0.7	
s7	$PP \to P \; NP$	1.0	

- Compute probabilities for each cell.
- Keep only highest for each left side.

- \Box CKY complexity of pseudo code part 1 is $\mathcal{O}(n \cdot |N|^2)$
 - $\mathcal{O}(n)$ times for-loop in lines 1–14, n=# tokens.
 - $\mathcal{O}(|N|)$ times for-loop in lines 3–5.
 - $\mathcal{O}(|N|^2)$ times while-loop in lines 7–14.
- $lue{}$ CKY complexity of pseudo code part 2 is $\mathcal{O}(n^3 \cdot |N|^3)$
 - $\mathcal{O}(n)$ times for-loop in lines 15–30.
 - $\mathcal{O}(n)$ times for-loop in lines 16–30.
 - $\mathcal{O}(n)$ times for-loop in lines 18–22.
 - $\mathcal{O}(|N|^3)$ times for-loop in lines 19–22.
 - $\mathcal{O}(|N|^2)$ times while-loop in lines 24–30.
 - $\mathcal{O}(n^2)$ for building the tree in line 31.
- \square Extended CKY parsing has a runtime of $\mathcal{O}(n^3 \cdot |N|^3)$.

□ CKY Parsing: Evaluation of Effectiveness

Gold standard brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

CKY Parsing: Evaluation of Effectiveness (continued)

8 gold standard brackets

7 candidate brackets

Effectiveness in the example

- Labeled precision (LP). 0.429 = 3/7
- Labeled recall (LR). 0.375 = 3 / 8
- Labeled F_1 -score. $0.400 = 2 \cdot LP \cdot LR / (LP + LR)$
- POS tagging accuracy. 1.000 = 11 / 11

Effectiveness of CKY in general [Charniak, 1997]

- Labeled $F_1 \sim 0.73$ when trained and tested on Penn Treebank.
- CKY is robust (i.e., usually parses everything, but returns tiny probabilities).

Lexicalization

Problem: Probabilistic CFGs assume that the syntax is independent from the terminal symbols.

- PCFGs use production rules for parsing and parse tree probabilities for syntactic disambiguation.
- Information from the words is lost.
- □ Extending PCFGs by adding contraints from a lexicon is called lexicalization.

There are several PSG formalisms with varying degree of lexicalization:

- □ Lexical-Function Grammar [Bresnan, 1982]
- □ Head-driven Phrase Structure Grammar [Pollard and Sag, 1994]
- □ Tree-Adjoining Grammar [Joshi, 1985]
- Combinatory Categorical Grammar
- □ ...

Lexicalized PCFG parsing[Collins, 1999]

Idea: The head word of a phrase gives a good representation of the phrase's structure and meaning.

$$P(\text{VP} \rightarrow \text{VBD PP}) = 0.00151$$

$$P(\text{VP} \rightarrow \text{VBD PP} \mid \text{said}) = 0.00001$$

$$P(\text{VP} \rightarrow \text{VBD PP} \mid \text{gave}) = 0.01980$$

$$P(\text{VP} \rightarrow \text{VBD PP} \mid \text{walked}) = 0.02730$$

Unlexicalization[Klein and Manning, 2003]

Idea: Lexicality is less important than grammatical features like verb form, presence of a verb auxiliary, . . .

- Rules are not systematically specified down to the level of lexical items.
- □ No semantic lexicalization for nouns, such as "NP_{stocks}".
- Instead: Structural "lexicalization", such as "NPSC".
 Meaning: Parent node is "S" and noun phrase is coordinating.
- Keep functional lexicalization of closed-class words, such as "VB-have".
- □ Extension: learn the information that is stored for each non-terminal from the annotations. [Petrov and Knight, 2007]

Linearized parsing[Vinyals, Kaiser, et al., 2015]

Idea: Linearize the parse tree and use sequence processing. i.e. conditional language modeling. The sentence is the input, the linearized parse tree the target.

Linearize with a depth-first traversal of the parse tree:

```
(S At the start of the traversal (D If descending to a non-terminal D )_A If ascending from a non-terminal A t If descending to a terminal t )_S At the end of the traversal
```

Example with total outputs after each state:

```
(S
(S
   (NP
(S
   (NP JJ
(S
   (NP
        JJ
            (NP
   (NP
(S
        JJ
            (NP
                 JJ
        JJ
(S
   (NP
            (NP
                JJ NN
   (NP
        JJ
            (NP JJ NN)_{NP}
```


colorless green ideas sleep furiously

14. (S (NP JJ (NP JJ NN) $_{NP}$) $_{NP}$ (VP VB ADV) $_{VP}$) $_{S}$

- □ Vinyals, Kaiser, et al. present linearaization as "Grammar as a Foreign Language".
- ☐ They use a standard (in 2015 SoTA) machine translation neural network: an Encoder produces a representation of the text and a Decoder predicts the linearized parse tree.

Evaluation[Sekine and Collins, evalb]

Given two different hypothesis parses, determine which is most similar to the reference parse by comparing common constituents.

- Each constituent spans a continuous range of text and has a label.
- Define each constituent as a triplet
 (label, start, end).
- Precision: how many triplets in the hypothesis parse are also in the reference. correctness
- □ Recall: how many triplets in the reference are also in the hypothesis. sensitivity, completeness

Evaluation[Sekine and Collins, evalb]

Given two different hypothesis parses, determine which is most similar to the reference parse by comparing common constituents.

Parsers are evaluated with the harmonic mean (F₁) of the (averaged) labeled precision (LP) and labeled recall (LR):

$$\mathsf{LP} = \frac{|\mathsf{Triplets}\;\mathsf{in}\;\mathsf{hypothesis}\;\mathsf{that}\;\mathsf{are}\;\mathsf{also}\;\mathsf{in}\;\mathsf{reference}|}{|\mathsf{Triplets}\;\mathsf{in}\;\mathsf{hypothesis}\;\mathsf{parse}|}$$

$$LR = \frac{|\text{Triplets in hypothesis} \text{ that are also in reference}|}{|\text{Triplets in reference parse}|}$$

$$F_1 = \frac{2 \cdot LP \cdot LR}{LP + LR}$$

Evaluation[Sekine and Collins, evalb]

Given two different hypothesis parses, determine which is most similar to the reference parse by comparing common constituents.

Parsers are evaluated with the harmonic mean (F₁) of the (averaged) labeled precision (LP) and labeled recall (LR):

$$\mathsf{LP} = \frac{|\mathsf{Triplets}\;\mathsf{in}\;\mathsf{hypothesis}\;\mathsf{that}\;\mathsf{are}\;\mathsf{also}\;\mathsf{in}\;\mathsf{reference}|}{|\mathsf{Triplets}\;\mathsf{in}\;\mathsf{hypothesis}\;\mathsf{parse}|} = \frac{3}{4}$$

$$\mathsf{LR} = \frac{|\mathsf{Triplets}\;\mathsf{in}\;\mathsf{hypothesis}\;\mathsf{that}\;\mathsf{are}\;\mathsf{also}\;\mathsf{in}\;\mathsf{reference}|}{|\mathsf{Triplets}\;\mathsf{in}\;\mathsf{reference}\;\mathsf{parse}|} = \frac{3}{4}$$

$$F_1 = \frac{2 \cdot LP \cdot LR}{LP + LR} = \frac{2 \cdot 0.75 \cdot 0.75}{0.75 + 0.75} = 0.75$$

Constituent Triples				
Reference parse	S(0,4)	NP(0,2)	NP(1,2)	VP(3,4)
Hypothesis parse	S(0,4)	NP(0,0)	NP(1,2)	VP(3,4)

- ☐ Those evaluation measures were developed at the PARSEVAL Workshop in 1998 and are often referred with this name.
- □ Evalb is the reference implementation of the PARSEVAL measures.
- □ Evalb also includes the cross-bracket and unlabeled P/R metrtics.

Evaluation: Comparison of Methods

All in exactly the same setting on the Penn Treebank.

Approach	Source	Labeled F ₁
Extended CKY parsing	[Charniak, 1997]	0.73
Lexicalized parsing	[Collins, 1999]	0.89
Unlexicalized parsing	[Klein and Manning, 2003]	0.86
Learned unlexicalized parsing	[Petrov and Klein, 2007]	0.90
Combining parsers (Ensemble)	[Fossum and Knight, 2009]	0.92
Linearized parsing (Learning)	[Vinyals, Kaiser, et al., 2015]	0.92
CKY + learned disambiguation	[Zhang et al., 2020]	0.96

- \Box Besides F₁ score, the time to parse 1,000 sentences is often considered too.
- Linearized methods are usually very fast. Ensemble methodes perform well but are slow.
- CKY profits a lot from batching and parallelization.