
Chapter S:V

V. Formal Properties of A*
q Properties of Search Space Graphs
q Auxiliary Concepts
q Roadmap

q Completeness of A*
q Admissibility of A*
q Efficiency of A*
q Monotone Heuristic Functions

S:V-71 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Efficiency of Search Algorithms

The basic steps in the loop of a search algorithm are:

1. Select a most promising solution base.

2. Select a node in that solution base.

3. Expand that node.

Ü Efficiency is related to the number of node expansions.

Heuristics influence efficiency by

1. excluding nodes from expansion entirely (pruning), and by

2. preventing nodes from being expanded more than once (no reopening)

S:V-72 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Efficiency of Search Algorithms (continued)

Definition 70 (Dominance, Optimality)

1. A search algorithm A1 dominates a search algorithm A2 if each node that is
expanded by A1 is also expanded by A2.

2. A1 strictly dominates A2 if A1 dominates A2 and A2 does not dominate A1.

3. A search algorithm is optimum regarding a class of search algorithms if it
dominates all members of this class.

S:V-73 Search Theory © Stein/Lettmann 2023

Remarks:

q By "node expanded by algorithm A" we mean that all direct successor nodes are generated
and processed. This is not the same as "node selected for expansion by algorithm A".
Although algorithm A1 dominates A2, the latter algorithm may terminate returning a different
goal node.

q Dominance defines a partial ordering on search algorithms.

q Dominance relations are often proved with regard to some fixed tie breaking rule.

q Instead of the term “dominates” we may also use the phrase “is more efficient than”.

S:V-74 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Efficiency of Search Algorithms

By not-expanding nodes, parts of the search space graph are pruned. The
efficiency of A* depends on the accuracy of the heuristic estimate h.

Consider two extreme cases:

1. If estimates are perfect (h = h∗), A* will follow cheapest paths to goal nodes.
In this case f (n) = C∗ holds for each expanded node n.

2. If no heuristic is used (h = 0), A* degenerates to a uniform cost search.
In this case each node n reachable from s with path cost of at most C∗ will be
expanded, i.e., f (n) = g(n) ≤ C∗.

Hypothesis:

The closer h is to h∗ (as long as h ≤ h∗), the more powerful it is with respect to
pruning.

S:V-75 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion I

Theorem 71 (Necessary Condition for Node Expansion I)

Let A* process a search space graph G with PropA∗(G), using an admissible
heuristic function h. For each node n expanded by A* holds:

f (n) ≤ C∗

S:V-76 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion I

Theorem 71 (Necessary Condition for Node Expansion I)

Let A* process a search space graph G with PropA∗(G), using an admissible
heuristic function h. For each node n expanded by A* holds:

f (n) ≤ C∗

Proof (sketch)

1. If there is no solution path in G, then C∗ = +∞ and this theorem is obviously true.

2. If there is a solution path in G, then there is also an optimum solution path with cost C∗.
[
:::::::::
Corollary

::::::::::
“Solution

::::::::::::
Existence

:::::::
Entails

::::::::::::
Optimum”]

3. At any time before A* terminates, there exists an OPEN node n′ with f(n′) ≤ C∗.
[
::::::::
Lemma

::::::::::::::
“C∗-bounded

::::::::
OPEN

:::::::
Node”]

4. Since A* expands n, its f -value is less or equal to the f -value of all nodes on OPEN. Thus
we have f(n) ≤ f(n′) and therefore f(n) ≤ C∗.

S:V-77 Search Theory © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#corollary-optimum-path-existence
https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#lemma-cstar-bounded-open-node

Remarks:

q Theorem 71 defines a set S of nodes that will not be expanded: S = {n | f(n) > C∗}.
Q. Why might this knowledge be helpful and how could it be applied?

q The application of Theorem 71 requires knowledge on C∗.
Q. Is this a problem?
Q. If yes, how to solve it?

q In the book of Pearl this theorem is denoted as Theorem 3 and Nilsson Result 5 respectively.
[Pearl 1984]

S:V-78 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion I

Theorem 72 (Sufficient Condition for Node Expansion I)

Let A* process a search space graph G with PropA∗(G), using an admissible
heuristic function h. A* will expand each node n on OPEN with f (n) < C∗.

S:V-79 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion I

Theorem 72 (Sufficient Condition for Node Expansion I)

Let A* process a search space graph G with PropA∗(G), using an admissible
heuristic function h. A* will expand each node n on OPEN with f (n) < C∗.

Proof (sketch)

1. Let OPEN contain a node n with f(n) < C∗.

2. If there is no solution path in G, then g-values determined for newly generated nodes are
higher over time (because of lower bound δ on edge cost values). Therefore, n will be
expanded at some point in time, even if G is an infinite graph.

3. Let A* terminate with goal node γ.

4. Due to the admissibility of A*, f(γ) = C∗.

5. From f(n) < C∗ and C∗ = f(γ) follows that f(n) < f(γ).

6. The value of f(n) can only decrease (f(γ) remains constant).

7. A* expands the node n before it terminates with solution γ.

S:V-80 Search Theory © Stein/Lettmann 2023

Remarks:

q In the book of Pearl this theorem is denoted as Theorem 4. [Pearl 1984]

S:V-81 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion I [Conditions II, Conditions III]

Let n ∈ OPEN. For admissible heuristic functions h hold:

node expansion by A* ⇒ f (n) ≤ C∗︸ ︷︷ ︸
necessary

f (n) < C∗︸ ︷︷ ︸
sufficient

⇒ node expansion by A*

Observe that the Theorems 71 and 72 do not give a condition for node expansion
that is both necessary and sufficient:

In particular, for OPEN nodes with f (n) = C∗ some tie breaking rule has to
determine which of these nodes are expanded or not.

S:V-82 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion I

Corollary 73 (Re-Expansion of Expanded Nodes)

Let A* process a search space graph G with PropA∗(G), using an admissible
heuristic function h. If a node n on CLOSED is reopened, then A* will expand node
n again.

Proof (sketch)

1. For each node n on CLOSED, f(n) ≤ C∗ is true (Theorem 71).

2. Due to reopening, the value of f(n) decreases, f(n) < C∗.

3. Hence, A* expands the node n (Theorem 72).

Even worse, any node n′ in CLOSED, which has n in its back-pointer path, i.e.
n ∈ PPs−n′, when n is reopened, will be reopened and expanded as well.

S:V-83 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion II

The expansion conditions I are algorithm-centered:

q The value of g(n) is no property of node n but depends on the path to n that
A* has discovered.

q Theorem 72 requires that n resides on OPEN before it is selected for
expansion. Whether a given node enters OPEN depends not on n itself but
on the behavior of A* while exploring the paths leading to n.

Instead of arguing about algorithmic concepts (discovered paths, OPEN list),
expansion conditions should be formulated with regard to the search space graph G
only.

S:V-84 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion II

Definition 74 (Cost-Bounded Paths)

A path P is called C-bounded iff (↔) for each node n on P holds

gP (n) + h(n) ≤ C.

P is called strictly C-bounded iff (↔) for each node n on P holds

gP (n) + h(n) < C.

C-boundedness can be checked for each finite path in G—not only for paths
considered by A*.

S:V-85 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion II

Theorem 75 (Necessary Condition for Node Expansion II)

Let A* process a search space graph G with PropA∗(G), using an admissible
heuristic function h. For each node n expanded by A*, the back-pointer path of n at
the time of expansion is a C∗-bounded path from s to n in G.

S:V-86 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion II

Theorem 75 (Necessary Condition for Node Expansion II)

Let A* process a search space graph G with PropA∗(G), using an admissible
heuristic function h. For each node n expanded by A*, the back-pointer path of n at
the time of expansion is a C∗-bounded path from s to n in G.

Proof (sketch)

1. Since A* expands n, the equation f(n) = g(n) + h(n) ≤ C∗ holds. [Theorem 71]

2. When n is on OPEN, all predecessors n′ of n on the current back-pointer path PPs−n have
been expanded before.

3. At time of expansion of such a node n′ we also had g′(n′) + h(n′) ≤ C∗, where g′ denotes the
path cost at the time when n′ was expanded.

4. Pointer-paths are only changed when a cheaper path is found, i.e., g-values can only
decrease.

5. Thus we have f(n′) = g(n′) + h(n′) ≤ g′(n′) + h(n′) ≤ C∗.

S:V-87 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion II

Theorem 76 (Sufficient Condition for Node Expansion II)

Let A* process a search space graph G with PropA∗(G), using an admissible
heuristic function h. A* will expand each node n for which we have a strictly
C∗-bounded path from s to n in G.

S:V-88 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion II

Theorem 76 (Sufficient Condition for Node Expansion II)

Let A* process a search space graph G with PropA∗(G), using an admissible
heuristic function h. A* will expand each node n for which we have a strictly
C∗-bounded path from s to n in G.

Proof (sketch)

1. Let P be a strictly C∗-bounded path from s to n in G.

2. Let A* terminate with goal node γ.

3. Due to admissibility of A*, f(γ) = C∗.

4. Let n′ be the shallowest OPEN node on P when A* terminates.

5. Since all predecessors of n′ on P are on CLOSED, the path cost g(n′) currently maintained
by A* cannot be higher than gP (n′) : f(n′) = g(n′) + h(n′) ≤ gP (n′) + h(n′)

6. Since P is strictly C∗-bounded, we have gP (n′) + h(n′) < C∗ and thus f(n′) < f(γ).

7. A* expands the node n′ and all nodes on P before it terminates with solution γ.

S:V-89 Search Theory © Stein/Lettmann 2023

Remarks:

q If there is no solution path in G, we have C∗ = +∞ and any node reachable from s will be
expanded by A* using h.

q An optimum path to a node n may be C∗-bounded only, although a strictly C∗-bounded path
exists.

q In the book of Pearl, the two previous theorems are denoted as Theorem 6 and Theorem 5
respectively. [Pearl 1984]

S:V-90 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Conditions for Node Expansion II [Conditions I, Conditions III]

For admissible heuristic functions h hold:

node expansion by A* ⇒ ∃C∗-bounded path Ps−n︸ ︷︷ ︸
necessary

∃ strictly C∗-bounded path Ps−n︸ ︷︷ ︸
sufficient

⇒ node expansion by A*

Again, none of the Theorems 75 and 76 gives a condition for node expansion that is
both necessary and sufficient:

The theorems do not treat C∗-bounded paths with f (n′) = C∗ for some intermediate
node n′.

S:V-91 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Informedness and Dominance

Definition 77 (Informedness)

A heuristic function h2 is called more informed than a heuristic function h1 iff (↔)
both functions are admissible and if holds

h2(n) > h1(n), ∀n ∈ G, n 6∈ Γ

An A* algorithm that uses such a heuristic function h2 is called more informed than
an A* algorithm that uses h1.

S:V-92 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Informedness and Dominance (continued)

Corollary 78 (Dominance)

Let G be a search space graph with PropA∗(G). If h2(n) > h1(n) holds for any n in G
with n 6∈ Γ, and if h2(n) and h1(n) both are admissible, then A*2 (A* informed by
h2(n)) dominates A*1 (A* informed by h1(n)).

S:V-93 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Informedness and Dominance (continued)

Corollary 78 (Dominance)

Let G be a search space graph with PropA∗(G). If h2(n) > h1(n) holds for any n in G
with n 6∈ Γ, and if h2(n) and h1(n) both are admissible, then A*2 (A* informed by
h2(n)) dominates A*1 (A* informed by h1(n)).

Proof (sketch)

1. Let A*2 expand a node n in G with n 6∈ Γ.

2. Thus the current back-pointer path P of n is a C∗-bounded path P from s to n with respect
to h2, i.e., gP (n′) + h2(n

′) ≤ C∗ for each n′ on P . [Theorem 75]

3. Since no goal node is contained in P and h2 is more informed than h1, for each node n′ on P
holds h2(n′) > h1(n

′).

4. Hence gP (n′) + h1(n
′) < C∗ for each n′ on P .

5. Thus P is strictly C∗-bounded with respect to h1.

6. A*1 will expand n. [Theorem 76]

S:V-94 Search Theory © Stein/Lettmann 2023

Remarks:

q The requirement of Definition 77 (Informedness), namely, the strict inequality between h2 and
h1, is rarely satisfied—even in situations where h2 is clearly superior to h1.
Example 8-Puzzle: h1 (number of misplaced tiles) often equals h2 (sum of Manhattan
distances of misplaced tiles).

q In the book of Pearl this theorem is denoted as Theorem 7 and Nilsson Result 6 respectively.
[Pearl 1984]

S:V-95 Search Theory © Stein/Lettmann 2023

Efficiency of A*
Informedness and Dominance: Discussion

Q. If h2 > h1 cannot be satisfied in practice, then under which conditions does A*2

(using h2) dominate A*1 (using h1) when h2 ≥ h1 ?

A1: If both algorithms use the same tie breaking rule and if the rule is purely
structural (i.e., independent of the values of g and h).

A2: In situations where we want to find all goal nodes that can be reached with
cheapest cost, Theorem 75 gives both a necessary and sufficient condition
for node expansion.
In this case, Definition 77 (Informedness) can permit equalities without
affecting Corollary 78.

A3: Theorem 85 demonstrates that under reasonable assumptions equalities
between h1 and h2 only violate the dominance of A*2 on a small set of nodes
for which g∗(n) + h2(n) = C∗ holds.

S:V-96 Search Theory © Stein/Lettmann 2023

Remarks:

q For search space graphs G with PropA∗(G) it is possible to find all goal nodes that can be
reached with cheapest cost. But for search space graphs G with PropA∗(G) it is in general
not possible to find all optimum cost solution paths (path discarding for multiple optimum cost
paths to the same node).

S:V-97 Search Theory © Stein/Lettmann 2023

Chapter S:V

V. Formal Properties of A*
q Properties of Search Space Graphs
q Auxiliary Concepts
q Roadmap

q Completeness of A*
q Admissibility of A*
q Efficiency of A*
q Monotone Heuristic Functions

S:V-98 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Motivation

Previous consideration:

The efficiency of A* can be measured by the number of nodes it manages to
exclude from expansion.

maximize |{n | f (n) > C∗}︸ ︷︷ ︸
S

|

More reasonable:

The number of expansion operations should be analyzed. Why?

S:V-99 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Motivation

Previous consideration:

The efficiency of A* can be measured by the number of nodes it manages to
exclude from expansion.

maximize |{n | f (n) > C∗}︸ ︷︷ ︸
S

|

More reasonable:

The number of expansion operations should be analyzed. Why?

Starting point:

Under certain conditions A* will never reopen a node from CLOSED. What does
that mean?

S:V-100 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Motivation

Recap: Cheapest paths to a goal, which are constrained to pass through a node n,
cannot be cheaper than unrestricted cheapest paths to a goal.

Formally:
∀ n : h∗(s) ≤ g∗(n) + h∗(n)

or: h∗(s) ≤ k(s, n) + h∗(n), since g∗(n) = k(s, n)

S:V-101 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Motivation

Recap: Cheapest paths to a goal, which are constrained to pass through a node n,
cannot be cheaper than unrestricted cheapest paths to a goal.

Formally:
∀ n : h∗(s) ≤ g∗(n) + h∗(n)

or: h∗(s) ≤ k(s, n) + h∗(n), since g∗(n) = k(s, n)

In general, the following “triangle inequality” holds:

∀ n, n′ : h∗(n) ≤ k(n, n′) + h∗(n′)

It is reasonable to expect that if the process of estimating h(n) is “consistent”, it
should inherit the triangle inequality from h∗.

S:V-102 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Illustration of the Global Triangle Inequality

∀ n, n′ : h∗(n) ≤ k(n, n′) + h∗(n′)

n'

γ

n

h*(n)

h*(n’)

k(n,n’)

n'

γ

n

h*(n)

h*(n’)

k(n,n’)

Identical path: Different paths:

S:V-103 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Illustration of the Local Triangle Inequality

∀ n, n′ : h∗(n) ≤ c(n, n′) + h∗(n′)

Different paths:Identical paths:

n'

γ

n
c(n,n’)

h*(n)

h*(n’)

n'

γ

n
c(n,n’)

h*(n)

h*(n’)

S:V-104 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Definition 79 (Consistency Condition)

Let G be a search space graph with PropA∗(G).
A heuristic function h is called consistent, iff (↔) for all nodes n, n′ in G holds:

h(n) ≤ k(n, n′) + h(n′)

S:V-105 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Definition 79 (Consistency Condition)

Let G be a search space graph with PropA∗(G).
A heuristic function h is called consistent, iff (↔) for all nodes n, n′ in G holds:

h(n) ≤ k(n, n′) + h(n′)

Definition 80 (Monotonicity Condition)

Let G be a search space graph with PropA∗(G).
A heuristic function h is called monotone, iff (↔) for all nodes n, n′ in G with
n′ ∈ succ(n) holds:

h(n) ≤ c(n, n′) + h(n′)

S:V-106 Search Theory © Stein/Lettmann 2023

Remarks:

q The consistency condition corresponds to the fulfillment of the global triangle inequality.

q The monotonicity condition corresponds to the fulfillment of the local triangle inequality.

q The global triangle inequality is obviously fulfilled for nodes n, n′ where n′ ist not reachable
from n in G. Recall that we defined k(n, n′) := +∞ for such nodes.

q If c(n, n′) = +∞ for nodes n, n′ with n′ /∈ succ(n), the local triangle inequality holds for all
nodes n, n′ in G.

S:V-107 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Theorem 81 (Consistency Equivalent to Monotonicity)

Let G be a search space graph with PropA∗(G). A heuristic function h is consistent
iff (↔) h is monotone.

Consistency ⇔ Monotonicity

h(n) ≤ k(n, n′) + h(n′) h(n) ≤ c(n, n′) + h(n′)

S:V-108 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Theorem 81 (Consistency Equivalent to Monotonicity)

Let G be a search space graph with PropA∗(G). A heuristic function h is consistent
iff (↔) h is monotone.

Consistency ⇔ Monotonicity

h(n) ≤ k(n, n′) + h(n′) h(n) ≤ c(n, n′) + h(n′)

Proof (sketch)

1. “⇒”
Monotonicity follows from consistency, since consistency states the triangle inequality for any
pair of nodes n, n′ with n′ reachable from n considering cost of a cheapest path. Monotonicity
considers special pairs of nodes n′ ∈ succ(n), and per definition holds: k(n, n′) ≤ c(n, n′)

2. “⇐”
Let nl be reachable from n0 and let P = (n0, n1, . . . , nl) be a cheapest path from n0 to nl.
Using the monotonicity of h it can be proven by induction over the path length that

h(n0) ≤
l∑

i=1

c(ni−1, ni) + h(nl)

Since a cheapest path P was considered, we have k(n0, nl) =
∑l

i=1 c(ni−1, ni).

S:V-109 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Illustration of a Monotone h [non-monotone]

Monotonicity defines a restriction on h(n′): When moving from n to n′ along the
edge (n, n′), the h-value decreases at most by c(n, n′).

q For an edge:

n'n
c(n,n')

c(n,n')

n'n

hh

Time of expansion

S:V-110 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Illustration of a Monotone h [non-monotone]

Monotonicity defines a restriction on h(n′): When moving from n to n′ along the
edge (n, n′), the h-value decreases at most by c(n, n′).

q For an edge:

n'n
c(n,n')

c(n,n')

n'n

hh

Time of expansion

q For an optimum solution path:

γ

Cost

h
g

C*

Depth in search space graph

S:V-111 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Theorem 82 (Monotone Heuristic Functions)

Let G be a search space graph with PropA∗(G). A consistent heuristic function h is
admissible.

S:V-112 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Theorem 82 (Monotone Heuristic Functions)

Let G be a search space graph with PropA∗(G). A consistent heuristic function h is
admissible.

Proof (sketch)

1. Let h be consistent, i.e., h(n) ≤ k(n, n′) + h(n′) for all nodes n, n′ in G.

2. Consider an arbitrary node n.

3. If no goal node is reachable from n, then h∗(n) = +∞ and thus h(n) ≤ h∗(n).

4. If some goal node is reachable from n, there is also a goal node γ reachable from n with
cheapest cost. [

:::::::::
Corollary

::::::::::
“Solution

::::::::::::
Existence

:::::::
Entails

::::::::::::
Optimum”]

5. Using n′ = γ, we have h(n) ≤ k(n, γ)︸ ︷︷ ︸
h∗(n)

+h(γ)︸︷︷︸
0

.

6. Since n is arbitrary chosen, h(n) ≤ h∗(n) holds for all nodes. Hence h is admissible.

S:V-113 Search Theory © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#corollary-optimum-path-existence

Remarks:

q Consider the special case h(n) = 0. For a graph with positive edge cost h(n) = 0 is
monotone.

q Q. Compare A* with h(n) = 0 to the shortest-path algorithm of Dijkstra. Does Dijkstra’s
shortest-path algorithm reopen nodes?

S:V-114 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Theorem 83 (No Reopening)

Let G be a search space graph with PropA∗(G). An A* algorithm that uses a
monotone heuristic function h will expand only nodes to which it has found cheapest
paths:

g(n) = g∗(n), ∀ n ∈ CLOSED

S:V-115 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Theorem 83 (No Reopening)

Let G be a search space graph with PropA∗(G). An A* algorithm that uses a
monotone heuristic function h will expand only nodes to which it has found cheapest
paths:

g(n) = g∗(n), ∀ n ∈ CLOSED

Proof (sketch)

1. Assume that A* selects a node n for expansion with g(n) > g∗(n).

2. Let P ∗s−n be a cheapest path from s to n.

3. If P ∗s−n ∩OPEN = {n}, then all predecessors of n on P ∗s−n have been expanded and
g(n) = g∗(n), contradicting the assumption. [

::::::::
Lemma

:::::::::::::
“Shallowest

:::::::
OPEN

:::::::
Node

:::
on

::::::::::
Optimum

:::::::
Path”]

4. If P ∗s−n ∩OPEN 6= {n}, let n′ be the shallowest OPEN node on P ∗s−n.

5. Using g(n′) = g∗(n′) [
::::::::
Lemma

:::::::::::::
“Shallowest

:::::::
OPEN

:::::::
Node

:::
on

::::::::::
Optimum

:::::::
Path”] and the monotonicity of h

we have f(n′) = g(n′) + h(n′) = g∗(n′) + h(n′) ≤ g∗(n′) + k(n′, n) + h(n).

6. Since n′ ∈ P ∗s−n, we have g∗(n′) + k(n′, n) = g∗(n) and thus f(n′) ≤ g∗(n) + h(n).

7. According to the assumption g(n) > g∗(n) we have f(n′) < g(n) +h(n) and thus f(n′) < f(n).

8. A* selects n′ for expansion instead of n, contradicting the assumption.

S:V-116 Search Theory © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#corollary-shallowest-open-node-optimum-path
https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#corollary-shallowest-open-node-optimum-path

Remarks:

q Note that a heuristic function can be admissible without being monotone: admissibility is
necessary for monotonicity.

q In the book of Pearl this theorem is denoted as Theorem 10 and Nilsson Result 7
respectively. [Pearl 1984]

S:V-117 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Illustration of a Non-Monotone h [monotone]

n0

γ

n1 n2

5

55

10

n

f = g + h = 10 + 20 = 30

S:V-118 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Illustration of a Non-Monotone h [monotone]

n0

γ

n1 n2

5

55

10

n

f = g + h = 10 + 20 = 30

f = g + h = 15 + 20 = 35 f = g + h = 15 + 40 = 55

S:V-119 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Illustration of a Non-Monotone h [monotone]

n0

γ

n1 n2

5

55

10

n

f = g + h = 10 + 20 = 30

f = g + h = 15 + 20 = 35 f = g + h = 15 + 40 = 55

t1 : f = g + h = 25 + 15 = 40

S:V-120 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Illustration of a Non-Monotone h [monotone]

n0

γ

n1 n2

5

55

10

n

f = g + h = 10 + 20 = 30

f = g + h = 15 + 20 = 35 f = g + h = 15 + 40 = 55

t1 : f = g + h = 25 + 15 = 40 t2 : f = g + h = 20 + 15 = 35

S:V-121 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Illustration of a Non-Monotone h [monotone]

n0

γ

n1 n2

5

55

10

n

f = g + h = 10 + 20 = 30

f = g + h = 15 + 20 = 35 f = g + h = 15 + 40 = 55

t1 : f = g + h = 25 + 15 = 40 t2 : f = g + h = 20 + 15 = 35

The monotonicity condition, h(n2) ≤ c(n2, n) + h(n), is not satisfied for n2: 40 > 5 + 15

Sequence of node expansions: n0, n1, n, . . . , n2, n

Cost

h
g

Time of expansion
10

30

50

n0 n1 n nn2

S:V-122 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Theorem 84 (Non-Decreasing f -Values)

Let G be a search space graph with PropA∗(G). When using a monotone heuristic
function h the f -values of the sequence of nodes expanded by an A* algorithm will
be non-decreasing.

S:V-123 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Theorem 84 (Non-Decreasing f -Values)

Let G be a search space graph with PropA∗(G). When using a monotone heuristic
function h the f -values of the sequence of nodes expanded by an A* algorithm will
be non-decreasing.

Proof (sketch)

1. Let n2 be expanded directly after n1 in the sequence of node expansions.

2. If n2 is no successor of n1 in G, then n2 is on OPEN as well and f(n2) ≥ f(n1).

3. If n2 is successor of n1 in G, then a new path to n2 was found when n1 was expanded.

For the f -value of n2 holds:

(a) If n2 was newly generated, then, since h is monotone,
fnew(n2) = g(n1) + c(n1, n2) + h(n2) ≥ g(n1) + h(n1) = f(n1). [Illustration]

(b) If n2 was already on OPEN then holds:

– If f(n2) was improved, then Case (a) defines the new f -value of n2.
– If f(n2) was not improved, then f(n2) ≥ f(n1) must still have hold.

Finally, n2 was not on CLOSED, since it was expanded. [Theorem 83]

S:V-124 Search Theory © Stein/Lettmann 2023

Remarks:

q In the book of Pearl this theorem is denoted as Theorem 11 and Nilsson Result 8
respectively. [Pearl 1984]

S:V-125 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Illustration of Non-Decreasing f -Values

1. Along an optimum solution path (in the search space graph):

q Path cost values g(n) are (strictly) increasing since c(n, n′) > 0.

h
g

Depth in search space graph

Cost C*

γ

q Usually, estimated cheapest remaining cost values h(n) are decreasing. The
monotonicity condition h(n) ≤ c(n, n′) + h(n′) restricts the possible changes in h(n).

h
g

Depth in search space graph

Cost C*

γ

Ü This ensures that the estimated cheapest total cost values f(n) are non-decreasing.

h
g

Depth in Search Graph

Cost C*

γ

S:V-126 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Illustration of Non-Decreasing f -Values (continued)

2. In the sequence of nodes expanded by A* (in order of expansion):

We assume there is a solution path.

q Again we have: Estimated cheapest total cost values f(n) of nodes expanded by A* are
non-decreasing. [Theorem 84]

h
g

Cost C*

γ
Time of expansion

q But: For the sequences of path cost values g(n) or estimated cheapest remaining cost
values h(n) for node expanded by A* no monotonicity can be stated.
Q. Why not?

h
g

Cost C*

γ
Time of expansion

S:V-127 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Example: Knight Moves (revisited)

XK

b

m

s

f -values never decrease.

h =
⌈
#rows

2

⌉

OPEN CLOSED
{c, e, l, n, {m, b, d, a, s}
f, g, h, i, j, k, o, p}

n g(n) h1(n) f(n)

s 0 2 2
a 1 1 2
b 1 1 2
c 1 2 3
d 2 0 2
e 2 1 3
f 2 2 4
g 3 1 4
h 3 1 4
i 3 1 4
j 3 1 4
m 2 0 2
l 2 1 3
n 2 1 3
k 2 2 4
o 2 2 4
p 2 2 4

S:V-128 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Example: Knight Moves (revisited)

Analyzed part of the search space graph:

fed

jihg

c

h1 = 1,
f = 4

Solved rest problem

Node on OPEN

Node on CLOSED

a

h1 = 1,
f = 3

h1 = 1,
f = 4

h1 = 1,
f = 4

h1 = 1,
f = 4

h1 = 0,
f = 2

ponmlk
h1 = 2,
f = 4

h1 = 1,
f = 3

h1 = 0,
f = 2

h1 = 1,
f = 3

h1 = 2,
f = 4

h1 = 2,
f = 4

h1 = 2,
f = 4

bh1 = 1,
f = 2

h1 = 1,
f = 2

h1 = 2,
f = 3

h1 = 2,
f = 2

s

f -values never decrease. Q. Is h monotone—i.e., does h(n) ≤ c(n, n′) + h(n′) hold?

S:V-129 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Example: Knight Moves (revisited)

Analyzed part of the search space graph:

fed

jihg

c

h1 = 1,
f = 4

Solved rest problem

Node on OPEN

Node on CLOSED

a

h1 = 1,
f = 3

h1 = 1,
f = 4

h1 = 1,
f = 4

h1 = 1,
f = 4

h1 = 0,
f = 2

ponmlk
h1 = 2,
f = 4

h1 = 1,
f = 3

h1 = 0,
f = 2

h1 = 1,
f = 3

h1 = 2,
f = 4

h1 = 2,
f = 4

h1 = 2,
f = 4

bh1 = 1,
f = 2

h1 = 1,
f = 2

h1 = 2,
f = 3

h1 = 2,
f = 2

s

f -values never decrease. Q. Is h monotone—i.e., does h(n) ≤ c(n, n′) + h(n′) hold?

m = γ

Cost h
g

bd

1

C* = 2

Time of expansion
s a

S:V-130 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Coping with non-monotonicity [Martelli 77]

Starting point: Decreasing f -values indicate non-monotonicity in estimations.

Martelli suggests algorithm B with a node selection strategy based on storing a
value F that is the biggest f -value of nodes expanded so far:

q Initially, assign F ← 0.

q When entering the main loop:

– If there is a node n′ on OPEN with f(n′) < F ,
then select a node n from OPEN with f(n) < F and minimum g-value.

– Otherwise, select a node n with minimum f -value from OPEN and let F ← f(n).

Algorithm B is A* with a different node selection strategy.

Ü Algorithm B is admissible. B dominates A*.

The
:::::::::::::::::
exponential

:::::::::::::
number

::::
of

:::::::::
node

::::::::::::::::::
expansions

::::::::::::::
example

:::::::::::::
problem

:::::
for

:::::
A* will be

solved with a quadratic number by algorithm B.

S:V-131 Search Theory © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-informed-bf2.pdf#a-star-exponential-runtime-example

Monotone Heuristic Functions
Coping with non-monotonicity [Mero 84]

Starting point: Non-monotone behavior of h is observed in node expansions.

Mero suggests algorithm B’ with an additional adaption of h-values in node
expansions in Martelli’s algorithm:

q Initially, assign h′(s)← h(s) for the start node s.

q When entering the main loop:

– Select a node n with minimum value g(n) + h′(n) from OPEN.

– If n is expanded, then let

h′(n′)←

max{h(n′), (h′(n)− c(n, n′))} for all successor nodes n′ of n

that were not in OPEN or CLOSED,

max{h′(n′), (h′(n)− c(n, n′))} for all other successor nodes n′ of n.

Algorithm B’ is A* with heuristic values h′ changing during runtime.

Ü Algorithm B’ is admissible. B’ dominates B and A*.

S:V-132 Search Theory © Stein/Lettmann 2023

Remarks:

q If only the adaption of h-values for successor nodes is used, the resulting method is known
as pathmax:

h′(n′) = max{h(n′), h′(n)− c(n, n′))} for all successors n′ of n.

Let A* use h′-values in the node selection step instead of h-values.

In this way, f -values in back-pointer paths increase along the path. However, using this
method does not prevent CLOSED nodes from being reopened. The following example,
which shows this behavior, is based on an idea of Holte [Holte 2010]:

s

Solved rest problem

h=0

h=5

h=11

h=99

h=0
99

99

11

Remarks on Mero’s full method can be found in [Zhang 2009].

S:V-133 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Conditions for Node Expansion III

Theorem 85 (Necessary and Sufficient Conditions for Node Expansion III)

Let G be a search space graph with PropA∗(G) and let A* use a monotone heuristic
function h. The condition g∗(n) + h(n) ≤ C∗ is a necessary condition for expanding
node n. A sufficient condition for expanding n is g∗(n) + h(n) < C∗.

S:V-134 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Conditions for Node Expansion III

Theorem 85 (Necessary and Sufficient Conditions for Node Expansion III)

Let G be a search space graph with PropA∗(G) and let A* use a monotone heuristic
function h. The condition g∗(n) + h(n) ≤ C∗ is a necessary condition for expanding
node n. A sufficient condition for expanding n is g∗(n) + h(n) < C∗.

Proof (sketch)

1. The necessary condition follows by combining Theorem 71 and Theorem 83.

2. The sufficient condition follows from the non-decreasing behavior of f -values along optimum
paths, i.e.,

g∗(n1) + h(n1) ≤ g∗(n1) + c(n1, n2) + h(n2) = g∗(n2) + h(n2)

for nodes n1, n2 on an optimum path P ∗s−n to a node n with n2 being a successor of n1.

3. ⇒ From condition g∗(n) + h(n) < C∗ then follows that P ∗s−n is strictly C∗-bounded.

4. ⇒ Hence, n will be expanded. [Theorem 76]

S:V-135 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions
Conditions for Node Expansion III [Conditions I, Conditions II]

For monotone heuristic functions h hold:

node expansion by A* ⇒ g∗(n) + h(n) ≤ C∗︸ ︷︷ ︸
necessary

g∗(n) + h(n) < C∗︸ ︷︷ ︸
sufficient

⇒ node expansion by A*

Again, Theorem 85 does not give a condition for node expansion that is both
necessary and sufficient:

The theorem does not treat nodes with g∗(n) + h(n) = C∗.

S:V-136 Search Theory © Stein/Lettmann 2023

Remarks:

q If monotone heuristic functions are used, then the condition g∗(n) + h(n) < C∗ has to be
tested only for a node n—but the computation of g∗(n) may be costly. If searching a strictly
C∗-bounded path to n, any node on that path has to be considered.

q Since f -values for the sequence of expanded nodes are non-decreasing, the advantage of
using different tie breaking rules along with the same monotone heuristic h is limited to the
number of nodes with g∗(n) + h(n) = C∗. Recall that such nodes may occur on any path, not
only on solution paths. An inferior tie breaking rule may select a node with g∗(n) + h(n) = C∗

that is not on an optimum solution path.
Nodes with g∗(n) + h(n) < C∗ may be expanded at different points in time due to different tie
breaking rules but they will be expanded before termination.

q Theorem 85 gives an explanation why the difference between the relation f(n) ≤ C∗ and
f(n) < C∗ is often insignificant: If f(n) can be modeled as a continuous random variable, the
equality f(n) = C∗ becomes a rare event.

q In the book of Pearl this theorem is denoted as Theorem 12. [Pearl 1984]

S:V-137 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Definition 86 (Largely Dominating Algorithms)

An algorithm A1 (informed by h1) largely dominates A2 (informed by h2) if every
node expanded by A1 is also expanded by A2 except, perhaps, some nodes for
which h1(n) = h2(n) = C∗ − g∗(n) holds.

Corollary 87 (of Theorem 85)

Let G be a search space graph with PropA∗(G). If h1(n) ≥ h2(n) holds for any n and
if h1(n) and h2(n) both are monotone, then A*1 (A* informed by h1(n)) largely
dominates A*2 (A* informed by h2(n)).

S:V-138 Search Theory © Stein/Lettmann 2023

Monotone Heuristic Functions

Definition 86 (Largely Dominating Algorithms)

An algorithm A1 (informed by h1) largely dominates A2 (informed by h2) if every
node expanded by A1 is also expanded by A2 except, perhaps, some nodes for
which h1(n) = h2(n) = C∗ − g∗(n) holds.

Corollary 87 (of Theorem 85)

Let G be a search space graph with PropA∗(G). If h1(n) ≥ h2(n) holds for any n and
if h1(n) and h2(n) both are monotone, then A*1 (A* informed by h1(n)) largely
dominates A*2 (A* informed by h2(n)).

Proof (sketch)

1. Let n be a node expanded by A*1 but not by A*2.

2. It holds: g∗(n) + h1(n) ≤ C∗ and C∗ ≤ g∗(n) + h2(n) [Theorem 85]

3. Since h1(n) ≥ h2(n) holds: C∗ ≤ g∗(n) + h2(n) ≤ g∗(n) + h1(n) ≤ C∗

4. ⇒ h1(n) = h2(n) = C∗ − g∗(n)

S:V-139 Search Theory © Stein/Lettmann 2023

Remarks:

q Note that in the absence of monotonicity, the advantage of A*1 over A*2 would be much less
certain: every descendant of n that is reachable from n by a—wrt. h1 strictly C∗-bounded
path—will also be expanded by A*1 and possibly not by A*2.

q If h is monotone (or consistent), then A* largely dominates every admissible algorithm having
access to the same h. [Dechter/Pearl 1983]

q If h is admissible but not monotone (or consistent), then there are admissible algorithms that,
using the same h, will grossly outperform A* in some problem instances, regardless of what
tie breaking rule A* invokes. [Pearl 1984]

q Monotonicity is not an exceptional property but can be often established for an admissible
heuristic. For instance, all the heuristic functions discussed in the introduction are monotone.

S:V-140 Search Theory © Stein/Lettmann 2023

	Efficiency of A*
	Monotone Heuristic Functions

