
Chapter NLP:I

I. Natural Language Processing Basics
q String Processing
q Grammars
q Regular Expressions

NLP:I-1 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

String Processing
Overview

String processing forms the basis of many tasks, algorithms, and evaluation methods in NLP.

String problems:

q Sorting

q Manipulation

q Exact / inexact matching
Search and indexing, similarity and distance

q Alignment
Longest common subsequence

q Parsing
Splitting

q Compression

Data structures:

q Buffer

q Inverted index

q Trie, suffix tree, suffix array

Computational models:

q Finite-state machines

q Dynamic programming

NLP:I-2 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Remarks:

q String processing combines methods from formal language theory, compilers, and bioinformatics.

NLP:I-3 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Grammars
Terminology

q Alphabet Σ.
An alphabet Σ is a finite non-empty set of letters or symbols.

q Word w.
A word w is a finite sequence of symbols from Σ. The length of a word |w| is the number of
its symbols.
ε denotes the empty word; it is the only word with length 0.
Σ∗ denotes the set of all words over Σ.

q Language L.
A language L is a set of words over an alphabet Σ.

q Grammar G.
A grammar G is a calculus for defining a language – that is, a set of rules that can be used
to derive words. The language belonging to G consists of all derivable, terminal words.

NLP:I-4 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Grammars
Terminology

q Alphabet Σ.
An alphabet Σ is a finite non-empty set of letters or symbols.

q Word w.
A word w is a finite sequence of symbols from Σ. The length of a word |w| is the number of
its symbols.
ε denotes the empty word; it is the only word with length 0.
Σ∗ denotes the set of all words over Σ.

q Language L.
A language L is a set of words over an alphabet Σ.

q Grammar G.
A grammar G is a calculus for defining a language – that is, a set of rules that can be used
to derive words. The language belonging to G consists of all derivable, terminal words.

NLP:I-5 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Remarks:

q When defining language characteristics, a distinction is made between different levels of abstraction. Level 1
deals with the notation of symbols, while Level 2 deals with the syntactic structure of the language.
[
::::::::
Exkurs:

::::::::::::::::::::::::
Programmiersprachen]

q To distinguish between the different levels of grammar usage, the following terms can be used:

– Level 1: Alphabet, symbol, word, language
– Level 2: Vocabulary, token, sentence, language

q The words {alphabet, vocabulary}, {symbol, token} or {word, sentence} are the respective equivalents of the
elementary symbolic level and the syntactic level.

NLP:I-6 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://webis.de/downloads/lecturenotes/web-technology/unit-de-client-technologies1.pdf#two-levels-syntax-programming-languages

Grammars

Definition 1 (Grammar)

A grammar is a quadruple G = (N,Σ, P, S) with

N = finite set of non-terminal symbols

Σ = finite set of terminal symbols, N ∩ Σ = ∅

P = finite set of productions or rules

P ⊂ (N ∪ Σ)∗ N (N ∪ Σ)∗︸ ︷︷ ︸
A

×︸︷︷︸
→

(N ∪ Σ)∗︸ ︷︷ ︸
Ab

S = start symbol, S ∈ N

NLP:I-7 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Grammars

Definition 1 (Grammar)

A grammar is a quadruple G = (N,Σ, P, S) with

N = finite set of non-terminal symbols

Σ = finite set of terminal symbols, N ∩ Σ = ∅

P = finite set of productions or rules

P ⊂ (N ∪ Σ)∗ N (N ∪ Σ)∗︸ ︷︷ ︸
A

×︸︷︷︸
→

(N ∪ Σ)∗︸ ︷︷ ︸
Ab

S = start symbol, S ∈ N

NLP:I-8 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Remarks:

q A rule consists of a left side (premise) and a right side (conclusion), each of which is a word consisting of
terminals and non-terminals. The left side must contain at least one non-terminal, and unlike the left side, the
right side can also be the empty word. [Wikipedia]

q A rule can be applied to a word consisting of terminals and non-terminals, whereby any occurrence of the left
side of the rule in the word is replaced by the right side of the rule: w → w′.

q Given the rule w → w′, then w,w′ are in the so-called transitive relation→G. A sequence of rule applications
is called a derivation.

NLP:I-9 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://en.wikipedia.org/wiki/Formal_grammar

Grammars

Definition 2 (Generated Language)

The language L(G) generated by a grammar G = (N,Σ, P, S) contains exactly those words that
consist only of terminal symbols and can be derived from the start symbol with a finite number of
steps:

L (G) := {w ∈ Σ∗ | S →∗G w}

→∗G denotes the arbitrary application of the productions in G, i.e., the reflexive-transitive hull of
the transition relation→G.

NLP:I-10 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Grammars

Definition 2 (Generated Language)

The language L(G) generated by a grammar G = (N,Σ, P, S) contains exactly those words that
consist only of terminal symbols and can be derived from the start symbol with a finite number of
steps:

L (G) := {w ∈ Σ∗ | S →∗G w}

→∗G denotes the arbitrary application of the productions in G, i.e., the reflexive-transitive hull of
the transition relation→G.

Example:

G = (N,Σ, P, S) mit N = {S,A,B}, Σ = {a, b} und folgenden Produktionen:

S → ABS

S → ε

BA → AB

BS → b

Bb → bb

Ab → ab

Aa → aa

NLP:I-11 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Remarks:

q It is conventional to use uppercase letters to denote non-terminal symbols and lowercase letters to denote
terminal symbols.

q Another grammar that generates the same language as in the example is:
N = {S,A,B}, Σ = {a, b}, P = {S → aSb, S → ε}

NLP:I-12 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Grammars
Chomsky Hiearchy

Grammars are divided into four classes based on the complexity of the languages they generate.

q Type 0 ∼ recursively enumerable.
There are no restrictions for the rules in P .

q Type 1 ∼ context-sensitive.
For all rules w → w′ ∈ P holds: |w| ≤ |w′|

q Type 2 ∼ context-free.
For all rules w → w′ ∈ P holds: w is a single variable; i.e., w ∈ N .

q Type 3 ∼ regular.
The grammar is of Type 2, and for all rules, w → w′ additionally holds: w′ ∈ (Σ ∪ ΣN), i.e.,
the right-hand sides of the rules consist either of a terminal symbol or of a terminal symbol
followed by a non-terminal.

NLP:I-13 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Grammars
Chomsky Hiearchy

Grammars are divided into four classes based on the complexity of the languages they generate.

q Type 0 ∼ recursively enumerable.
There are no restrictions for the rules in P .

q Type 1 ∼ context-sensitive.
For all rules w → w′ ∈ P holds: |w| ≤ |w′|

q Type 2 ∼ context-free.
For all rules w → w′ ∈ P holds: w is a single variable; i.e., w ∈ N .

q Type 3 ∼ regular.
The grammar is of Type 2, and for all rules, w → w′ additionally holds: w′ ∈ (Σ ∪ ΣN), i.e.,
the right-hand sides of the rules consist either of a terminal symbol or of a terminal symbol
followed by a non-terminal.

NLP:I-14 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Grammars
Chomsky Hierarchy

regular or
Type 3 languages

context-free or
Type 2 languages

context-sensitive or
Type 1 languages

recursively enumerable or
Type 0 languages decidable

languages

Definition 3 (Language of Type)

A language L ⊆ Σ∗ is called a Type 0 (Type 1, Type 2, Type 3) language if there exists a Type 0
(Type 1, Type 2, Type 3) grammar G such that L(G) = L.

NLP:I-15 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Remarks:

q The Chomsky hierarchy represents a hierarchy with genuine subset relationships:
Type 3 ⊂ Type 2 ⊂ Type 1 ⊂ Type 0

q All languages of types 1, 2, or 3 are decidable:

→ The decision problem if a word belongs to a language is decidable for all languages of Type 1, 2, or 3.

→ There is an algorithm that, given a grammar G and a word w, decides in finite time if w ∈ L(G) or not.

q The set of Type 0 languages is identical to the set of recursively enumerable or semi-decidable languages.
Therefore, there are Type 0 languages that are not decidable.

There are countably infinite grammars for generating a recursively enumerable language (Type 0)

q In compiler theory and natural language processing, Type 3 languages and grammars (lexical analysis,
tokenization) and Type 2 languages and grammars (syntactic structure analysis) play a central role.

NLP:I-16 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://en.wikipedia.org/wiki/Formal_language

Grammars
Calculi for Regular Languages

Different calculi for generating words in a regular language:

(a) finite acceptor or automaton

(b) regular expressions

(c) Type 3 grammar

(d) Specifying finitely many equivalence classes
(of the Nerode relation)

NLP:I-17 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://en.wikipedia.org/wiki/Myhill%E2%80%93Nerode_theorem

Grammars
Calculi for Regular Languages

Different calculi for generating words in a regular language:

(a) finite acceptor or automaton

(b) regular expressions

(c) Type 3 grammar

(d) Specifying finitely many equivalence classes
(of the Nerode relation)

regular
expressions

finite
automata

regular
languages [Haenelt 2005, Jurafski/Martin 2000]

are
equivalent specify

accept

NLP:I-18 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://en.wikipedia.org/wiki/Myhill%E2%80%93Nerode_theorem

Grammars
Summary

Language generation calculi

Type 0 Type 0 grammar
Turing machine

Type 1 context-senstive grammar
linear bounded Turing machine [Wikipedia]

Type 2 context-free grammar
pushdown automaton

Type 3 regular grammar (Type 3 grammar)
deterministic/non-deterministic finite automaton
regular expression

NLP:I-19 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://en.wikipedia.org/wiki/Linear_bounded_automaton

Grammars
Summary

Language generation calculi

Type 0 Type 0 grammar
Turing machine

Type 1 context-senstive grammar
linear bounded Turing machine [Wikipedia]

Type 2 context-free grammar
pushdown automaton

Type 3 regular grammar (Type 3 grammar)
deterministic/non-deterministic finite automaton
regular expression

Complexity of the word problem [Wikipedia]

Type 0 undecidable
Type 1 exponential complexity, NP-hard
Type 2 O(n3)

Type 3 linear complexity

NLP:I-20 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Decision_problem

Chapter NLP:I

I. Natural Language Processing Basics
q Grammars
q Regular Expressions

NLP:I-21 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Regular Expressions [Kastens]

Syntax

A regular expression R can be composed recursively as follows. F and G denote regular
expressions.

R Language L(R) Semantics

1. a {a} The letter a

2. FG {fg | f ∈ L(F), g ∈ L(G)} Concatenation

3. F | G {f | f ∈ L(F)} ∪ {g | g ∈ L(G)} Alternation

4. (F) (L(F)) Grouping

5. F+ {f1f2 . . . fn | fi ∈ L(F), n ≥ 1, i = 1, . . . , n} Non-empty sequence
of words from L(F)

6. F ∗ {ε} ∪ L(F+) Arbitrary sequence
of words from L(F)

7. F n {f1f2 . . . fn | fi ∈ L(F), i = 1, . . . , n} Sequence of n words from L(F)

8. ε {ε} The empty word

NLP:I-22 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Regular Expressions [Kastens]

Syntax

A regular expression R can be composed recursively as follows. F and G denote regular
expressions.

R Language L(R) Semantics

1. a {a} The letter a

2. FG {fg | f ∈ L(F), g ∈ L(G)} Concatenation

3. F | G {f | f ∈ L(F)} ∪ {g | g ∈ L(G)} Alternation

4. (F) (L(F)) Grouping

5. F+ {f1f2 . . . fn | fi ∈ L(F), n ≥ 1, i = 1, . . . , n} Non-empty sequence
of words from L(F)

6. F ∗ {ε} ∪ L(F+) Arbitrary sequence
of words from L(F)

7. F n {f1f2 . . . fn | fi ∈ L(F), i = 1, . . . , n} Sequence of n words from L(F)

8. ε {ε} The empty word

NLP:I-23 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Regular Expressions [Kastens]

Examples
1 1 (0 | 1)* 0 0

Concatenation (5 times)

Sequence

Bracketing

Alternative

Symbol1 1 0 1 0 0

*

()

|

Every word in the language of this regular expression consists of two ones, followed by any
number of zeros or ones, followed by two zeros.

NLP:I-24 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Regular Expressions [Kastens]

Examples (continued)

R Name of language L(R) Words from L(R)

(a | b) (c | d | ε) Abc ac, bc, ad, bd, a, b
Dear(ε | est) (Sir | Madam) Salutation Dear Sir

0 | 1 | . . . | 9 Digit 7
a | b | . . . | z sLetter x
A | B | . . . | Z cLetter B
sLetter | cLetter Letter m, N

Letter (Letter | Digit)* Label Maximum, min7, a

Digit +.Digit 2 MoneyAmount 23.95, 0.50

(cLetter | cLetter 2 | cLetter 3)– LicensePlatesDE PB–AS–0815
(cLetter | cLetter 2)–
(Digit | Digit 2 | Digit 3 | Digit 4)

13 (1 | 0)* 03 Dual 1111000, 1111101010000
NLP:I-25 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Regular Expressions [Kastens]

Examples (continued)

R Name of language L(R) Words from L(R)

(a | b) (c | d | ε) Abc ac, bc, ad, bd, a, b
Dear(ε | est) (Sir | Madam) Salutation Dear Sir

0 | 1 | . . . | 9 Digit 7
a | b | . . . | z sLetter x
A | B | . . . | Z cLetter B
sLetter | cLetter Letter m, N

Letter (Letter | Digit)* Label Maximum, min7, a

Digit +.Digit 2 MoneyAmount 23.95, 0.50

(cLetter | cLetter 2 | cLetter 3)– LicensePlatesDE PB–AS–0815
(cLetter | cLetter 2)–
(Digit | Digit 2 | Digit 3 | Digit 4)

13 (1 | 0)* 03 Dual 1111000, 1111101010000
NLP:I-26 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Regular Expressions [Kastens]

Examples (continued)

R Name of language L(R) Words from L(R)

(a | b) (c | d | ε) Abc ac, bc, ad, bd, a, b
Dear(ε | est) (Sir | Madam) Salutation Dear Sir

0 | 1 | . . . | 9 Digit 7
a | b | . . . | z sLetter x
A | B | . . . | Z cLetter B
sLetter | cLetter Letter m, N

Letter (Letter | Digit)* Label Maximum, min7, a

Digit +.Digit 2 MoneyAmount 23.95, 0.50

(cLetter | cLetter 2 | cLetter 3)– LicensePlatesDE PB–AS–0815
(cLetter | cLetter 2)–
(Digit | Digit 2 | Digit 3 | Digit 4)

13 (1 | 0)* 03 Dual 1111000, 1111101010000
NLP:I-27 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Regular Expressions
Examples (continued)

An important use of regular expressions in languages used for natural language processing is the
specification of text patterns.

Example: Display of all file names of the form

“winter-term(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)2.html”

q Unix-Shell.
ls winter-term[0-9][0-9].html

q PHP.
$d = "[0-9]";

preg_match("/winter-termdd\.html/", $files)

NLP:I-28 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Remarks:

q If names of regular expressions are used in other regular expressions, they must be identified as part of the
meta language.

Here: Use of italics.

q Each scripting language for text processing uses a different syntax to specify regular expressions; the
construction principles and power are comparable.

q The specification of regular expressions in PHP is taken from the Perl scripting language.

NLP:I-29 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Regular Expressions

Definition 4 (Exact Matching Problem [Gusfield 1997])

Given a string R called the pattern and a longer string T called the text, the exact matching
problem is to find all occurrences, if any, of pattern R in text T .

Example:

q Given R = aba and T = bbabaxababay, then R occurs in T starting at locations 3, 7, and 9.

q Two occurrences of R overlap.

Importance of the exact matching problem:

q Exact matching is solved for searching local files and data.

q Main bottleneck is the speed with which the data can be read into memory.

q Speed rests on “preprocessing” pattern R (or text T) to enable skipping during search.

NLP:I-30 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://doi.org/10.1017/CBO9780511574931

Regular Expressions
Perl Compatible Regular Expressions (PCRE) [pcre.org, PHP, Python, JavaScript, Java, .NET]

Many programming languages use a Perl-like syntax for regular expressions:

"Delimiter Regular_Expression Delimiter [Flags]"︸ ︷︷ ︸
Pattern

q The delimiter must be a non-alphanumeric character.

q Optional flags influence the matching strategy. [pcre.org, PHP, Python, JavaScript, Java, .NET]

q Search and replace functions with regular expressions. [pcre.org, PHP, Python, JavaScript, Java, .NET]

NLP:I-31 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://www.pcre.org/current/doc/html/pcre2pattern.html
https://www.php.net/manual/de/pcre.pattern.php
https://docs.python.org/3/library/re.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://www.pcre.org/current/doc/html/pcre2pattern.html#SEC15
https://www.php.net/manual/de/reference.pcre.pattern.modifiers.php
https://docs.python.org/3/library/re.html#flags
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions#advanced_searching_with_flags
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#compile-java.lang.String-int-
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options
https://www.pcre.org/current/doc/html/pcre2api.html#TOC1
https://www.php.net/manual/de/ref.pcre.php
https://docs.python.org/3/library/re.html#functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#replaceAll-java.lang.String-
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.replace?view=net-9.0

Regular Expressions
Perl Compatible Regular Expressions (PCRE) [pcre.org, PHP, Python, JavaScript, Java, .NET]

Many programming languages use a Perl-like syntax for regular expressions:

"Delimiter Regular_Expression Delimiter [Flags]"︸ ︷︷ ︸
Pattern

q The delimiter must be a non-alphanumeric character.

q Optional flags influence the matching strategy. [pcre.org, PHP, Python, JavaScript, Java, .NET]

q Search and replace functions with regular expressions. [pcre.org, PHP, Python, JavaScript, Java, .NET]

Examples: (PHP)

echo preg_match(

Pattern︷ ︸︸ ︷
"/def/" ,

Text︷ ︸︸ ︷
"defabcdef"); ; 1

echo preg_match("=def=", "defabcdef"); ; 1

NLP:I-32 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://www.pcre.org/current/doc/html/pcre2pattern.html
https://www.php.net/manual/de/pcre.pattern.php
https://docs.python.org/3/library/re.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://www.pcre.org/current/doc/html/pcre2pattern.html#SEC15
https://www.php.net/manual/de/reference.pcre.pattern.modifiers.php
https://docs.python.org/3/library/re.html#flags
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions#advanced_searching_with_flags
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#compile-java.lang.String-int-
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options
https://www.pcre.org/current/doc/html/pcre2api.html#TOC1
https://www.php.net/manual/de/ref.pcre.php
https://docs.python.org/3/library/re.html#functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#replaceAll-java.lang.String-
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.replace?view=net-9.0

Regular Expressions
Perl Compatible Regular Expressions (continued) [Regular Expressions (Syntax)]

A regular expression R can be composed recursively as follows. Let F and G denote regular
expressions and L(F), L(G) their languages over the alphabet Σ.

R [pcre.org] Semantics
1. a The letter a

. Any symbol from Σ (except line break)
[Σ′] Character class: Any symbol from Σ′ ⊆ Σ
[̂ Σ′] No symbol from character class Σ′ ⊆ Σ
\Σ′ Escaped letter from a controlled Σ′ ⊂ Σ, denoting a character class

2. FG Concatenation
3. F | G Alternation
4. (F) Grouping or capturing

F? F is optional (same semantics as F | ε)
5. F+ Non-empty sequence of words from L(F)
6. F∗ Arbitrary sequence of words from L(F)
7. F{n} Sequence of n words from L(F)

F{m,n} Sequence with at least m and at most n words from L(F)

ˆ or $ Assertion: Beginning or end of the text string (nothing may precede or follow it)

NLP:I-33 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://www.pcre.org/current/doc/html/pcre2pattern.html

Regular Expressions
PCRE: Character Classes [pcre.org]

Character classes match a single token from a list of characters.

R Semantics Example

[...] Positive character class matches listed character [aeiou] matches vowels

[ˆ...] Negative character class matches only unlisted characters [^aeiou] matches anything except for vowels

[x− y] Range: matches any letter between x and y inclusive [a-zA-Z] matches alphabetic characters

\d Matches any decimal digits. Short for [0-9]
\D Matches all except decimal digits. Short for [^0-9]
\s Matches white space characters. Short for [\t\n\r\f\v]

\S Matches all except white spaces. Short for [^\t\n\r\f\v]

\w Matches alphanumeric characters. Short for [a-zA-Z0-9]
\W Matches non-alphanumeric characters. Short for [^a-zA-Z0-9]

NLP:I-34 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://www.pcre.org/current/doc/html/pcre2syntax.html#SEC9

Remarks:

q] needs to be escaped inside character classes to be matched: [^]] does not match a but, e.g.,]].

q The range in a character class denotes a series of codepoints.
As such, [--2] is valid and identical to [-./012]. [A-z] matches not only alphabetic characters.

q Character classes cannot be nested but \d, \D, \s, . . . can be used inside character classes:

– [^[a-z][A-Z]] matches the regex [^[a-z], [A-Z], and] in sequence.
– [^\s\w] matches any character that is neither a space, nor a word-character.

NLP:I-35 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://de.wikipedia.org/wiki/Codepoint

Regular Expressions
PCRE: Groups and Backreferencing [pcre.org]

Groups give precedence to subformulas and can store (capture) matches for later reference.

R Semantics Example

(F) Capture Group: Groups F and stores the matched value (ab)+ matches ab, abab, . . .

(?:F) Non-capturing group: Groups F (?:ab)+ matches ab, abab, . . .

(?<name>F) Named capture group: Groups F and stores it under a name
\n Backreference the n-th capture group (\w+)\1 matches fully reduplicated words

\k{name} Backreference capture group named “name” (?<word>\w+)\k{word} is the same as above

q Capture groups store the last match.
The regex ([ab])+\1 matches abb but not aba.

q Named capture groups can extract information from different positions in the regex.
The regex \d\d.(?<month>\d\d).\d\d|(?<month>\d\d)/\d\d/\d\d extracts the month from
16.01.70 and 01/16/70.

NLP:I-36 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://www.pcre.org/current/doc/html/pcre2syntax.html#SEC16
https://en.wikipedia.org/wiki/Reduplication#Full_and_partial

Remarks:

q The \n syntax is highly ambiguous:

– If n is an octal number (\1, \2, . . . , \7, \10, . . .), it matches the character point with value n.
– If n is a single non-octal digit (\8, \9), it matches the respective character.
– If n is a valid index for a capture group, the above is irrelevant and the capture group is backreferenced.

\8 matches the character 8 but ()()()()()()()()\8 only matches the empty word.
\49 gives an error because there is no 49th capture group but \50 matches (.

Ü PCRE introduces \gn or \g{n} to reference capture groups and \on for octal codepoints. These are less
common in other flavors of regex.

q Regular expressions compatible with PCRE2 are more powerful than regular grammars.
The language L = {ww | w ∈ {0, 1}∗} is not context free but can be decided by the regex ([01])*\1.

NLP:I-37 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Regular Expressions
PCRE: Quantifiers [pcre.org]

Quantifiers allow for repeated matching of a regular expression F .

R Semantics Example
F{m} Sequence of m words from L(F) \d{2} matches exactly two digits
F{m,} Sequence of at least m words from L(F) \d{2,} matches two or more digits
F{m,n} Sequence of at least m and at most n words from L(F) \d{2,5} matches two to five digits
F{,n} Sequence of at most n words from L(F) (since PCRE2 10.43) \d{,10} matches up to ten digits

F? Equivalent to F{0, 1} \w? matches at most one word-character
F* Equivalent to F{0, } \w* matches any number of word-characters
F+ Equivalent to F{1, } \w+ matches one or more word-characters

q Default. Greedy matching: as much as possible and backtracking until a match is found.
\d*\d\d tries to match 1234

NLP:I-38 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://www.pcre.org/current/doc/html/pcre2syntax.html#SEC13

Regular Expressions
PCRE: Quantifiers [pcre.org]

Quantifiers allow for repeated matching of a regular expression F .

R Semantics Example
F{m} Sequence of m words from L(F) \d{2} matches exactly two digits
F{m,} Sequence of at least m words from L(F) \d{2,} matches two or more digits
F{m,n} Sequence of at least m and at most n words from L(F) \d{2,5} matches two to five digits
F{,n} Sequence of at most n words from L(F) (since PCRE2 10.43) \d{,10} matches up to ten digits

F? Equivalent to F{0, 1} \w? matches at most one word-character
F* Equivalent to F{0, } \w* matches any number of word-characters
F+ Equivalent to F{1, } \w+ matches one or more word-characters

q Default. Greedy matching: as much as possible and backtracking until a match is found.
\d*\d\d tries to match 1234 but \d\d cannot be matched

NLP:I-39 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://www.pcre.org/current/doc/html/pcre2syntax.html#SEC13

Regular Expressions
PCRE: Quantifiers [pcre.org]

Quantifiers allow for repeated matching of a regular expression F .

R Semantics Example
F{m} Sequence of m words from L(F) \d{2} matches exactly two digits
F{m,} Sequence of at least m words from L(F) \d{2,} matches two or more digits
F{m,n} Sequence of at least m and at most n words from L(F) \d{2,5} matches two to five digits
F{,n} Sequence of at most n words from L(F) (since PCRE2 10.43) \d{,10} matches up to ten digits

F? Equivalent to F{0, 1} \w? matches at most one word-character
F* Equivalent to F{0, } \w* matches any number of word-characters
F+ Equivalent to F{1, } \w+ matches one or more word-characters

q Default. Greedy matching: as much as possible and backtracking until a match is found.
\d*\d\d tries to match 1234 but \d cannot be matched

NLP:I-40 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://www.pcre.org/current/doc/html/pcre2syntax.html#SEC13

Regular Expressions
PCRE: Quantifiers [pcre.org]

Quantifiers allow for repeated matching of a regular expression F .

R Semantics Example
F{m} Sequence of m words from L(F) \d{2} matches exactly two digits
F{m,} Sequence of at least m words from L(F) \d{2,} matches two or more digits
F{m,n} Sequence of at least m and at most n words from L(F) \d{2,5} matches two to five digits
F{,n} Sequence of at most n words from L(F) (since PCRE2 10.43) \d{,10} matches up to ten digits

F? Equivalent to F{0, 1} \w? matches at most one word-character
F* Equivalent to F{0, } \w* matches any number of word-characters
F+ Equivalent to F{1, } \w+ matches one or more word-characters

q Default. Greedy matching: as much as possible and backtracking until a match is found.
\d*\d\d tries to match 1234 and but \d\d matches as well → success!

NLP:I-41 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://www.pcre.org/current/doc/html/pcre2syntax.html#SEC13

Regular Expressions
PCRE: Quantifiers [pcre.org]

Quantifiers allow for repeated matching of a regular expression F .

R Semantics Example
F{m} Sequence of m words from L(F) \d{2} matches exactly two digits
F{m,} Sequence of at least m words from L(F) \d{2,} matches two or more digits
F{m,n} Sequence of at least m and at most n words from L(F) \d{2,5} matches two to five digits
F{,n} Sequence of at most n words from L(F) (since PCRE2 10.43) \d{,10} matches up to ten digits

F? Equivalent to F{0, 1} \w? matches at most one word-character
F* Equivalent to F{0, } \w* matches any number of word-characters
F+ Equivalent to F{1, } \w+ matches one or more word-characters

q Modify the matching behavior by adding ? (lazy) or + (possessive) behind the quantifier.
\d+? matches as few digits as possible, but at least one. \d++ matches greedily without backtracking

Strings R

".*" ".*?" ".*+" "[^"]*+"

"hi" {"hi"} {"hi"} ∅ {"hi"}
"foo" "bar" {"foo" "bar"} {"foo","bar"} ∅ {"foo","bar"}

NLP:I-42 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://www.pcre.org/current/doc/html/pcre2syntax.html#SEC13

Remarks:

q Possessive matching is more efficient than greedy or lazy matching because no backtracking is performed.

q Possessive matching is a special case of an atomic group (written (?>F)). Atomic groups cannot be
backtracked.
The regex (?>a|aa)a matches aa but not aaa because for the latter it would initially match a for the capture group (the first
matching option in the alternative) and then have to backtrack when the end of the string is reached.
What strings would (?>aa|a)a match?

q F?+, F*+, and F++ are short for (?>F?)+, (?>F*)+, and (?>F+)+ respectively.

NLP:I-43 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

Regular Expressions
PCRE: Assertions [pcre.org]

Assertions test if a regex would match without matching it.

R Semantics
(?=F) (Positive) lookahead: Asserts that F matches at the current location.
(?!F) Negative lookahead: Asserts that F does not match at the current location.
(?<=F) (Positive) lookbehind: Asserts that F matches right before the current location.
(?<!F) Negative lookbehind: Asserts that F does not match right before the current location.

(?<=\s)(?<!$)\d+ matches any number in the text that is not preceded by a $.

^ Begin of string anchor: Asserts the start of the input sequence.
$ End of string anchor: Asserts the end of the input sequence.

^[01]+\$ checks that the input entirely represents a binary number

\b Asserts a word boundary. Short for (?<=\W)(?=\w)|(?<=\w)(?=\W)
\B Asserts the opposite of \b. Short for (?<=\W)(?=\W)|(?<=\w)(?=\w)

\b[Tt]he\b matches the word “the” but not if it occurs inside another word as in “atheist”.
\Bing\b matches the suffix -ing. For example in “climbing” or “sing” but not in “singer”.

q ^, $, \b, \B are simple assertions and (?=F), (?!F), (?<=F), (?<!F) are assertion groups.

q Simple assertions cannot be followed by quantifiers.
For example, \b+ is illegal but (\b)+ is allowed.

NLP:I-44 Natural Language Processing Basics © WIEGMANN/WOLSKA/HAGEN/POTTHAST/STEIN 2025

https://www.pcre.org/current/doc/html/pcre2syntax.html#SEC22

