
Chapter NLP:III

III. Text Models
❑ Text Preprocessing
❑ Text Representation
❑ Text Similarity
❑ Text Classification
❑ Language Modeling
❑ Sequence Modeling

NLP:III-69 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
Text can be similar in different ways:

❑ Spelling correction
❑ Retrieval of relevant web pages
❑ Detection of related documents
❑ Paraphrase recognition
❑ (Near-) Duplicate or text reuse detection
❑ Identification of counterarguments
❑ Clustering
❑ Evaluation of machine translation and summarization

. . . and many more

NLP:III-70 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
Text can be similar in different ways:

1. Lexical similarity describes the similarity of form, e.g.:

❑ Language variation.
color vs. colour

❑ Additional words.
This is shit. vs. This is the shit.

❑ Spelling errors.
restaurant vs. westauwang

❑ Similar spelling.
content vs. contempt

2. Semantic similarity describes the similarity of meaning, e.g.:

❑ Synonymy.
content vs. satisfied

❑ Paraphrase.
Biden visited the capital of France.

vs. The president was in Paris.

NLP:III-71 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
Similarity Measures

Depending on the kind of similarity to be measured, we must determine the

❑ level of text, token, sentence, document, . . .

❑ text representation, strings, count vectors, word vectors, . . .

❑ and similarity function.

Families of similarity functions:

❑ String-based: Lexical similarity of the form of words.
❑ Resource-based: Relations between tokens in knowledge graphs.
❑ Vector distance: Geometric similarity of vector representations in their space.
❑ Divergence: Similarity between word distributions of documents/corpora.
❑ Word vectors: Semantic similarity of sentences via word vectors.

NLP:III-72 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
String-based Similarity: Hamming Distance

Idea: Count the number of character positions where two strings s1 and s2 differ.

❑ The Hamming distance measures the number of substitutions required to
transform a (bit) sequence into another.

❑ Can be applied to character sequences of equal length. Pad the shorter token.
❑ Vulnerable to character addition/removal. i.e. program vs programme

Hamming distance with aligned tokens.

s1 r e s t a u r a n t
s2 w e s t a u w a n g
Distance 1 0 0 0 0 0 1 0 0 1 = 3

Hamming distance with character removal and padding.

s1 r e s t a u r a n t
s2 r e s t u r a n t [P]
Distance 0 0 0 0 1 1 1 1 1 1 = 6

NLP:III-73 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
String-based Similarity: Levenshtein Distance

Idea: Count the minimum number of edit operations needed to transform s1 into s2.

❑ Insertion: Add a character to s1.
❑ Deletion: Remove a character from s1.
❑ Substitution: Replace a character in s1 with a different one.

Find the minimum cost by trying every combination of operations (O(n2)):

Levenshtein(s1, s2)

1. IF |s2| = 0 THEN return(|s1|) ENDIF // Do |s1| deletions.
2. IF |s1| = 0 THEN return(|s2|) ENDIF // Do |s2| insertions.
3. IF s1[0] = s2[0] THEN return(Levenshtein(s1[1 :], s2[1 :])) ENDIF

4. ldel = 1 + Levenshtein(s1[1 :], s2) // Cost when doing a deletion.

5. lins = 1 + Levenshtein(s1, s2[1 :]) // Cost when doing an insertion.

6. lsub = 1 + Levenshtein(s1[1 :], s2[1 :]) // Cost when doing a substitution.

7. return(min(ldel, lins, lsub))

NLP:III-74 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
String-based Similarity

Applications:
❑ Spelling correction. Find the most similar word in the vocabulary.
❑ Query processing. Replace spelling variants, . . .
❑ Plagiarism detection. Find near-verbatim copies or longest common subsequences.
❑ De-noising. Correct corrputed texts.
❑ Evaluate translation or summarization. Compare to a ground truth.

Limitations:
❑ Semantically agnostic. Use resource-based methods for word-level semantic similarity.
❑ Very sensitive to word order or inserted text, more suited to short texts or

word-by-word comparisons. Use vector distance methods for long sequences.

NLP:III-75 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Remarks:

❑ There are several variations of Levenshtein distance that modify its behavior, commonly
called edit distance.

– Damerau-Levenshtein distance also allows transposition (swap two adjacent characters
at the cost of one operation). This is desirable for spellcheckers.

– Longest Common Subsequence allows only insertion and deletion, which is faster and
can better utilize hashing.

– Hamming distance allows only substitution.
– Jaro distance allows only transposition.

❑ It is common to assign a cost to each operation and instead of counting the number of
operations.

❑ Edit distance can be computed in O(n+m) with the Wagner-Fischer dynamic programming
algorithm.

NLP:III-76 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
Resource-based Similarity: Thesaurus relations [

:::::::::
NLP:VI-2

:::
ff.]

Idea: Calculate the shortest path through the graph of the semantic word relations
found in a thesaurus like WordNet.

Common thesaurus relations used:

❑ Synonymy: Two words that (in some context) have the same meaning.
couch ←→ sofa big ←→ large

❑ Hypernymy: A word is included in the meaning of another. IS-A relation.

vehicle
−−−−−−−→
Hypernym car

vehicle
−−−−−−−→
Hypernym ship

WordNet entry for nickel:

nickel dime

coin

coinage

currency

medium of exchange

money

...

...

... ...

...

NLP:III-77 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/natural-language-processing/unit-en-symbolic-semantics.pdf#hebrew-comic
http://wordnetweb.princeton.edu/perl/webwn

Text Similarity
Resource-based Similarity

Applications:

❑ Synonym search and lexical substitution. (cf. [
:::::::::
NLP:VI-2

:::
ff.])

Limitations:
❑ Thesauri do not cover phrases or sentences. Use word vector-based methods for

semantic similarity of longer sequences.

❑ Thesauri cover only some word classes (i.e. nouns, verbs, adjectives,
adverbs) and only some of the words in them.

❑ Verbs and adjectives are not as hierarchically structured as nouns.
❑ Thesauri are not available for all languages.

NLP:III-78 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/natural-language-processing/unit-en-symbolic-semantics.pdf#hebrew-comic

Text Similarity
Vector Distance

Idea: If the text are in a numeric vector representation with ordinal dimensions
(BoW or feature vectors), then a geometric similarity measure can be used.

Distance d of two texts p and q represented as m-length (BoW) vectors.
❑ Manhattan distance The Manhattan distance is the sum of all absolute differences

between two feature vectors.

dManhattan(p,q) =

m∑
i=1

|pi − qi|
X1

X2

❑ Euclidean distance The Euclidean distance captures the absolute straight-line distance
between two feature vectors.

dEuclid(p,q) =

√√√√ m∑
i=1

|pi − qi|2
X1

X2

Note that the indices i correspond to the same token or feature in both documents.

NLP:III-79 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
Vector Distance

Idea: If the text are in a numeric vector representation with ordinal dimensions
(BoW or feature vectors), then a geometric similarity measure can be used.

Both distances can be transformed into a similarity metric:

1. Normalize all dimensions to [0, 1]

2. Normalize the distance for the vector size m

3. Invert the measure so larger is more similar.

simManhattan(p,q) = 1− dManhattan(p,q)

m

❑ Vector distances (based on count vectors) are vulnerable to document length.

❑ A long document will be distant from a short one even if it just contains the
same content multiple times.

NLP:III-80 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
Vector Similarity: Cosine Similarity

Idea: Measure the difference of the vector’s direction and ignore its length.

❑ Cosine similarity captures the cosine of the angle between two feature vectors.

simCosine(p,q) =
p · q

||p|| · ||q||

=

∑m
i=1 pi · qi√∑m

i=1 p
2
i ·

√∑m
i=1 q

2
i X1

X2

❑ The smaller the angle, the more similar the vectors. The cosine is maximal for 0◦.

❑ ||x|| denotes the L2 norm of vector x.

NLP:III-81 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Lp_space#The\protect \unhbox \voidb@x \protect \penalty \@M \hskip \z@skip \T1\textunderscore \discretionary {-}{}{}\protect \penalty \@M \hskip \z@skip p-norm\protect \unhbox \voidb@x \protect \penalty \@M \hskip \z@skip \T1\textunderscore \discretionary {-}{}{}\protect \penalty \@M \hskip \z@skip in\protect \unhbox \voidb@x \protect \penalty \@M \hskip \z@skip \T1\textunderscore \discretionary {-}{}{}\protect \penalty \@M \hskip \z@skip finite\protect \unhbox \voidb@x \protect \penalty \@M \hskip \z@skip \T1\textunderscore \discretionary {-}{}{}\protect \penalty \@M \hskip \z@skip dimensions

Text Similarity
Vector Similarity: Cosine Similarity

Geometric interpretation of the Cosine:

p =

chrysler 0.1

usa 0.4
cat 0.3
dog 0.7

mouse 0.5

q =

chrysler 0.2

usa 0.1
cat 0.5

ostrich 0.1
elephant 0.1

 usa

ca
t

chrysler

ϕ

p

q

The angle φ between p and q is about 51◦, cos(φ) ≈ 0.63.

NLP:III-82 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
Vector Similarity: Jaccard Similarity

Idea: If the size of the (element-wise) difference is not relevant, the set overlap can
be used to measure similarity.

❑ Jaccard similarity compares the size of the intersection of two sets to their union.

simJaccard(p,q) =
|p ∩ q|
|p ∪ q|

=
|p ∩ q|

|p| + |q| − |p ∩ q|

=

∑
pi=qi

1

m +m−
∑

pi=qi
1

p

q
p∩q

❑ The term pi = qi assumes binary features.

NLP:III-83 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
Vector Similarity: Divergence

Idea: If the texts are represented as probability distributions (over a shared
vocabulary), their divergence can be used to measure similarity.

❑ Kullback–Leibler–Divergence (KLD) measures the distribution divergence with
information gain. KLD is asymmetric and not a metric.

dKL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
P(x)

Q(x)

❑ Jenson-Shannon-Divergence (JSD) is a symmetric adaptation of the KLD.

simJSD(P (x) ∥ Q(x)) = 1−
(
1

2
DKL(P (x) ∥M(x)) +

1

2
DKL(Q(x) ∥M(x))

)
M(x) =

1

2
(P (x) +Q(x))

NLP:III-84 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

Text Similarity
Vector Similarity

Applications:

❑ Retrieval models in search. (cf. [
::::::::
IR:VI-92

:::
ff.])

❑ Clustering documents. (cf. Data Mining)
❑ Language detection. Similarity between a document and corpus vectors.
❑ Plagiarism detection. Find candidate documents. Find passages more robustly.
❑ Authorship analysis. Are two documents written by the same author?

Limitations:

❑ Agnostic to word order, token semantics, and sentence semantics.
❑ Poor performance on short texts (sentences); they do not share many words.
❑ Poor performance on long texts (corpora); they approximate the language.
❑ Similarity scores and vector differences have no linguistic interpretation.

NLP:III-85 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/information-retrieval/unit-en-rm-algebraic.pdf#hebrew-comic
https://webis.de/lecturenotes.html#data-mining

Remarks:

❑ Count vectors can be transformed into probability distributions (cf. Probability Mass
Functions and [

:::::::::
ML:VII-4

::
ff.])

❑ JSD and Cosine similarity are (roughly) equivalent for word distributions over a shared
vocabulary (i.e. count vectors). However, using a geometric interpretation (cosine) makes
little sense for distributions.

❑ Vector-based methods can be used to compare both document vectors and word vectors.
❑ If a vector encodes semantic information, then vector-based similarity functions measure

semantic similarity.

NLP:III-86 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-probability-basics.pdf#hebrew-comic

Similarity Measures
Word Vector Similarity: Sentence Embeddings [Iyyer et al. 2015]

Idea: Compute a geometric similarity measure on a sentence embedding.

❑ Vector Average Similarity compares the geometric average of the word vectors.

s1: Obama speaks to the media in Illinois

s2: The press is greeted by the President in Chicago

simcosine(
1

|s1|
·
∑
wi∈s1

wi,
1

|s2|
·
∑
wj∈s2

wj) Obama
President

Illinois
Chicagopress

media

speaks
greeted

NLP:III-87 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://aclanthology.org/P15-1162.pdf

Similarity Measures
Word Vector Similarity: Sentence Embeddings [Iyyer et al. 2015]

Idea: Compute a geometric similarity measure on a sentence embedding.

❑ Vector Average Similarity compares the geometric average of the word vectors.

s1: Obama speaks to the media in Illinois

s2: The press is greeted by the President in Chicago

simcosine(
1

|s1|
·
∑
wi∈s1

wi,
1

|s2|
·
∑
wj∈s2

wj) Obama
President

Illinois
Chicagopress

media

speaks
greeted

❑ Use any geometric measure on sentence embeddings. [
::::::::::
NLP:III-71

:::
ff.]

Deep Average Networks, USE, BERT, . . .

NLP:III-88 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://aclanthology.org/P15-1162.pdf
https://webis.de/downloads/lecturenotes/natural-language-processing/unit-en-text-representation.pdf#hebrew-comic

Similarity Measures
Word Vector Similarity: Word Mover Distance [Kusner et al. 2015]

Idea: For each (non-stop) word i ∈ s1, find the closest word j ∈ s2 in the word
vector space. Sum their distances.

Simple case. There is an even number of (non-stop) word in
both sentences. Find the best pairing.

s1: The President greets the press in Chicago

s2: Obama speaks to the media in Illinois

Obama
President

Illinois

Chicago
press

media

speaks
greets

Difficult case. There is an uneven number of word in both
sentences. We assume that s1 should be evenly distributed over
s2, so words must be split and combined.

s1: The President greets the press in Chicago

s2: Obama speaks in Illinois

President

Illinois

Chicago
press

speaks
 greets

Obama

The Word Mover Distance (WMD) optimally (with minimal transportation cost)
distributes the words of the source to fill the capacity of the sink.

NLP:III-89 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://proceedings.mlr.press/v37/kusnerb15.pdf

Similarity Measures
Word Vector Similarity: Word Mover Distance [Kusner et al. 2015]

The Word Mover Distance finds the minimum cumulative transportation cost to
move all words from i ∈ s1 to words in j ∈ s2 in an embedding space.

s1: The President greets the press in Chicago

s2: Obama speaks to the media in Illinois

s3: The band gave a concert in Japan

WMD(s1, s2) = 0.45 + 0.24 + 0.20 + 0.18 = 1.07

WMD(s1, s3) = 0.49 + 0.42 + 0.44 + 0.28 = 1.63

President

Illinois

Chicago

press

speaks greets

Obamamedia

Japan
band

concert

gave

0.20
0.44 0.45

0.49

0.24 0.42
0.18 0.28

NLP:III-90 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://proceedings.mlr.press/v37/kusnerb15.pdf

Similarity Measures
Word Vector Similarity: Word Mover Distance [Kusner et al. 2015]

The Word Mover Distance finds the minimum cumulative transportation cost to
move all words from i ∈ s1 to words in j ∈ s2 in an embedding space.

WMD = min
T≥0

n∑
i,j=1

Ti,j · c(i, j)

❑ The cost c(i, j) = ∥xi − xj∥2 is the euclidean distance.
❑ The flow matrix Ti,j indicates which capacity of word i is moved to word j

❑ The outgoing flow of i must expend the capacity d1i :
n∑

j=1

Ti,j = d1i

The incoming flow into j must fill the capacity d2j :
n∑

i=1

Ti,j = d2j

❑ The capacity is the term weight, i.e. d1i =
1

∥s1∥

This problem definition is equivalent to the Earth Mover Distance, a common
problem from transportation with has efficient solvers. [Pele and Werman, 2009]

NLP:III-91 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

https://proceedings.mlr.press/v37/kusnerb15.pdf
https://www.cs.huji.ac.il/w~werman/Papers/ICCV2009.pdf

Text Similarity
Word Vector Similarity

Applications:

❑ Every time semantics is more important than form.
❑ Every time sequences are (relatively) short.

Limitations:

❑ Often slower than count-vector based methods if sentence embeddings can
not be pre-computed (ie. at index time).

❑ Often ineffective for document-length texts. Works best on sequences of
similar length.

❑ Ignores all lexical aspects.

NLP:III-92 Text Models © WIEGMANN/WACHSMUTH/HAGEN/POTTHAST/STEIN 2023

