Chapter NLP:V

V. Syntax

- Introduction
- Phrase Structure Grammars
- Dependency Grammars
- Features and Unification
Introduction

Problem: Given a set of symbols, how do they incur meaning?

Sun, Leipzig, the, shine, warm, in

- Leipzig shone warm in the sun.
- In Leipzig warm the sun is shining.
- Warm is the shining sun.
- The sun shines in Leipzig.

Grammar.
The difference between knowing your shit and knowing you're shit.
Introduction

Problem: Given a set of symbols, how do they incur meaning?

Sun, Leipzig, the, shine, warm, in

- Leipzig shone warm in the sun.
- In Leipzig warm the sun is shining.
- Warm is the shining sun.
- The sun shines in Leipzig.

Definition 1 (Grammar [Saussure])

A grammar is a system that describes the relationship between concepts (signified, langue) and expressions (signifier, parole).
A (generative) grammar of a language is a device that parses and generates all grammatical sentences of a language and rejects ungrammatical ones.

1. Parse: Determine the syntactic structure of a given sequence of symbols.
2. Generate: Produce valid sequence of symbols given a set of structural rules.
Grammaticality is usually understood as *intuitively acceptable to a native speaker*. A grammatical sentence does **not** need to:

- have ever been observed in a corpus,
- be statistically probable, or
- be meaningful.

Diagram:

```
Syntax
  NP
  NP
  VP
  S
```

Morphemes:

```
colorless green ideas sleep furiously
```

Morphosyntax:

```
JJ  JJ  NN  VB  ADV
```
There are different ways of thinking about grammar, based on the underlying theory of language. Computer scientists prefer the formalist perspective.

- **Formalist**: Grammar is a system of rules (a formal, generative model) that describe if a sentence is grammatical.

- **Functional**: Grammar describes how utterances are constructed to serve a function in discourse.

 Discourse Act (Intent, Speaker, Addressee) → Semantics → Morphosyntax → Phonology

Chomsky’s proposed model of grammar is called 'generative transformational grammar’. It subsumes phrase structure, transformational, and morphophonemic rules. The first is determines the syntactic structure of a string, the latter two transform a string, given his phrase structure, into phonetic morphemes, a representation of the spoken sentence.

The generative aspect of Chomsky’s theories is widely adapted and different models develop the idea further. The transformational aspect is controversial.
The syntax structure of a clause is hierarchial and modeled as either:

Phrase Structure Grammar (top-down):
- Clauses and phrases are divided into one or many constituents.
- Top-level constituents are often *Subject/Noun Phrase* (NP) and *Predicate/Verb Phrase* (VP).
- The leaves are always words.

Dependency Grammar (bottom-up):
- Each morpheme has one head node in the syntax structure and zero or many dependents.
- The root node is usually the main verb.
Determining the syntax structure automatically is used for:

- Grammar checkers
- Complex named entity recognition (e.g., in biological or legal domains).
- Entity relation extraction
- Syntax-based sentence compression
- Mining of opinions on aspects of products
- Source-sentence analysis for machine translation
- High precision question answering
Introduction

Ambiguity

Every sentence can have several grammatical syntax structures due to structural ambiguity. Common forms are attachment ambiguity and coordination ambiguity.

Attachment ambiguity:

- The attachment of many constituents (prepositional phrases, adverbial phrases, infinitives, ...) is ambiguous:

 The board approved its acquisition by Royal Trustco Ltd.
of Toronto for $27 a share at its monthly meeting. → attaches to “approved”
 → attaches to “its acquisition”
 → attaches to “by Royal Trustco Ltd.”
 → attaches to “its acquisition”
 → attaches to “approved ... for $27 a share”

- Number of potential attachments grows exponentially with the number \(n \) of constituents according to the Catalan numbers:

\[
C_n = \frac{(2n)!}{(n+1)! \cdot n!}
\]
Every sentence can have several grammatical syntax structures due to structural ambiguity. Common forms are attachment ambiguity and **coordination ambiguity**.

Coordination ambiguity:

- It is often unclear which phrase is coordinated by a conjunction:

  ```
  [[old] [man and woman]] vs. [old man] and [woman]
  ```
Introduction
Ambiguity

Every sentence can have several grammatical syntax structures due to structural ambiguity. Common forms are attachment ambiguity and coordination ambiguity.

Syntactic disambiguation:

- Many parses are grammatical.
- Few parses are semantically plausible:

 Scientists observe [whales] [from space].
 vs.

 Scientists observe [whales from space].

- Parsers should chose one, the most probable parse. This is called syntactic disambiguation.