Chapter NLP:V

V. Semantics

- Semantic Phenomena
- □ Symbolic Semantics
- Distributional Semantics
- Compositional Semantics
- □ Frame Semantics

NLP:V-1 Semantics © WIEGMANN/STEIN 2023

Definition[OxfordRE Linguistics]

Lexical semantics describes the relation between meaning and form of words:

Semasiology Which meaning can be assumed from word form. Semantic relations describe difference in meaning with identical form.

Polysemy: mouse animal vs. input device

Specialization: corn wheat vs. oats

Generalization: moon of earth vs. any satellite

Metaphor: desktop of a desk vs. on screen

Onomasiology Which relations exist between the concepts. Which forms exists for the concepts.

Lexical Relations: mouse vs. rodent

Lexical Fields

Frames

Distributional relations

. . .

Word Senses

Meaning is usually represented discretely as a word sense.

- Senses are often denominated by superscript¹.
- The informal description of a sense is it's gloss,
- Senses can be modeled explixitly with their lexical relations or by componential analysis, or intrinsically via distributional semantics.

Sense description by gloss:

Sense	Gloss
Bank ¹ :	financial institution that accepts, deposits, and lends money.
Bank ² :	sloping land (especially the slope beside a body of water).
Red ¹ :	the color of blood or a ruby.
Blood ¹ :	the red liquid that circulates in the vains of animals.

NLP:V-3 Semantics ©WIEGMANN/STEIN 2023

Lexical Relations (selection)

Polysemy Same lexeme, different sense.

The <u>semantic relations</u> are subtypes of polysemy.

Synonym Different sense but similar meaning.

 $\texttt{couch} \longleftrightarrow \texttt{sofa} \qquad \texttt{big} \longleftrightarrow \texttt{large}$

Antonymy Opposite meaning.

 $long \longleftrightarrow short$

Hyponymy/Hypernomy One sense is less/more specific. Also called IS-A

car $\overrightarrow{\text{Hyponym}}$ vehicle car $\overrightarrow{\text{Hypernym}}$ ID.3

Meronym/Holonym The part-whole relation.

wheel $\overrightarrow{Meronym}$ car car $\overrightarrow{Holonym}$ wheel

Relations are defined over senses, not lexemes:

Synonymous big¹ plane \longleftrightarrow large¹ plane Not synonymous big² sister \longleftrightarrow large¹ sister

WordNet

The largest English database of word senses is WordNet.[Fellbaum, 1998]

- WordNet has entries for lemmas.
- An entry has 1 or more synsets: sets of near-synonymous senses.
 Synsets represent concepts of meaning.
- Synsets and lemmas are split by word class: Noun, Verb, Adjective, Adveb.
- Each synset has a topic (supersense), assigned from a per word class fixed set.

Entry for the lemma bass (Noun):

Synset	•	Gloss
	attribute	the lowest part of the musical range
	animal	edible marine and freshwater spiny-finned fishes
sea bass, bass ²	food	the lean flesh of a saltwater fish of the family Serranidae
_		part the lowest part in polyphonic music
bass, ¹ basso	person	an adult male singer with the lowest voice

NLP:V-5 Semantics ©WIEGMANN/STEIN 2023

WordNet

The largest English database of word senses is WordNet.[Fellbaum, 1998]

- WordNet has entries for lemmas.
- An entry has 1 or more synsets: sets of near-synonymous senses.
 Synsets represent concepts of meaning.
- Synsets and lemmas are split by word class: Noun, Verb, Adjective, Adveb.
- Each synset has a topic (supersense), assigned from a per word class fixed set.

Entry for the lemma ride (Verb):

Synset	Supersense	Gloss
sit, ride	motion	sit and travel on the back of animal
sit, ride	motion	be carried or travel on or in a vehicle
tease, ride, rally, bait,	communication	harass with persistent criticism or carping
rag, twit, tantalize,		
razz, taunt, cod		
ride	stative	continue undisturbed and without interference ?Let it ride?

NLP:V-6 Semantics ©WIEGMANN/STEIN 2023

Remarks:

- □ WordNet synsets are separated by word class and do not overlap:
 - Nouns: 117,798 lemmas (avg. 1.23 senses)
 - Verbs: 11,529 lemmas (avg. 2.16 senses)
 - Adjectives: 22,479 lemmas
 - Adverbs: 4,481 lemmas
- ☐ In WordNet, semantic relations are encoded as one lexical relation (Polysemy) with 3 additional subrelations:
 - Constructional/structured polysemy: Same sense entry refers to different entitires
 (The) Times printed paper vs. the news contained in it vs. the organization
 - Sense extension polysemy: Derives a new synset from an old sense chicken animal vs. meat of animal
 - Homonymy: Same sense, very different meaning bank river bank vs. financial bank

Word Sense Disambiguation

Word Sense Disambiguation (WSD) is the task of assigning to each word in a text the correct sense from a sense lexicon.

- □ WSD is similar to tagging, but more difficult.
 There are several classes for each word.
- To disambiguate a small set of words, classification works.
- Using the most frequent sense every time is a stong baseline. Disambiguate medical terms in lab reports
- □ There are several datasets (semantic concordance) where each word is annotated with its sense.
 - SEMCOR (Brown Corpus, English), SENSEVAL-3 (English), [Vossen et al., 2011] (Dutch), [Heinrich et al., 2012] (German)
 - Annotated are word class and sense id for open-class words.

Example annotations from SEMCOR:

You will find v^0 that avocado v^1 is v^1 unlike v^1 other v^1 fruit v^1 you have ever v^1 tasted v^2

NLP:V-8 Semantics ©WIEGMANN/STEIN 2023

Word Sense Disambiguation: Lesk

Idea: The context of a word should overlap with the words in the gloss of its sense.

- Does not need training data.
- Easy to apply to new or low-resource languages.
- Glosses can easily be extended with (annotated) examples.

Sense Gloss

bank¹ A financial institution that accepts deposits and channels the money into lending activities bank² sloping land (especially the slope beside a body of water)

```
w_{i-4} w_{i-3} w_{i-2} w_{i-1} w_i w_{i+1} w_{i+2} w_{i+3} w_{i+4} w_{i+5} We quarantee that your bank deposits will cover future costs.
```

NLP:V-9 Semantics ©WIEGMANN/STEIN 2023

Word Sense Disambiguation: Lesk

SIMPLIFIED LESK:

For the word w_i in a sequence $w_1, \ldots, w_{i-k}, \ldots, w_i, \ldots, w_{i+k}, \ldots, w_n$ with window size k and glosses $G_{w_i} = \{g_{w_i,1}, \ldots, g_{w_i,j}\}$:

- 1. Remove stopwords from and lemmatize the context window $v_i := (w_{i-k}, \dots, w_{i-1}, w_{i+1}, \dots, w_{i+k})$ and all glosses $g_j \in G_{w_i}$.
- 2. Vectorize v_i and all $g_j \in G_{w_i}$.
- 3. Disambiguate w_i by the lowest cosine between context and gloss vectors.
 - LESK can be improved using tf-idf-weighted vectors or any other (semantic) similarity measure.
 - Gloss vectors can be pre-computed.

Word Sense Disambiguation: Classification

Idea: Classify the sense with sliding-window features (cf. sequence tagging).

Example features:

- Words (lemmas/stems) in the context window
- 2. Part-of-speech tags for each word in the window
- 3. n-grams
- 4. Weighted average of the word embeddings

Example:

```
w_{i-4} w_{i-3} w_{i-2} w_{i-1} w_i w_{i+1} w_{i+2} w_{i+3} w_{i+4} w_{i+5} We quarantee that your bank deposits will cover future costs.
```

Features for w_i with k=2:

w_{i-2}	POS_{i-2}	$ w_{i-1} $	POS_{i-1}	$ w_{i+1} $	POS_{i+1}	w_{i+2}	POS_{i+2}	w_{i-2}^{i-1}	w_{i+1}^{i+2}
that	IN	your	PRP	deposits	NN	will	MD	that your	deposits will

NLP:V-11 Semantics ©WIEGMANN/STEIN 2023

Remarks:

	The state	of the ar	rt for WS	D uses	contextualized	word	embeddings.
--	-----------	-----------	-----------	--------	----------------	------	-------------

- Word embeddings are identical for each sense of the same word form. They are not intrinsically useful for WSD.
- ☐ However, since word vector spaces embed semantic similarity, they can solve tasks like lexical substitution with a simple nearest neighbor search.
- □ A large language model like BERT produces contextualized word embeddings more or less as a by-product. Here, the same lexeme can have different vectors, depending on its context words. BERT solves WSD extremely well if there are vectors for each sense.
- □ Word Sense Induction tries to create lexicons like WordNet automatically by clustering the embedding space. This produces a synset collection with context vectors for each sense (the mean vector of each cluster) in an unsupervised fashion.

NLP:V-12 Semantics © WIEGMANN/STEIN 2023

Lexical Substitution

Lexical substitution tasks are subtask of WSD.

 Classic lexical substitution looks for one or more semantically similar replacement for certain words.

```
My favorite thing about her is her straightforward honesty \rightarrow My favorite thing about her is her sincere/genuine/frank honesty
```

 Lexical simplification looks for a easier to understand byt semantically similar replacement.

```
John composed these verses → John wrote these poems
```

□ Lexical substitution often uses the same techiniques as WSD but does not require a lexicon.

NLP:V-13 Semantics ©WIEGMANN/STEIN 2023

Multi-Word Expressions

Multi-word expressions (MWE) can function as singular lexical units.

MWE semantics can be

1. compositional,

```
driving instructor
argumentation quality assessment
```

2. idiomatic,

```
vice versa
kick the bucket
```

3. or in-between.

Long time no see