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Text Preprocessing

Overview

The goal of text preprocessing is its conversion into a canonical form.
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Dave Bowman: Open the pod bay doors, HAL.
HAL: I'm sorry Dave, I'm afraid I can’t do that.
Stanley Kubrick and Arthur C. Clarke,
screenplay of 2001: A Space Odyssey

The idea of giving computers the ability to process human language is as old as the idea
of computers themselves. This book is about the implementation and implications of
that exciting idea. We introduce a vibrant interdisciplinary field with many names cor-
respondmg to its many facets, names like speech and language processing, human
y, natural 1 pr ing, computational linguistics, and
speech recognition and synthesis. The goal of this new field is to get computers
to perform useful tasks involving human I tasks like enabling hi hine
communication, improving human-human communication, or simply doing useful pro-
cessing of text or speech.

One example of a useful such task is a conversational agent. The HAL 9000 com-
puter in Stanley Kubrick's film 2001: A Space Odyssey is one of the most recognizable
characters in twentieth-century cinema. HAL is an artificial agent capable of such ad-
vanced language-processing behavior as speaking and understanding English, and at a
crucial moment in the plot, even reading lips. It is now clear that HAL's creator Arthur
C. Clarke was a little optimistic in predicting when an artificial agent such as HAL
would be available. But just how far off was he? What would it take to create at least
the language-related parts of HAL? We call programs like HAL that converse with hu-
mans via natural language conversational agents or dialogue systems. In this text we
study the various components that make up modern conversational agents, including
1 input (; ic speech r ion and natural language understand-
ing) and language output (natural language generation and speech synthesis).

Let’s turn to another useful language-related task, that of making available to non-
English-speaking readers the vast amount of scientific information on the Web in En-
glish. Or translating for English speakers the hundreds of millions of Web pages written
in other languages like Chinese. The goal of machine translation is to automatically
translate a document from one language to another. We will introduce the algorithms
and mathematical tools needed to understand how modern machine translation works.
Machine translation is far from a solved problem; we will cover the algorithms cur-
rently used in the field, as well as important component tasks.

Many other language processing tasks are also related to the Web. Another such
task is Web-based question answering. This is a generalization of simple web search,
where instead of just typing keywords a user might ask complete questions, ranging
from easy to hard, like the following:

o What does “divergent” mean?
e What year was Abraham Lincoln born?
+ How many states were in the United States that year?
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The goal of text preprocessing is its conversion into a canonical form.
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Chapter 1
Introduction

Dave Bowman: Open the pod bay doors, HAL.
HAL: I'm sorry Dave, I'm afraid I can’t do that.
Stanley Kubrick and Arthur C. Clarke,
screenplay of 2001: A Space Odyssey

The idea of giving computers the ability to process human language is as old as the idea
of computers themselves. This book is about the implementation and implications of
that exciting idea. We introduce a vibrant interdisciplinary field with many names cor-
respondmg to its many facets, names like speech and language processing, human

technology, natural 1 pr ing, computational linguistics, and
speech recognition and synthesis. The goal of this new field is to get computers
to perform useful tasks involving human I tasks like enabling hi hine

communication, improving human-human communication, or simply doing useful pro-
cessing of text or speech.

One example of a useful such task is a conversational agent. The HAL 9000 com-
puter in Stanley Kubrick's film 2001: A Space Odyssey is one of the most recognizable
characters in twentieth-century cinema. HAL is an artificial agent capable of such ad-
vanced language-processing behavior as speaking and understanding English, and at a
crucial moment in the plot, even reading lips. It is now clear that HAL's creator Arthur
C. Clarke was a little optimistic in predicting when an artificial agent such as HAL
would be available. But just how far off was he? What would it take to create at least
the language-related parts of HAL? We call programs like HAL that converse with hu-
Dialogue system mans via natural language conversational agents or dialogue systems. In this text we

study the various components that make up modern conversational agents, including
1 input (; ic speech r ition and natural language understand-
ing) and language output (natural language generation and speech synthesis).

Let’s turn to another useful language-related task, that of making available to non-
English-speaking readers the vast amount of scientific information on the Web in En-
glish. Or translating for English speakers the hundreds of millions of Web pages written

dackine in other languages like Chinese. The goal of machine translation is to automatically
translate a document from one language to another. We will introduce the algorithms
and mathematical tools needed to understand how modern machine translation works.
Machine translation is far from a solved problem; we will cover the algorithms cur-
rently used in the field, as well as important component tasks.

Many other language processing tasks are also related to the Web. Another such

,,,g‘,‘f;“,’fﬁ; task is Web-based question answering. This is a generalization of simple web search,

where instead of just typing keywords a user might ask complete questions, ranging
from easy to hard, like the following:

Conversational
agens

o What does “divergent” mean?
e What year was Abraham Lincoln born?
+ How many states were in the United States that year?
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4 Dave Bowman: open the pnd bay doors, HAL.
SHAL: I'm sorry Dave, I'm afraid I can't do that.
G Stanley Kubrick and Arthur ©. Clarke, screenplay of 2001: A Space Odyssey

& The idea of giving computers the ability to process human Tanguage is as old as the idea of computers
themselves. This book is about the implementation and implications of that exciting idea. We introduce
a vibrant interdisciplinary field with many names corresponding to its many facets, names like speech
and Tanguage processing, human langquage technology, natural Tanquage processing, computational
Tinguistics, and speech recognition and synthesis. The goal of this new field is to get computers to
perform useful tasks involving human language, tasks 1ike enabling human-machine communication,
1mprnv|ng human—human comrunication, or simply doing useful processing of text or speech.

WEI One example of a useful such task is a conversational agent. The HAL 9000 computer in Stanley Kubrick's
film 2001: A Space Odyssey is one of the most recognizable characters in twentieth—century cinema. HAL
is an artificial agent capable of such advanced lanquage—pracessing behavior as speaking and
understanding English, and at a crucial moment in the plot, ewen reading lips. It is now clear that
HAL's creator Arthur €. Clarke was 2 little optimistic in predicting when an artificial agent such as
HAL would be available. But just how far off was he? What would it take to create at least the language—
related parts of HAL? We call programs 1ike HAL that converse with humans wia natural language
conversational agents or dialogue systems. In this text we study the various components that make up
modern conversational agents, including Tanguage input (automatic speech recognition and natural
language understanding) and language output (natural language generation and speech synthesis).

"

12 Let's turn to another useful language-related task, that of making available to nonEnglish-speaking
readers the vast amount of scientific information on the Web in English. oOr translating for Enalish
speakers the hundreds of millions of Web pages written in other languages 1ike Chinese. The goal of
machine translation is to automatically translate a document from one Tanguage to another. We will
introduce the algorithms and mathematical tools needed to understand how modern machine translation
works. Machine translation is far from a solved problem; we will cowver the algorithms currently used in
the field, as well as important component tasks.

14 Many other language processing tasks are also related to the Web. Another such task is Web-based
question answering. This is a generalization of simple web search, where instead of just typing
keywords a user might ask complete guestions, ranging from easy to hard, Tike the following:

15 — What does "divergent” mean?

16 — What year was Abraham Lincaln born?

17 = How many states were in the United States that year?
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Text Preprocessing
Overview

Preprocessing is required to:

o Normalized text for subsequent processing

Example: Preprocessing extracts HTML text from PDFs, so an indexing pipeline of a search
engine is only implemented for HTML documents.

o Reduce language variety
Example: Preprocessing corrects spelling mistakes to reduce vocabulary dimensionality.
o Avoid processing errors and model bias

Example: Preprocessing removes artifacts from PDF conversion, so a classification model
can learn from the text alone.
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Text Preprocessing
Overview

Preprocessing is required to:

o Normalized text for subsequent processing

Example: Preprocessing extracts HTML text from PDFs, so an indexing pipeline of a search
engine is only implemented for HTML documents.

o Reduce language variety
Example: Preprocessing corrects spelling mistakes to reduce vocabulary dimensionality.
o Avoid processing errors and model bias

Example: Preprocessing removes artifacts from PDF conversion, so a classification model
can learn from the text alone.
Constraints:

Task-dependence Preprocessing depends on the task and source documents.
Provenance Determine where a preprocessed text was in a raw corpus.
Reversibility Render a preprocessed text in a human-readable form.
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Text Preprocessing
Preprocessing Pipeline

Typical steps in a preprocessing pipeline:
1. Extraction and conversion to plain text.
o Encoding detection and unification

o Line break unification
o Extraction of main content and meta information

2. Text normalization.

o Canonicalization Prune whitespace, check spelling and grammar, . ..
o Expansion and/or abstraction Expand abbreviations, translate, . . .

3. Tokenization. Segmenting text into paragraphs, sentences, (sub)words . . .
4. Annotation of basic text and document features.

Syntactic units: phonemes, morphemes, words, sentences
Discourse units: paragraphs, sections, chapters
Typographic units: lines, pages (layout, meta-information), documents

Q
Q
Q
o Meta-information: title, authors, date, properties, ...



Remarks:

Q Annotation is skipped when the annotations are not needed for further processing.
O Extraction is skipped when the data is already created and collected as plain text.

0 Text normalization is sometimes undesirable when the non-normality of the text is relevant for
the task, like stylometric markers are for authorship or dialects are for computational social
science.



Text Preprocessing
Token Normalization

Application of heuristic rules to each token in an attempt to unify them.

o Lower-casing

Problem: Capitalization may carry distinctions between word semantics.
Examples: Bush vs. bush, Apple VS. apple.

o Removal of special characters
Example: U.S.A. — USA

o Removal of diacritical marks
Example: café — cafe

o Spelling correction
Example: My gramma got die of beaties — My grandma got diabetes

o Reduction of morphology
Lemmatization or stemming heuristics
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Text Preprocessing
Token Normalization: Regular Expressions  [WT:Iv-86 ff., NLP:V-12 ff.]

Token normalization is often done with (sophisticated) regular expressions (regex).

o A regex defines a regular grammar over an alphabet ¥ through a sequence of
characters and . They are a form of programming language to
describe finite automata.

o A regex can be used to describe general structures of a language and find
spans of text that match the description.


https://webis.de/downloads/lecturenotes/web-technology/unit-de-server-technologies2.pdf#hebrew-comic
https://webis.de/downloads/lecturenotes/natural-language-processing/unit-en-phrase-structure-grammar.pdf#hebrew-comic

Text Preprocessing
Token Normalization: Regular Expressions  [WT:Iv-86 ff., NLP:V-12 ff.]

Token normalization is often done with (sophisticated) regular expressions (regex).

o Regular characters denote the terminal symbols from the alphabet ..
Without metacharactes, they literally match characters in a string.
the matches the
0 encode constructs like disjunctions or negations.

matches Tort
a-zA-7] matches any character that is a letter
0 Inregex syntax, non-terminal symbols and production rules are directly
encoded in the expression using regular and metacharacters:
[tT] A== [tT] — t | T


https://webis.de/downloads/lecturenotes/web-technology/unit-de-server-technologies2.pdf#hebrew-comic
https://webis.de/downloads/lecturenotes/natural-language-processing/unit-en-phrase-structure-grammar.pdf#hebrew-comic

Text Preprocessing
Token Normalization: Regular Expressions  [WT:Iv-86 ff., NLP:V-12 ff.]

Token normalization is often done with (sophisticated) regular expressions (regex).
o Regular characters denote the terminal symbols from the alphabet ..
Without metacharactes, they literally match characters in a string.
the matches the
0 encode constructs like disjunctions or negations.
matches Tort
a-zA-7] matches any character that is a letter

0 Inregex syntax, non-terminal symbols and production rules are directly
encoded in the expression using regular and metacharacters:
[tT] A== [tT] — t | T

Two regex for (all) instances of the in a text:

Regex the The atheist

the X - X

he X X —
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Text Preprocessing
Token Normalization: Regular Expressions (continued)

Character Classes.

o Brackets [] specify a character class.

matches w or o or d
matches w or w

o Disjunctive ranges of characters can be specified with a hyphen -.

matches any letter
matches any digit except for 9

o Several common classes are predefined.

matches any decimal digit < [0-9].

matches any non-digit character < [~0-9].
matches any whitespace character & [\t\n\r\f\v
matches any non-whitespace character < [~\t\n\r\f\v].
matches any alphanumeric character & [a—-zA-Z0-9].
matches any non-alphanumeric character < [“a-zA-7Z0-9].



Text Preprocessing
Token Normalization: Regular Expressions (continued)

Negation.

o The caret [~] inside brackets negates the specified character class.
matches anything except digits

matches any character except w and o

o Outside brackets, the caret ~ is interpreted as a regular character.

woodchuck” matches woodchuck”

OR.

o The pipe | specifies a boolean OR-disjunction of string sequences.
groundhog | woodchuck matches groundhog or woodchuck
o Character classes are equivalent to OR-concatenated strings of characters.

[a—d] & alblcld



Text Preprocessing
Token Normalization: Regular Expressions (continued)
Wildcards.

o The period . matches any character.

w. .dchuck matches woodchuck, weedchuck, ...

o The asterisk = repeats the previous character zero or more times.

wo+dchuck matches wdchuck, wodchuck, wooooodchuck, ...

o The plus + repeats the previous character one or more times.

wo+dchuck matches wodchuck, wooooodchuck, ...

o The question mark ? repeats the previous character zero or one time.

woo ?dchuck matches wodchuck and woodchuck

o Curly brackets {n, m} specify the number of repetitions.

W dchuck matches woodchuck and wooodchuck



Text Preprocessing
Token Normalization: Regular Expressions (continued)

Grouping.
o Parentheses () can be used to (semantically) group parts of a regex.

W chuck matches wchuck, woodoodchuck, ...

o The part of the string that matches the group can later be backreferenced.
s/ /_ 5119 replaces any number with a space and the matched number



Text Preprocessing
Token Normalization: Regular Expressions (continued)

Combining Metacharacters

o Match many different woodchucks.

groundhog

o Match email addresses, excluding whose with special characters.
@ \.

o Match time expressions?

August 25th, 2022
in the next five years

2023-03-03T12:56:517%



Text Preprocessing
Token Normalization: Regular Expressions (continued)

Complete regular expressions to parse time expressions (1/2):

((((([iI]ln| [wW]lithin| [tT]o\s\s?the|[tT]lo|[fFlor\s\s?the|[fFlor|[fF]rom]|[sS]lince|[aA]lfter| [bBlefore|[bBletween|[aAlt|[o0]n]|[o0]ver]| [pP
Jer) ((\s+(\r(\n)2I1\n) 2 (\r(\n)2I\n))\s* ([tTlhe| [tTlhis|[tTlhesel| [tTlhose|[1I]1ts))?) (\s+(\r(\n)2I\n)?1 (\r(\n)?21\n))\s*)?(((0?2[123456789

[121\ad131011) (\.1/)) ((\s+ \r A\n)21\n) 2| (\r (\n) 21\n)) \s*) 2) (((month|time (span)? (\s+(\r(\n)?[\n) 2| (\r (\n) 2[\n)) \s=* (from (\s+ (\r (\n) 2 [\n)
21 \r (\n)?21\n))\s=*)?)?([Jjlanuaryl| [Jjlan\.|[Jjlan| [Fflebruary| [Ffleb\.|[Ffleb| [Mm]arch| [Mm]ar\. | [Mm]ar|[Aalpril]| [Aalpr\.|[Aalpr|[Mm]a
vyl [J3lune| [JjTun\.|[Jjlun| [JFluly|[JFIul\.|[Jjlull [Aalugust|[Ralug\.|[Aalug]|[Ssleptember| [Sslep\.|[Sslepl|[Oolctober| [Oolct\.|[Oolct]]
Nn]ovemberl[Nn]ov\.l[Nn]ov\[Dd]ecember\[Dd]ez\.\[Dd]ezl[Ss]pring\[Ss]ummer\[Aa]utumnl[Ff]all\[Ww]inter))\((O?[123456789]|1[Ol2])(\.l/
)))(()?((19|20)?\d2))?)l((((([iI]nI[wW]ithinI[tT]o\s\s?the\[tT]oI[fF]or\s\s?the\[fF]orI[fF]rom\[sS]ince\[aA]fterI[bB]eforel[bB]etween
| [aAlt | [00]n]| [00]ver|[pPler) ((\s+(\r(\n)2I\n)?2| (\r(\n)?2I\n))\s* ([tTlhe| [tTlhis|[tTlhese| [tTlhose|[1I]ts))?) (\s+(\r(\n)2I\n)2| (\r(\n)?|
\n))\s* ((([sSltart|[bBlegin| [Ss]ltart|[Bblegin| [Eelnd| [eE]lnd| [Mm]idth| [mM]idth) ((\s+(\r (\n)?I\n)2| \r(\n)?2I\n))\s*([tTlhe| [tTlhis| [tT]h
ese| [tTlhose| [iI]1ts))?) (\s+(\r(\n)2I1\n) 2| (\r(\n)2I\n))\s*) 2| (([sSltart| [bBlegin]| [Ssltart| [Bblegin]| [Eelnd]| [eEInd| [Mm]idth|[mM]idth) ((\s
+(\r(\n)2\n) 21 (\r(\n)21\n))\s* ([tTlhe| [tT]his| [tTlhese]| [tT]lhose|[iI]ts))?) (\s+(\r (\n)21\n) 2] (\r (\n) 21\n))\s«*) ([[a-z] 1+ (\s+(\r (\n) 2 I\n)
21 \r (\n) ?21\n))\s*)?)2 (((((([1lLlast| [pP]lreceding]| [pPlast]| [cClurrent| [tT]his| [uU]lpcoming| [fF]ollowing| [sS]ucceeding]| [nN]ext)) ( (\s+ (\r(
\n) 21\n) 21 (\r (\n) 21\n))\s*(((11213141516171819)\d?| ([0Olne|[sSleveral|[sSlome]| [bBloth| [tT]lwo|[tTlhreel| [fFlour| [fF]live|[sS]ix]|[sS]even
| [eElight | [nN]ine| [tT]en| [eE]leven]| [tT]lwelve| [tT]wenty| [tTlhirty| [fF]lourty| [fFlorty| [fF]ifty| [sS]ixty|[sS]leventy| [eE]lighty]| [nN]inety]|
[hH]undredI[aA]\S\S?hundred))I((1[012]”\2|3|4|5\6\7\8|9)(\.\())I([fF]irSt\[SS]econd\[tT]hirdI[fF]Ourth\[fF]ifth\[sS]ixthI[SS]eventhI[

eElighth| [nN]inth| [tT]enth|[eE]leventh)) (- ((1[012]121213141516171819) (\.1()) | ([fFlirst|[sSlecond]| [tT]hird| [fF]ourth|[fF]ifth|[sS]ixth]|

[sS]leventh| [eE]lighth| [nN]inth| [tT]enth]|[eE]leventh)))? ((\s+(\r(\n)2I\n)21 \r(\n)21\n))\s*((11213141516171819)\d?| ([0o0lne|[sSleverall[s

Slome| [bBloth| [tT]wo| [tTlhree| [fF]lour| [fF]ive| [sS]ix]| [sS]leven| [eE]light| [nN]ine| [tT]en| [eE]leven]| [tT]welve| [tT]wenty| [tT]lhirty| [fF]our
[

tyl [fFlorty| [fF]ifty| [sS]lixtyl| [sSleventy|[eE]lighty| [nN]inety| [hH]undred] [aA]l\s\s?hundred)))?))? (\s+(\r(\n)2I1\n) 2| (\r (\n)21\n))\s*) | (((
(1\2\3\4|5|6|7\8\9)\d?|([oO]ne\[ Sleveral| [sS]ome| [bB]loth| [tT]wol| [tTlhree| [fF]our| [fF]ive| [sS]ix|[sS]even]| [eE]light|[nN]ine| [tT]en]| [eE
]leven\[tT]welve\[tT]wentyl[tT]hirtyI[fF]ourty\[fF]orty\[fF]iftyI[sS]ixty\[sS]eventy\[eE]ightyl[nN]inetyI[hH]undredI[aA]\s\s?hundred)
)\((1[012]?|2|3\4\5\6|7|8|9)(\.I())|([fF]irstI[SS]econd\[tT]hird\[fF]ourthI[fF]ifth\[sS]ixth\[sS]eventhl[eE]ighthI[nN]inth\[tT]enth\[
eE]leventh)) (- ((1[012121213141516171819) (\.1 () | ([fFlirst|[sSlecond|[tTlhird| [fFlourth|[fF]ifth|[sS]lixth|[sS]eventh|[eE]ighth]| [nN]int
h| [tT]enth]| [eE]leventh))) 2 ((\s+(\r(\n)?1\n)21 (\r(\n)21\n))\s*((112131415161718[9)\d?| ([0O]ne]| [sS]everal|[sS]ome]| [bB]loth|[tT]wo|[tT]hre
e| [fFlour| [fF]ive| [sS]ix|[sS]even]| [eE]ight| [nN]ine| [tT]len| [eE]leven]| [tT]lwelve| [tT]lwenty| [tTlhirty| [fF]lourty|[fFlorty| [fF]lifty|[sS]ixt
yl[sSleventy| [eE]lighty| [nN]inety| [hH]undred| [aA]\s\s?hundred)))?) ((\s+(\r (\n)21\n) 2| (\r (\n) 21\n)) \S*(( lL]astl[pP]recedinql[pP]astl[cC
]urrent\[tT]his\[uU}pcomingl[fF]ollowingI[sS}ucceedlng\[nN]ext))) (\s+(\r(\n)2\n) 21 \r(\n)2\n))\s*))2(((Q(1121314) 1H(112) (\/(19]20)2
\d2) 21 (((\w(la-2z1)* (\s+(\r(\n)?21\n) 2| \r(\n)2I\n))\sx)? year\quarter))([afz])*))I((month\time(span 7(\s+ \r (\n)?21\n) 21 \r(\n)21\n))\sx*(
from(\s+(\r(\n)?\\n)?|(\r(\n)?l\n))\s*)?)?([Jj]anuary\[Jj]an\ [Jjlan| [Fflebruary| [Ffleb\. | [Ffleb| [Mm]arch| [Mm]ar\. | [Mm]ar]| [Aa]lpril|[A
a]pr\.I[Aa]pr\[Mm]ayI[Jj]une\[Jj]un\.\[Jj]unI[Jj]uly\[Jj]ul\.\[Jj]ull[Aa]ugustl[Aa]ug\.I[Aa]ug\[Ss]eptember\[Ss]ep\.\[Ss]epI[Oo]ctobe
r\[Oo]ct\.l[Oo]ctl[Nn]ovember\[Nn]ov\.\[Nn]ovl[Dd]ecemberl[Dd]ez\.I[Dd]ez\[Ss]pring\[Ss]ummerl[Aa]utumnl[Ff]all\[Ww]inter))l(([Rr]epo
rted\s\s?time\s\s?spanl[Rr}eported\s\s?time\s\s?span\[Rr]eported\s\s?time\[rR]eported\s\s?time\[Tt]ime\s\s?span\[tT]ime\s\s?span\[Ss]p
an| [sS]pan| [Ddlecade| [dD]lecade))) ((\s+ (\r(\n)21\n) 2| \r(\n)2\n))\s*((19120)\d2(/(19120)2\d2)?21\d2/\d2)) 21 ((19]120)\d2(/(19]20)2\d2) 2|\
d2/\d2))) | ((((([1lL]ast|[pPlreceding]| [pPlast| [cClurrent| [tTlhis| [uUlpcoming| [fF]lollowing]|[sS]ucceeding] [nNlext)) ((\s+(\r(\n)?I\n)2| (\r
(\n)?l\n))\s*(((1\2\3\4|5|6|7|8\9)\d?|([oO}ne\[sS]everal\[sS]omeI[bB]oth\[tT]wol[tT]hreeI[fF]our\[fF]lveI[sS]lx\[sS]even\[eE]lghtI[nN
line| [tT]en| [eE]leven| [tT]welve| [tT]lwenty| [tT]lhirty| [fF]ourty| [fF]lorty| [fF]ifty| [sS]lixty| [sS]eventy| [eE]lighty| [nN]inety| [hH]undred]| [a
Al\s\s?hundred)) | ((1[012]121213141516171819) (\.1()) | ([fFlirst|[sSlecond| [tTlhird| [fF]ourth| [fF]ifth]|[sS]ixth|[sS]eventh|[eE]ighth] [nN]
inth\[tT]enthI[eE]leventh))(7((1[012]?|2|3\4\5\6|7|8|9)(\.I())I([fF]irstI[sS]econd\[tT]hird\[fF]ourthI[fF]ifth\[sS]ixth\[sS]eventhl[e
E]lighth| [nN]inth|[tTlenth]| [eE]leventh)))? ((\s+(\r (\n)2I1\n) 2| \r(\n)2I\n))\s*((11213141516171819)\d?| ([o0lnel| [sSleveral][sSlome| [bB]oth
| [tTlwol| [tT]hree| [fF]lour| [fF]ive| [sS]ix|[sS]leven]| [eE]light | [nN]ine| [tT]en| [eE]lleven]| [tT]welve| [tT]wenty| [tTlhirty| [fF]lourty]| [fFlorty] [
fFlifty| [sS]lixtyl [sS]leventy| [eE]lighty| [nN]inety| [hH]undred]



Text Preprocessing
Token Normalization: Regular Expressions (continued)

Complete regular expressions to parse time expressions (2/2):

[aa]l\s\s?hundred)))?)) 2 (\s+(\r (\n) 21\n) 21 \r (\n) 21\n))\s*) | ((((11213141516171819)\d?| ([00lne| [sS]leverall|[sSlome| [bBloth|[tT]wo]|[tT]hre
e| [fF]lour| [fF]live| [sS]ix|[sS]even]| [eE]ight| [nN]ine| [tT]len| [eE]leven]| [tT]welve| [tT]wenty| [tTlhirty| [fF]lourty| [fFlorty| [fF]ifty|[sS]ixt
Y\[sS]eventyl[eE]ightyI[nN]inety\[hH]undred\[aA]\s\s?hundred))\((1[012]?|2\3\4\5|6|7|8|9)(\.|())|([fF]irstl[sS]econd\[tT]hird\[fF]our
th\[fF]ifthl[SS}iXth\[SS]eventh\[eE]ighth\[nN]inthl[tT}enth\[eE]leventh))(—((1[012]9\2\3|4|5|6|7\8\9)(\ | ()) | ([fF]irst| [sS]lecond]| [tT]
hird| [fF]ourth| [fF]ifth]|[sS]ixth| [sS]eventh| [eE]lighth]| [nN]inth| [tT]enth]| [eE]leventh)))? ((\s+(\r(\n)?2\n)21 (\r(\n)21\n))\s*x((112131415
|6\7\8\9)\d?\([oO]neI[sS}everall[sS]ome\[bB]othI[tT}wo\[tT]hreel[fF]ourI[fF]ive\[sS]lxl[sS]even\[eE]lght\[nN]lneI[tT]en\[eE]levenl[tT
Jwelve| [tT]wenty| [tTlhirty| [fF]ourty| [fF]orty| [fF]ifty| [sS]ixty|[sS]leventy| [eE]ighty]| [nN]inety| [hH]undred| [aA]\s\s?hundred)))?) ((\s+(
\r(\n)?\\n)?l(\r(\n)?l\n))\s*(([lL]astI[pP]recedingI[pP]ast\[cC]urrent\[tT]hlsl[uU]pcomlngI[fF]ollow1ng|[sS]ucceedlngI[nN]ext)))° \s+
ArA\m)21\n) 21 \r(\n)21\n))\s*))2(((Q(1121314) [H(112) (\/(19120)2\d2) 2| (((\w(la=z])* (\s+(\r(\n)2I\n) 2| (\r(\n)?|\n))\sx)? year\quarter))(
[a-z])*)) | ((month|time (span)? (\s+(\r(\n)?2I1\n) 2| (\r(\n)2I1\n))\s* (from (\s+ (\r (\n) 21\n) 21 (\r (\n) 21\n)) \s*) °)°([Jj]anuary\[Jj]an\ [Jjlan]|
[Fflebruaryl| [Ffleb\. | [Ffleb| [Mm]larch| [Mm]lar\. | [Mm]ar| [Aalpril] [Aalpr\.|[Aalpr|[Mm]lay| [Jjlune| [Jjlun\.|[Jjlun|[JTjluly| [JFIul\.|[Jjlul]
[Aa]ugust| [Aalug\. | [Aalug]| [Ss]eptember| [Ss]ep\.|[Sslep| [Oolctober|[Oolct\.|[Oolct| [Nn]ovember| [Nn]ov\. | [Nn]ov|[Dd]ecember| [Ddlez\.|I
dlez|[Ss]lpring| [Ss]ummer| [Aa]utumn| [Ff]lall| [Ww]inter)) | (([Rr]eported\s\s?time\s\s?span|[Rr]leported\s\s?time\s\s?span| [Rr]eported\s\s?t
ime| [rR]eported\s\s?time| [Tt]ime\s\s?span| [tT]ime\s\s?span| [Ss]pan|[sSlpan| [Ddlecade]| [dD]ecade))) ((\s+ (\r(\n)2I1\n) 2| (\r(\n)2[\n))\s* ((
19120)\d2 (/ (19120) 2\d2) 2 |\d2/\d2)) 2| ((19120)\d2 (/ (19120) 2\d2) 2 1\d2/\d2)))) ( (\s+(\r (\n) 2 \n) ? | (\r(\n)?\\n) )\s* ([tT]o| [aA]nd]| [00]r| [00]n
I[aA]t\[oO]f\s\s?the\[oO]f\[tT]hel[tT]hlsI[ll]ts\[1I]nstead\s\s°of ((\s+ \r (\n) ?21\n) 21 (\r(\n)21\n))\s* (( sS]tartI[bB]egln\[Ss]tart\[
Jegin]| [Eelnd]| [eEInd| [Mm]idth]| [mM]idth) ((\s+(\r (\n)?21\n)2| (\r (\n)2I1\n))\s* ([tTlhe| [tTlhis| [tT]lhese]| [tTlhose| [iI]ts) )2 ((\s+(\r(\n) 2\
n) 2| (\r(\n)21\n)) \s*[[a-z]]+) ?(\s+ \r(\n) 21\n) 21 (\r(\n)?21\n))\s* ((((([1L]ast|[pP]lreceding]|[pP]ast| [cClurrent| [tT]hls\ [uUlpcoming| [fF]o
llowing| [sS]ucceeding| [nN]ext)) ((\s+ (\r (\n)21\n) 2| \r (\n)21\n))\s* (((11213141516171819)\d?| ([oOlne| [sSleverall|[sSlome| [bB]loth|[tT]wo] [
tTlhree| [fF]our]| [fF]ive| [sS]ix| [sS]even]| [eE]light| [nN]ine| [tT]en| [eE]leven| [tT]welve| [tT]wenty| [tTlhirty|[fFlourty| [fF]orty]| [fF]ifty]| [
sS]ixty\[sS]eventy\[eE]ighty\[nN]inetyl[hH]undredl[aA]\s\s?hundred))l((1[012]?\2|3|4|5|6\7\8\9)(\.\())\([fF]irst\[sS]econdl[tT]hirdl[
fF]ourthI[fF]ifth\[sS]ixthI[sS]eventhI[eE]ighth\[nN]inth\[tT]enthI[eE]leventh))(—((1[012]?|2|3|4\5\6\7|8|9)(\.\())I([fF]irstI[SS]econ
d| [tT]hird| [fF]ourth| [fF]ifth| [sS]ixth| [sS]eventh|[eE]lighth| [nN]inth| [tT]enth]| [eE]leventh)))? ((\s+(\r(\n)21\n) 21 (\r(\n)?2I\n))\s*((1]2
|3\4\5\6|7|8|9)\d?|([oO]ne\[sS]everal\[sS]omeI[bB]oth\[tT]on[tT]hree\[fF]our\[fF]iveI[sS]ix\[sS]evenl[eE]ight\[nN]ine\[tT]enI[eE]lev
en|[tT]welve| [tT]wenty| [tTlhirty| [fFlourty| [fFlorty| [fF]ifty|[sS]ixty]|[sSleventy|[eE]lighty| [nN]inety| [hH]undred]| [aA]\s\s?hundred)))?)
)2 (\s+(\r(\n)21\n) 21 A\r(\n)21\n))\s*) | ((((11213141516/71819)\d?| ([00lne| [sS]leverall|[sSlome| [bBloth|[tT]wo]|[tT]lhree| [fF]lour|[fF]ive][sS
lix| [sSleven| [eE]light | [nN]ine| [tT]len| [eE]lleven| [tT]welve| [tT]wenty| [tTlhirty| [fFlourty|[fF]lorty| [fF]ifty| [sS]ixty|[sSleventy|[eE]light
y\[nN]inetyI[hH]undredI[aA]\s\s?hundred))l((1[012]?\2|3|4|5|6\7\8\9)(\.\())\([fF]irst\[sS]econdI[tT]hirdI[fF]ourth\[fF]ifth\[sS]ixthI
[SS]eventhl[eE]ighth\[nN]inth\[tT]enthl[eE}leventh))(*((1[012]°|2|3|4\5\6\7|8|9)(\ [ ()) | ([fF]irst| [sS]lecond| [tTlhird| [fF]ourth| [fF]if
th|[sS]ixth|[sSleventh|[eE]ighth]| [nN]inth|[tT]enth|[eE]leventh)))? ((\s+(\r(\n)2\n)2 (\r (\n)21\n))\s*((11213141516171819)\d?| ([cOlne| [
sS]everalI[sS]ome\[bB]othI[tT}wo\[tT]hree\[fF]ourI[fF]lve\[sS]lxI[sS]even\[eE]lght\[nN]lnel[tT]en\[eE]levenl[tT]welveI[tT]wenty\[tT]h
1rty\[fF]ourty\[fF]ortyI[fF]ifty\[sS]ixty\[sS]eventyI[eE]ightyI[nN]inety\[hH]undred\[aA]\s\s?hundred)))?)((\s+(\r(\n)?\\n)?|(\r(\n)?\\

)\s* (([1Llast| [pPlreceding]| [pPlast|[cClurrent|[tTlhis]| [uU]lpcoming]| [fF]ollowing]| [sSlucceeding]| [nN]ext)))? (\s+(\r(\n)2I\n)?| (\r(\n)?|
\n))\S* 2(((Q(1121314) 1H(112) (\/(19120)2\d2) 2| (((\w(la-z])* (\s+(\r (\n)2|\n) 2| (\r (\n) ?|\n))\s*)? (year|quarter)) ([a-z])*)) | ((month|time
(span) ? (\s+ (\r (\n) 21\n) 2| \r (\n) 21\n))\s* (from(\s+ (\r (\n) 21\n) 21 (\r (\n) 21\n))\s*)?) 2 ([Jjlanuary| [Jjlan\.|[Jjlan| [Fflebruary| [Ffleb\.|[F
fleb| [Mm]arch| [Mm]ar\.| [Mmlar| [Aalpril|[RAalpr\.|[Aalpr|[Mmlayl| [Jjlune| [Jjlun\.|[Jjlun| [Jjlulyl[JFIul\.|[Jjlull[Aalugust]| [Ralug\. | [Aa]
ug\[Ss}eptember\[Ss}ep\.\[Ss]epI[Oo]ctober\[Oo]ct\.\[Oo]ctI[Nn]ovemberI[Nn}ov\.I[Nn]ov\[Dd]ecember\[Dd]ez\.\[Dd}ezI[Ss]pring\[Ss]umme
r|[Aalutumn| [Fflall| [Ww]inter)) | (([Rr]leported\s\s?time\s\s?span| [Rr]eported\s\s?time\s\s?span|[Rr]eported\s\s?time| [rR]eported\s\s?tim
el [Tt]ime\s\s?span|[tT]ime\s\s?span|[Sslpan| [sS]lpan|[Ddlecadel [dD]ecade))) ((\s+(\r(\n)2I\n) 2|l (\r(\n)?21\n))\s*((19120)\d2(/(19]20)?\d2)
21\d2/\d2)) 21 ((19120)\d2 (/ (19120) 2\d2) 21\d2/\d2)))) *))



Text Preprocessing
Token Normalization: Regular Expressions Summary

Char Concept Example

[ 1  Character Classes [Ww] oodchuck

- Ranges in classes There are [0-9]+ woodchucks).
| Disjunction of regexes woodchuck | groundhog

~ Negation [~0-9]

) Any Character What a (.)* woodchuck

() Grouping of regex parts w (00) +dchuck

\ Special (sets of) characters \swoodchuck)\s

* Zero or more repetitions wooo+dchuck

+ One or more repetitions woo+dchuck

Zero or one repetition

woodchucks?




Text Preprocessing
Tokenization

Tokenization turns a sequence of characters into a sequence of tokens.

Example:

Friends, Romans, Countrymen,

Friends

Terminology:

o A

token

Romans Countrymen

lend me your ears !

[r]

lend

[me] [your]| [ears] [!]

is a character sequence forming a useful semantic unit.

Token-granularity:

o Word-level:

o Phrase-level:

o Sentence-level:



Text Preprocessing
Tokenization: Special Cases

a

NLP:111-21

Contractions

Apostrophes can be a part of a word, a part of a possessive, or just a mistake: it’ s,
o’ donnell, can’t,don’t, 80’ s, men’ s, master’s degree, shriner’s

Hyphenated compounds

Hyphens may be part of a word, a separator, and some words refer to the same concept with
or without hyphen: winston-salem, e-bay, wal-mart, active-x, far-reaching,
loud-mouthed, 20-year—-old.

Compounds
English: wheelchair, German: Computerlinguistik for computational linguistics.

Other special characters
Special characters may form part of words, especially in technology-related text: MxAxS«H,
I.B.M.,Ph.D.,C++, C#, &nbsp;, http://www.example.com.

Numbers
Numbers form tokens of their own, and may contain punctuation as well: 6.5, 1e+010.

Phrase tokens: named entities, phone numbers, dates
San Francisco, (800) 234-2333, Mar 11,1983.
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Remarks:

Q A related philosophical concept is the type-token distinction (see unit about corpus linguistics
in this course). Here, a token is a specific instance of a word (i.e., its specific written form),
and a type refers to its underlying concept as a whole. This is comparable to the distinction
between class and object in object-oriented computer programming. For example, the
sentence “A rose is a rose is a rose.” comprises nine token instances but only four types,
namely “a”, “rose”, “is”, and “.”. [Wikipedia]

O Tokenization is strongly language-dependent. English is already among the easiest
languages to be tokenized, and there are still many problems to be solved. In Chinese, for
example, words are not separated by a specific character, rendering the process of
determining word boundaries much more difficult.


https://en.wikipedia.org/wiki/Type-token_distinction

Text Preprocessing
Tokenization: Approaches

1. Heuristics
Whitespace: A token is every character sequence separated by whitespace characters.
TREC: A token is every alphanumeric sequence of characters of length > 3, separated by a
space or punctuation mark.

2. Rule-based

Manually construct a set of rules and apply them in order.
Each rule describes how to split a string into smaller tokens.

3. Frequency-based
Split tokens based on observed frequencies in a training corpus.
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Text Preprocessing
Tokenization: Rule-based [Jurafsky and Martin, 2007] [Grefenstette, 1999]

Algorithm: Tokenization with Regular Expressions.

Input: d. Document in the form of a string.
A. Dictionary of abbreviations.

Output: The document with space in-between its tokens.

Tokenize(d, A)

1. alnum = [A-Za-z0-9]; nalnum = ["A-Za-z0-9]; alwayssep = [2!()";/\| ]
2. clitic = ("|:|=-|I"S|’'D|'M|"LL|'RE|'VE|IN'T|’s|"d|'m|"11l|"re|’ve|n’t)
3. // Put whitespace around unambiguous separators.

4. // Put whitespace around commas that aren’t inside numbers.

5. // Segment single quotes not preceded by letter (not apostrophes).
6. // Segment unambiguous word-final clitics and punctuation.

7. Split d by whitespace (/\s+/) to obtain a list of tokens T.

8. // Segment periods from each t€ 7T that isn’t an abbreviation in A or

like one (letter period sequence or letter followed by consonants).

O

// Optionally expand clitics to normalize them.
10. Return a whitespace-separated string of T'.
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https://web.archive.org/web/20220226233319/https://pages.ucsd.edu/~bakovic/compphon/Jurafsky,%20Martin.-Speech%20and%20Language%20Processing_%20An%20Introduction%20to%20Natural%20Language%20Processing%20(2007).pdf
https://doi.org/10.1007/978-94-015-9273-4_9
https://en.wikipedia.org/wiki/Clitic

Text Preprocessing
Tokenization: Rule-based [Jurafsky and Martin, 2007] [Grefenstette, 1999]

Algorithm: Tokenization with Regular Expressions.

Input: d. Document in the form of a string.
A. Dictionary of abbreviations.

Output: The document with space in-between its tokens.

Tokenize(d, A)

1. alnum = [A-Za-z0-9]; nalnum = ["A-Za-z0-9]; alwayssep = [2!()";/\| ]
2. clitic = ("|:|=I'S|'DI/'"M|'"LL|'RE|'VE|N'T|’s|’d|’'m|"11l|"re|’veln’t)
3. Apply s/$alwayssep/ S$& /g to d.

4. Apply s/(["0-91),/%1_,,. /g9 and s/, ([70-91)/_,.%1/g to d.

5. Apply s/"'/$& /g and s/ ($nalnum)’/$1 ' /g to d.

6. Apply s/$clitic$/ _S$&/g and s/$clitic($nalnum)/ _$1 $2/g to d.

7. Split d by whitespace (/\s+/) to obtain a list of tokens 7.

8. Apply s/\.$/ \./ to teT if t matches /$alnum\./ and is not in A and

doesn’t match /" ([A-Za-z]\.([A-Za-z]\.)+| [A-Z] [bcdfghj—np-tvxz]+\.)$/.

O

Optionally expand clitics: s/’ve/have/ and s/’m/am/ and so on.
10. Return a whitespace-separated string of T'.

NLP:111-25 Text Models © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023


https://web.archive.org/web/20220226233319/https://pages.ucsd.edu/~bakovic/compphon/Jurafsky,%20Martin.-Speech%20and%20Language%20Processing_%20An%20Introduction%20to%20Natural%20Language%20Processing%20(2007).pdf
https://doi.org/10.1007/978-94-015-9273-4_9
https://en.wikipedia.org/wiki/Clitic

Remarks:

Q The variables alnum, nalnum, nalnum, and clitic are regular expressions that
capture the respective phenomena.

Q The syntax s/A/B/ stems from Perl and SED and commands to replace all occurrences of A
with B. The Python equivalentis re.sub (2, B, d)

O The backreference $& resolves to the complete text matched by A.

Q The backreferences resolves to the text matched by the first group (. ..) of the RegEx.


https://perldoc.perl.org/perlrequick
https://docs.python.org/3/library/re.html

Text Preprocessing
Problems of Rule-based Tokenization

1. The vocabulary grows fast.

o Most applications limit the vocabulary (i.e to ca. 50.000 for deep
learning).

0o This makes dense representations very sparse and memory intensive.

o Limiting the vocabulary removes named entities, rare words, typos, ...

2. The construction cost is high.

0 Rules must be hand-crafted.
o Rules differ for each genre, text source, and language.



Text Preprocessing
Tokenization: Byte-Pair Encoding [Sennrich et al., 2015]

Idea: Merge adjecent symbols to tokens if they are often in tokens together.

1. Split a string into symbols.

In order, most frequent rule first.

0. a_horse!_a _horse! my kingdom for a horse! Merge Rules

1. a,_h,o,r,s,e,!', 2, h,0,r,8,e,!', . m,vy,... 1: O r or
2: _h or _hor
3: _hor s _hors
4: _hors e _horse
5: m y my

Vocabulary: V={', a, ..., y, dom, _my, _horse, _king, _for, [UNK]}


https://arxiv.org/pdf/1508.07909.pdf

Text Preprocessing
Tokenization: Byte-Pair Encoding [Sennrich et al., 2015]

Idea: Merge adjecent symbols to tokens if they are often in tokens together.

1. Split a string into symbols.
2. Apply all merge rules. In order, most frequent rule first.
3. Replace all out-of-vocabulary tokens with the unknown token [UNK].

0. a_horse! a horse! my kingdom for a horse! Merge Rules
1. a,_h,o,r,s,e,!, a, _h,o0,r,s,e,!, mvy,... 1: O r or
2: _h or _hor
2. a,,T,h,o,r,s,e,!,,_,a,,_,h,o,r,s,e,!,,_,m,y, 3. _hor s _hors
_k,i,n,g,d,0,m, _f,0,r, a2, _h,0,r,s,¢e,! 4: _hors e _horse
5: m vy my
Vocabulary: V={', a, ..., y, dom, _my, _horse, _king, _for, [UNK]}
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https://arxiv.org/pdf/1508.07909.pdf

Text Preprocessing
Tokenization: Byte-Pair Encoding [Sennrich et al., 2015]

Idea: Merge adjecent symbols to tokens if they are often in tokens together.

1. Split a string into symbols.
2. Apply all merge rules. In order, most frequent rule first.
3. Replace all out-of-vocabulary tokens with the unknown token [UNK].

0. a_horse! a horse! my kingdom for a horse! Merge Rules
1. a,_h,o,r,s,e,!, a, _h,o0,r,s,e,!, mvy,... 1: O r or
2 h or hor
2. a,%,h,or,s,e, 'y.a, h,or,s,e, !, mvy, 3. _hor s _hors
k,1i,n,9,d,0,m, _£ft,0r,_a, _h,or,s,e,! 4: _hors e _horse
5: m vy my
Vocabulary: V={', a, ..., y, dom, _my, _horse, _king, _for, [UNK]}
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Text Preprocessing
Tokenization: Byte-Pair Encoding [Sennrich et al., 2015]

Idea: Merge adjecent symbols to tokens if they are often in tokens together.

1. Split a string into symbols.
2. Apply all merge rules. In order, most frequent rule first.
3. Replace all out-of-vocabulary tokens with the unknown token [UNK].

0. a_horse! a horse! my kingdom for a horse! Merge Rules
1. a,_h,o,r,s,e,!, a, _h,o0,r,s,e,!, mvy,... 1: o T or
2 h or _hor
2. a,%,hor,s,e, 'y.a, _hor,s,e, !, m,y, 3. _hor s _hors
_k,1,n,9,d,0,m, _f,0r,_a, hor,s,e,! 4: _hors e _horse
5: m vy my
Vocabulary: V={', a, ..., y, dom, _my, _horse, _king, _for, [UNK]}
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Text Preprocessing
Tokenization: Byte-Pair Encoding [Sennrich et al., 2015]

Idea: Merge adjecent symbols to tokens if they are often in tokens together.

In order, most frequent rule first.

3. Replace all out-of-vocabulary tokens with the unknown token [UNK].

0. a_horse! a horse! my kingdom for a horse!
1. a, _h,o,r,s,e,!', a2, _h,0,r,s,e,!, mvy,...
2. a, _horse,!, a,_horse,!, _my,

king,dom, ,for, ,a,_horse,!

3. Does not apply here.

Tokenized Sentence:
a _horse ! _a _horse ! _my
_king dom _for _a _horse !

—l

Vocabulary: V ={!, a, ..., y, dom, _my, _horse,

Merge Rules

1: O r or
2: _h or _hor
3: _hor s _hors
4: _hors e _horse
5: i n in
5: m y my
_king, _for, [UNK]}
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Text Preprocessing
Tokenization: Byte-Pair Encoding Rule Finding  [Sennrich et al., 2015]

Create an initial tokenization of a training corpus. i.e. using whitespaces.
Create a index I of all tokens and their counts.

Split each token into symbols, add them to the vocabulary V.

Add a merge rule to R for the pair i, j of adjecent symbols fulfilling:

> wp -

next_merge = argmax »  count((i, j) € ¢) - count(t)

5. Apply the new rule to 1. Add the merged symbol to V. Repeat from 4.
6. Stop if VV or R reach a predefined size. e.g. 50,000

a, _horse,!, _a,_horse,!, my,_ kingdom, for,_a,_horse,!

I={ Merge Rules R
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Text Preprocessing
Tokenization: Byte-Pair Encoding Rule Finding  [Sennrich et al., 2015]

Create an initial tokenization of a training corpus. i.e. using whitespaces.
Create a index / of all tokens and their counts.

Split each token into symbols, add them to the vocabulary V.

Add a merge rule to R for the pair i, j of adjecent symbols fulfilling:

B~ wp -

next_merge = arg maxz count((z, j) € t) - count(t)

5. Apply the new rule to 1. Add the merged symbol to V. Repeat from 4.
6. Stop if VV or R reach a predefined size. e.g. 50,000

a, _horse,!, _a,_horse,!, my,_ kingdom, for,_a,_horse,!

I'={(a;1),(_horse;3), (_a;2), (Lmy; 1), Merge Rules R
(_kingdom; 1), (_for;1),(!;3)}

V=1 }
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Text Preprocessing
Tokenization: Byte-Pair Encoding Rule Finding  [Sennrich et al., 2015]

Create an initial tokenization of a training corpus. i.e. using whitespaces.
Create a index I of all tokens and their counts.

Split each token in I into symbols, add them to the vocabulary V.
Add a merge rule to R for the pair ¢, j of adjecent symbols fulfilling:

b=

next_merge = argmax »  count((i, j) € ¢) - count(t)

5. Apply the new rule to 1. Add the merged symbol to V. Repeat from 4.
6. Stop if VV or R reach a predefined size. e.g. 50,000

a, _horse,!, _a,_horse,!, my, _ kingdom, for,_a,_horse,!

I'={(a;1),(_h,0,r,s5,e;3),(,a;2),(_m,y; 1), Merge Rules R
(_k,i,n,g,d,0,m;1),(_£f,0,r;1),(!;3)}
V={!, a, ..., vy [UNK]}
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Text Preprocessing
Tokenization: Byte-Pair Encoding Rule Finding  [Sennrich et al., 2015]

Create an initial tokenization of a training corpus. i.e. using whitespaces.
Create a index [ of all tokens and their counts.

Split each token in I into symbols, add them to the vocabulary V.
Add a merge rule to R for the pair ¢, 7 of adjecent symbols fulfilling:

o=

next_merge = argmax »  count((i, j) € ¢) - count(t)
Wa) ter

5. Apply the new rule to 7. Add the merged symbol to V. Repeat from 4.
6. Stop if VV or R reach a predefined size. e.g. 50,000

a, _horse,!, _a,_horse,!, my, _ kingdom, for,_a,_horse,!

I = {(a; 1): (,_,h,o,r,s,e;3), (,_,a;2), (._.mry; 1)5 Merge Rules R
(_k,i,n,g9,d,0,m;1),(_£,0,1r;1),(!;3)} 1: o 1 or
V={!, a, ..., v, [UNK]}
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Text Preprocessing
Tokenization: Byte-Pair Encoding Rule Finding  [Sennrich et al., 2015]

Create an initial tokenization of a training corpus. i.e. using whitespaces.
Create a index [ of all tokens and their counts.

Split each token in I into symbols, add them to the vocabulary V.
Add a merge rule to R for the pair i, j of adjecent symbols fulfilling:

>~ wp -

next_merge = argmax »  count((i, j) € ¢) - count(t)
<]]> tel

5. Apply the new rule to 1. Add the merged symbol to V. Repeat from 4.
6. Stopif V or R reach a predefined size. e.g. 50,000

a, _horse,!, _a,_horse,!, my, _ kingdom, for,_a,_horse,!

I'={(a;1),(_h,or,s,e;3),(_a;2), (Lm, y; 1), Merge Rules R
(Lk,i,n,9,d,0,m 1), (LE,0051), (153)} 1: o r or
V:{!r dy ..y Yr Oy [UNK]}
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Text Preprocessing
Tokenization: Byte-Pair Encoding Rule Finding [Sennrich et al., 2015]

l.e. using whitespaces.

4. Add a merge rule to R for the pair i, j of adjecent symbols fulfilling:

next_merge = argmax Y  count((i, j) € t) - count(z)
Wa) ter

5. Apply the new rule to I. Add the merged symbol to V. Repeat from 4.
e.g. 50,000

a, _horse,!, _a,_horse,!, my, _ kingdom, for,_a,_horse,!

I'={(a;1),(_h,or,s,e;3),(_a;2), (Lm, y; 1), Merge Rules R
(Lk,i,n,9,d,0,m 1), (LE,0r51), (153)} 1: o r  or

2: _h or _hor

(S

v={', a ..., y, or, _hor, [UNK]}
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Text Preprocessing
Tokenization: Byte-Pair Encoding Rule Finding [Sennrich et al., 2015]

l.e. using whitespaces.

4. Add a merge rule to R for the pair i, j of adjecent symbols fulfilling:

next_merge = argmax Y  count((i, j) € t) - count(z)
Wa) ter

5. Apply the new rule to I. Add the merged symbol to V. Repeat from 4.
e.g. 50,000

a, _horse,!, _a,_horse,!, my, _ kingdom, for,_a,_horse,!

I'={(a;1),(_hor,s,e;3),(_a;2), (Lm, y; 1), Merge Rules R

(Lk,i,n,9,d,0,m 1), (LE,0r51), (153)} 1 o 1 or

2 _h or hor

—

— [
v={', a ..., y, or, _hor, _hors, [UNK]} 3: _hor s _hors
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Text Preprocessing
Tokenization: Byte-Pair Encoding Rule Finding  [Sennrich et al., 2015]

Create an initial tokenization of a training corpus. i.e. using whitespaces.
Create a index [ of all tokens and their counts.

Split each token in I into symbols, add them to the vocabulary V.
Add a merge rule to R for the pair i, j of adjecent symbols fulfilling:

>~ wp -

next_merge = argmax »  count((i, j) € ¢) - count(t)

5. Apply the new rule to I. Add the merged symbol to V. Repeat from 4.
6. Stopif V or R reach a predefined size. e.g. 50,000

a, _horse,!, _a,_horse,!, my, _ kingdom, for,_a,_horse,!

I'={(a;1),(_horse;3),(_a;2), (_my; 1), Merge Rules R
(_king,dom; 1), (_for;1),(!;3),...} 1: o} r or

2 h or _hor

v={', a ..., y, or, _hor, _hors, ..., [UNK]} 3. hor s hors

NLP:111-40 Text Models © WIEGMANN/WOLSKA/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023


https://arxiv.org/pdf/1508.07909.pdf

Remarks:

a

a

A variant of Byte-Pair Encoding (BPE) is used by GpT-2: byte-level BPE. It uses all 256
Bytes as basis vocabulary to avoid the [UNK] token completely.

BERT and many of it’s variants use WordPiece, which is an extention of BPE. It adapts the
merge_select function to find the most likely merge, instead of the most common one. This
avoids merging subwords that also often appear independently.
> (i, J)
next_merge = arg max <——=—
(i.5) EEDDY/
The tokenizers Unigram [Kudo, 2018] and SentencePiece [] work in reverse to WordPiece: they

add all possible tokens to the Vocabulary, then iteratively remove tokens until the desired
vocabulary size is reached.


https://arxiv.org/pdf/1804.10959.pdf
https://arxiv.org/pdf/1808.06226.pdf#Kudo and Richardson, 2018

Text Preprocessing
Tokenization: Token Removal

Remove undesired tokens (stop words) to reduce data size, sparsity, and improve
performance on downstream tasks (Stopping).

o Frequent tokens
Wikipedia when processing Wikipedia.

o Function word tokens
the, of, and, ...

to be or not to be?

o Punctuation-only tokens
i)
o Number-only tokens

o Short tokens

Xp, ma, pm, ben e king, el paso,master p,gm, j lo,...

Stop word are often collected in domain-specific lists. [Terrier stopword list]



https://github.com/terrier-org/terrier-desktop/blob/master/share/stopword-list.txt

Text Preprocessing
Tokenization: Token Removal (continued)

Source text: (34 tokens)

The idea of giving computers the ability to process human language 1is
old as the idea of computers themselves. This book is about the

implementation and implications of that exciting idea.

Stopped text: (16 tokens)

idea giving computers ability process human language
old idea computers themselves book

implementation implications exciting idea

as



Text Preprocessing
Tokenization: Token Removal (continued)

Source text: (34 tokens)

The idea of giving computers the ability to process human language 1is as
old as the idea of computers themselves. This book is about the

implementation and implications of that exciting idea.

Stopped text: (16 tokens)

idea giving computers ability process human language old idea computers

themselves book implementation implications exciting idea



