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Motivation

q Optimization problems.

If the available heuristic is an optimistic estimate of h∗, then A* is guaranteed
to find an optimum solution path if one exists.

Ü The solution path found by A* is optimal.

q Constraint satisfaction problems.

If several near-optimum solutions exist, then A* uniformly follows the different
paths, spending a lot of time.

Ü The admissibility property becomes a curse rather than a virtue.
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Motivation
Basic Questions from Search Theory [Barr/Feigenbaum 1981]

1. Let minimizing effort be more important than minimizing solution cost.

Is f = g + h an appropriate evaluation function in this case?

2. Even if solution cost is important, an admissible search might take too long.

Can speed be gained at the cost of a bounded decrease in solution quality?

3. For some problems, all good heuristics (h ≈ h∗) are not optimistic.

How is the search affected by an inadmissible heuristic function?
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Remarks:

q Up to now, we used the paradigm “small-is-quick”: Focusing the search effort toward finding
a smallest solution (e.g., shortest solution path) leads to a smaller search effort in finding a
solution.

q The above observations cast doubt on the appropriateness of the small-is-quick paradigm in
satisficing problems. Would it not be better to focus more on nodes which are assumed close
to some solution?
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Motivation
Examination of g and h

Recall that A* orders nodes on OPEN by f = g + h.

q g represents the breadth-first component of A* search.
Nodes closer to the start s are preferred.

q h represents the depth-first component of A* search.
Nodes estimated to be closer to a goal γ are preferred.

Ü We can adjust the balance of the breadth-first and depth-first components for
satisficing or semi-optimization problems.
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Motivation
Examination of g and h

Recall that A* orders nodes on OPEN by f = g + h.

q g represents the breadth-first component of A* search.
Nodes closer to the start s are preferred.

q h represents the depth-first component of A* search.
Nodes estimated to be closer to a goal γ are preferred.

Ü We can adjust the balance of the breadth-first and depth-first components for
satisficing or semi-optimization problems.

Adding weights to the components of f [Pohl 1970]:

fw(n) = (1− w) · g(n) + w · h(n) with w ∈ [0; 1]

q w = 0 ; Uniform-cost search

q w = 1
2 ; A*

q w = 1 ; BF* with f = h.
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Remarks:

q 1. For w ≈ 0, the estimate of the remaining cost is (nearly) ignored.
2. For w ≈ 1, the current path cost is (nearly) ignored.
In which cases should the first option be preferred, in which cases the second option?

q For w ∈ [0; 1
2 ], if h is admissible, then best-first search with fw is admissible.

But it can be shown that a weighted best-first search with w ∈ [0; 1
2 ] will expand all nodes n

with h(n) > 0 that are expanded by A*. Thus it is disadvantageous to use w < 1
2.

q For w ∈ (12 ; 1], even if h is admissible, best-first search with fw is not admissible in the general
case.

q Usually, the choice w = 1 is not adequate. Why?
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ε-Admissible Speedup Versions of A*
Bounded Decrease in Solution Quality

General Idea

q Strengthening the depth-first component to find some solution faster.

q Guaranteeing that the cost of the found solution will be near the optimal cost.
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ε-Admissible Speedup Versions of A*
Bounded Decrease in Solution Quality

General Idea

q Strengthening the depth-first component to find some solution faster.

q Guaranteeing that the cost of the found solution will be near the optimal cost.

Definition 88 (ε-Admissibility)

An algorithm is called ε-admissible for some ε ≥ 0, if – in case solutions exist – it
terminates with solution cost C such that

C ≤ (1 + ε) · C∗

Two approaches:

1. Adjusting the evaluation function in A*: WA*, DWA*.

2. Adjusting the node selection of A* from OPEN: A*ε.
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ε-Admissible Speedup Versions of A*
Static Weighting A* Search: WA* [Pohl 1970]

We use the weighting function discussed previously:

fw(n) = (1− w) · g(n) + w · h(n) with w ∈ [0.5; 1]

Equivalent formulation (scaling fw by 1
1−w):

fε(n) = g(n) + (1 + ε) · h(n) with ε > 0

BF* using fε with ε > 0 is called (static) weighting A* or WA*.
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ε-Admissible Speedup Versions of A*
Static Weighting A* Search: WA* [Pohl 1970]

We use the weighting function discussed previously:

fw(n) = (1− w) · g(n) + w · h(n) with w ∈ [0.5; 1]

Equivalent formulation (scaling fw by 1
1−w):

fε(n) = g(n) + (1 + ε) · h(n) with ε > 0

BF* using fε with ε > 0 is called (static) weighting A* or WA*.

Ü Using evaluation functions fε with ε > 0 in A* does not change path cost
calculations (g-part).

Ü When considering graphs G with PropA∗(G), all results for A*, which do not
require further restrictions on the heuristic functions h, also apply to WA*.
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ε-Admissible Speedup Versions of A*
Static Weighting A* Search: WA* [Pohl 1970]

We use the weighting function discussed previously:

fw(n) = (1− w) · g(n) + w · h(n) with w ∈ [0.5; 1]

Equivalent formulation (scaling fw by 1
1−w):

fε(n) = g(n) + (1 + ε) · h(n) with ε > 0

BF* using fε with ε > 0 is called (static) weighting A* or WA*.

Ü Using evaluation functions fε with ε > 0 in A* does not change path cost
calculations (g-part).

Ü When considering graphs G with PropA∗(G), all results for A*, which do not
require further restrictions on the heuristic functions h, also apply to WA*.

ε should be chosen in such a way that (1 + ε) · h is not admissible. Why?

S:VI-13 Relaxed Models © STEIN/LETTMANN 2023



Remarks:

q Property 8 of PropA∗(G) restricts the heuristic function h in A*:

For each node n in G a heuristic estimate h(n) of the cheapest path cost
from n to Γ is computable and h(n) ≥ 0. Especially, it holds h(γ) = 0 for γ ∈ Γ.

Obviously, if the restrictions are met by a function h, then they are also met by function
(1 + ε)h with ε ≥ 0.

q A related approach was described by Harris [Harris 1974]. His Bandwidth Heuristic Search
algorithms is an A* algorithm using a heuristic function h with

h∗(n)− d ≤ h(n) ≤ h∗(n) + e

with some constants d, e ≥ 0 for all nodes n in G.

Taking into account only the right hand side inequality and using an admissible function h for
a graph G with PropA∗(G), this algorithm will – in case a solution exists – return a solution
with cost C such that C ≤ C∗ + e.

However, such a bandwidth restriction for values of the heuristic function can only exist if the
condition h(n) < +∞⇔ h∗(n) < +∞ holds. Obviously, there is no need to store a node n
with h(n) =∞ on OPEN, since there is no path from n to a goal node in G. Then, the
bandwidth condition allows us to drop a node n with h(n) < +∞ from OPEN whenever there
is another node n′ in OPEN with with h(n′) < +∞ such that f(n′) < f(n)− (e+ d).

When dropping nodes from OPEN, it is essential to verify that shallowest OPEN nodes of
optimum solution paths will never be dropped.
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ε-Admissible Speedup Versions of A*
Static Weighting A* Search: WA* [Pohl 1970]

Theorem 89 (ε-Admissibility of WA*)

Let G be a search space graph with PropA∗(G) and ε > 0. Then WA* with selection
function fε and an admissible heuristic function h is ε-admissible.

WA* terminates with solution cost C with C ≤ (1 + ε) · C∗ if solutions exist.
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ε-Admissible Speedup Versions of A*
Static Weighting A* Search: WA* [Pohl 1970]

Theorem 89 (ε-Admissibility of WA*)

Let G be a search space graph with PropA∗(G) and ε > 0. Then WA* with selection
function fε and an admissible heuristic function h is ε-admissible.

WA* terminates with solution cost C with C ≤ (1 + ε) · C∗ if solutions exist.

Proof (sketch)

1. [
:::::::::
Theorem

::::::::::::::::::
“Completeness”] implies completeness of WA*, since WA* differs from A* only in the

evaluation function used and since all restrictions for h in PropA∗(G) are also met by
(1 + ε) · h.

2. Let WA* terminate with goal node γ and solution cost C = fε(γ).

3. Let n′ be the shallowest OPEN node on some optimum solution path at termination. Then we
have fε(n′) = g∗(n′) + (1 + ε) · h(n′) ≤ (1 + ε) · (g∗(n′) + h(n′)).
[
:::::::::
Corollary

:::::::::::::
“Shallowest

::::::::
OPEN

::::::
Node

::::
on

::::::::::
Optimum

::::::
Path” also holds for WA*]

4. Since h is admissible, we have fε(n′) ≤ (1 + ε) · (g∗(n′) + h∗(n′))

5. From g∗(n′) + h∗(n′) = C∗ (node on optimum path) follows that fε(n′) ≤ (1 + ε) · C∗.

6. Since WA* selects nodes with smallest fε-values, we have C ≤ fε(n
′) ≤ (1 + ε) · C∗.
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ε-Admissible Speedup Versions of A*
Dynamic Weighting A* Search: DWA* [Pohl 1973]

Idea: Emphasize the depth-first component at the start, but use a balanced
weighting near the end to find solutions closer to the optimum:

fdε(n) = g(n) +

(
1 +

(
1− min(depth(n), N)

N

)
· ε
)
· h(n)

depth(n): depth of node n (length of back-pointer path to n)

N : (anticipated) depth of a desired goal node.

q depth(n)� N : h is given a supportive weight equal to (1 + ε).

Ü Depth-first excursions are encouraged.

q depth(n) near N : Termination is likely to occur.

Ü More emphasis on (near) optimality.

BF* using fdε with ε > 0 is called dynamic weighting A* or DWA*.
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Remarks:

q For ε −→ 0 we have f(d)ε(n) −→ g(n) + h(n).

q Like for WA*,
::::::::::::
Corollary

::::::::::::::::
“Shallowest

::::::::
OPEN

::::::::
Node

::::
on

:::::::::::::
Optimum

:::::::
Path” can be proven

analogously for DWA*.

q Note that, even if h is monotone, the fdε-values can decrease even along an optimum path.

q Moreover, monotonicity does not longer imply that no nodes are reopened.

q A revised version of DWA* uses a ratio of estimated distances to to goal nodes:

fdε(n) = g(n) +

(
1 +

min(d(n), d(s))

d(s)
· ε
)
· h(n)

The resulting algorithm is called RDWA* [Thayer & Ruml 2009].

“If d(n) is an accurate estimate of the length of a cost-optimal path from n to a goal node,
then revised dynamically weighted A* will only reward progress towards a goal instead of
rewarding all movement away from the root.”
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ε-Admissible Speedup Versions of A*
Dynamic Weighting A* Search: DWA* [Pohl 1973]

Theorem 90 (ε-Admissibility of DWA*)

Let G be a search space graph with PropA∗(G) and ε > 0. Then DWA* with selection
function fdε and admissible heuristic function h is ε-admissible.
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ε-Admissible Speedup Versions of A*
Dynamic Weighting A* Search: DWA* [Pohl 1973]

Theorem 90 (ε-Admissibility of DWA*)

Let G be a search space graph with PropA∗(G) and ε > 0. Then DWA* with selection
function fdε and admissible heuristic function h is ε-admissible.

Proof (sketch)

1. Using the same argumentation as for WA*, we arrive at

fdε(n
′) ≤

(
1 +

(
1− min(depth(n′), N)

N

)
︸ ︷︷ ︸

∈[0;1]

· ε
)
· (g∗(n′) + h∗(n′))︸ ︷︷ ︸

C∗

2. Therefore we have C ≤ fdε(n
′) ≤ (1 + ε) · C∗.
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ε-Admissible Speedup Versions of A*
Node Selection by hF (n): A*ε [Pearl/Kim 1982]

Idea: Selecting nodes depth-first-like from the cheapest OPEN nodes:

FOCAL = {n ∈ OPEN | f (n) ≤ (1 + ε) · min
n′∈OPEN

f (n′)}

...

FOCAL

f-sorted OPEN

f  →

Ü Nodes on FOCAL promise (roughly) equal quality solution paths.

q Instead of selecting the node n on OPEN with smallest f (n) for expansion,
we choose the node n′ on FOCAL with smallest hF (n′).

q The function hF (n) estimates the computational effort for completing the
search from n.

BF* using hF (n) on FOCAL for node selection and ε > 0 is called A*ε.
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Remarks:

q Depth of a node in the traversal tree can be seen an indication of computational effort
required to solve the rest problem for that node.

q Clearly, for ε = 0, A*ε reduces to A* with hF as a tie-breaker.

q hF (n) utilizes knowledge about the problem domain or about the structure of the search
space graph (like h).

q Q. How can the depth-first component of A* be emphasized using FOCAL and hF?

q A*ε uses two heuristic functions: h and hF .

h is used in forming FOCAL. It estimates the best-case reduction in solution quality for the
remaining path.

hF is used for selecting nodes from within FOCAL. It estimates the computational effort for
the remaining path.

q The paradigm “small-is-quick” is implemented by hF = f = g + h.
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ε-Admissible Speedup Versions of A*
Node Selection by hF (n): A*ε [Pearl/Kim 1982]

Theorem 91 (ε-Admissibility of A*ε)

Let G be a search space graph with PropA∗(G) and ε > 0. Then A*ε is ε-admissible
when using any hF to select from FOCAL and an admissible heuristic function h.
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ε-Admissible Speedup Versions of A*
Node Selection by hF (n): A*ε [Pearl/Kim 1982]

Theorem 91 (ε-Admissibility of A*ε)

Let G be a search space graph with PropA∗(G) and ε > 0. Then A*ε is ε-admissible
when using any hF to select from FOCAL and an admissible heuristic function h.

Proof (sketch)

1. Completeness of A*ε can be proven analogously to the proof of completeness of A*
[
:::::::::
Theorem

::::::::::::::::::
“Completeness”] using (1 + ε) ·M as cost bound for paths.

2. Let A*ε terminate with goal node γ and solution cost C = f(γ).

3. Let n′ be the shallowest OPEN node on some optimum solution path at termination. Then we
have f(n′) = g∗(n′) + h(n′). [

:::::::::
Corollary

:::::::::::::
“Shallowest

::::::::
OPEN

::::::
Node

::::
on

::::::::::
Optimum

::::::
Path”]

4. Since h is admissible, we have f(n′) ≤ g∗(n′) + h∗(n′)

5. From g∗(n′) + h∗(n′) = C∗ (node on optimum path) follows that f(n′) ≤ C∗.

6. Let n be the OPEN node with smallest f(n). By definition we have f(n) ≤ f(n′).

7. Since γ was selected from FOCAL, we have C ≤ f(n) · (1 + ε).

8. Therefore C ≤ f(n′) · (1 + ε).

9. Hence C ≤ C∗ · (1 + ε).
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Remarks:

q A* and A*ε use the same evaluation function f = g + h, only the selection rules based on f
differ. Hence, all results for A* that do not rely on the selection rule, e.g. termination on finite
graphs, completeness for finite graphs,

::::::::::
Lemma

:::::::::::::::
“Shallowest

:::::::::
OPEN

::::::::
Node

::::
on

::::::::
Path”,

::::::::::::
Corollary

:::::::::::::::
“Shallowest

:::::::::
OPEN

:::::::
Node

::::
on

:::::::::::::
Optimum

:::::::
Path”, and

:::::::::
Lemma

::::::::::::::::::
“C∗-bounded

:::::::::
OPEN

::::::::
Node”, can be

proven in the same way for A*ε.

Completeness for infinite graphs can be proven analogously to the proof for A* (
::::::::::::
Theorem

::::::::::::::::::::
“Completeness”) using bound (1 + ε) ·M instead of M in step 5.

q hF is allowed to be non-admissible. This does not affect ε-admissibility of A*ε.
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ε-Admissible Speedup Versions of A*
Comparison of DWA* and A*ε

q Advantage of DWA*:
Easy to implement on basis of A*.

q Disadvantage of DWA*:
Depth N of optimal/good solutions has to be estimated a priori.

q Advantage of A*ε:
The separation of the two heuristics h and hF enables the use of
sophisticated estimations of the computational cost, like

– global analysis of the back-pointer path from s to n, or
– utilization of non-additive or non-recursive functions.
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ε-Admissible Speedup Versions of A*
Comparison of DWA* and A*ε (continued)

Application of A*, DWA* and A*ε to Traveling Salesman problems. [Pearl/Kim 1982]

q 9 cities. Simple TSPs: cities distributed independently and uniformly in the unit square, i.e.
distances in (0; 1.414).
“Hard” TSPs: distances independently chosen from a uniform distribution over (0.75; 1.25).

q A*, DWA* and A*ε use h =
∑

i minj 6=i dij, where dij is the distance between city i and city j,
while i ranges over the unvisited cities and j ranges over the all cities.

q DWA* uses N = 9 (search depth is 9), DWA* and A*ε use ε ∈ (0; 0.2].

q The focal-heuristic hF of A*ε is the number of unvisited cities.

B

C

F

D

E

A
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ε-Admissible Speedup Versions of A*
Comparison of DWA* and A*ε (continued)

Application of A*, DWA* and A*ε to Traveling Salesman problems. [Pearl/Kim 1982]

q 9 cities. Simple TSPs: cities distributed independently and uniformly in the unit square, i.e.
distances in (0; 1.414).
“Hard” TSPs: distances independently chosen from a uniform distribution over (0.75; 1.25).

q A*, DWA* and A*ε use h =
∑

i minj 6=i dij, where dij is the distance between city i and city j,
while i ranges over the unvisited cities and j ranges over the all cities.

q DWA* uses N = 9 (search depth is 9), DWA* and A*ε use ε ∈ (0; 0.2].

q The focal-heuristic hF of A*ε is the number of unvisited cities.

A*ε

Dynamic Weighting DWA*

0.5 1.0

1.0

0.5

"Hard" TSP problems

Simple TSP problems

Ratio of number
nodes expanded  
to that epanded by A*

Ratio of number of
nodes expanded
to that epanded by A*
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ε-Admissible Speedup Versions of A*
Comparison of DWA* and A*ε (continued)

Application of A*, DWA* and A*ε to Traveling Salesman problems. [Pearl/Kim 1982]

q 9 cities. Simple TSPs: cities distributed independently and uniformly in the unit square, i.e.
distances in (0; 1.414).
“Hard” TSPs: distances independently chosen from a uniform distribution over (0.75; 1.25).

q A*, DWA* and A*ε use h =
∑

i minj 6=i dij, where dij is the distance between city i and city j,
while i ranges over the unvisited cities and j ranges over the all cities.

q DWA* uses N = 9 (search depth is 9), DWA* and A*ε use ε ∈ (0; 0.2].

q The focal-heuristic hF of A*ε is the number of unvisited cities.

A*ε

Dynamic Weighting DWA*

0.5 1.0

1.0

0.5

"Hard" TSP problems

Simple TSP problems

Ratio of number
nodes expanded  
to that epanded by A*

Ratio of number of
nodes expanded
to that epanded by A*
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Remarks:

q Each coordinate represents the ratio of the number of nodes expanded by the corresponding
algorithm to that expanded by A* (with the same heuristic h).

q The ε-admissible algorithms save computational effort (number of nodes expanded) ranging
between 60% and 90% for “hard” TSPs in comparison to A*.

q The chart indicates comparable performances for the two algorithms with an advantage for
A*ε for this (simple) experiment.

q If the Traveling Salesman problem is applied to a sparsely connected road map, the number
of edges in the unexplored portion of the graph would usually constitute a more valid
estimation of the remaining computational effort than the proportion of unexplored cities(

1− depth(n)
N

)
, which guides the dynamic weighting algorithm.
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ε-Admissible Speedup Versions of A*
Unifying View: WA* and DWA* as Variants of A*ε

Approach: Use hF = fε resp. hF = fdε in A*ε.

...

FOCAL

...

? ? ?

f(d)ε-sorted OPEN

f-sorted OPEN

(D)WA*

A*ε

Problem: Is it guaranteed that
(
argminn∈OPEN f(d)ε(n)

)
∈ FOCAL holds?
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Remarks:

q When implementing WA* and DWA* as variants of A*ε, we have to use the same tie breaking
strategy for hF in A*ε as was used in (D)WA* for f(d)ε.
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ε-Admissible Speedup Versions of A*

Lemma 92 (WA* and DWA* are variants of A*ε)

Let G be a search space graph with PropA∗(G) and ε > 0. Further let f = g + h be
the usual evaluation function and f ′ a second evaluation function with

f (n) ≤ f ′(n) ≤ (1 + ε) · f (n) for any n ∈ G.

Then, for any subset OPEN of nodes in G with n′0 := argminn∈OPEN f
′(n) we have

f (n′0) ≤ (1 + ε) min
n∈OPEN

f (n)
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ε-Admissible Speedup Versions of A*

Lemma 92 (WA* and DWA* are variants of A*ε)

Let G be a search space graph with PropA∗(G) and ε > 0. Further let f = g + h be
the usual evaluation function and f ′ a second evaluation function with

f (n) ≤ f ′(n) ≤ (1 + ε) · f (n) for any n ∈ G.

Then, for any subset OPEN of nodes in G with n′0 := argminn∈OPEN f
′(n) we have

f (n′0) ≤ (1 + ε) min
n∈OPEN

f (n)

Proof (sketch)

Let n0 := argminn∈OPEN f(n). Then we have

f(n′0) ≤ f ′(n′0)

≤ f ′(n0)

≤ (1 + ε) · f(n0)

= (1 + ε) ·minn∈OPEN f(n)

(Distinguish n0 and n′0 resp. f and f ′ and the chain of inequalities above.)
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ε-Admissible Speedup Versions of A*
Pruning Power of h for A*ε [

::
A*

:::::::::::
Condition

::
II]

Corollary 93 (Necessary Condition for Node Expansion II for A*ε)

Let G be a search space graph with PropA∗(G), an admissible heuristic function h,
and ε > 0. For any node n expanded by A*ε we have a (1 + ε) · C∗-bounded path
from s to n in G.

At time of expansion of a node n we have f (n) ≤ (1 + ε) · C∗.

Q. Is there a corresponding sufficient condition for node expansion?
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Remarks:

q This corollary holds also for WA* and DWA* (as special cases of A*ε).

q A proof can be given analogously to the proof of
:::::::::::
Theorem

::::::::::::::::
“Necessary

:::::::::::::
Condition

::::
for

::::::::
Node

:::::::::::::
Expansion

::::
II”.

q Analogously to
:::::::::
Lemma

::::::::::::::::::
“C∗-bounded

:::::::::
OPEN

::::::::
Node”, it can be proven that at any time before

termination there is a node n′ on OPEN with f(n′) ≤ C∗.

Therefore, no node n with f(n) > (1 + ε) · C∗ is contained in FOCAL. Hence, such a node n
cannot be selected for expansion.
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ε-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions h in A*ε

When using a monotone heuristic function in A*,

q at time of expansion of a node n an optimal path from s to n (the back-pointer
path) is known and

q path discarding will be performed only for nodes in OPEN, no node in
CLOSED will be reopened.

When using a monotone heuristic function in A*ε, this is not true in general.
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ε-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions h in A*ε

When using a monotone heuristic function in A*,

q at time of expansion of a node n an optimal path from s to n (the back-pointer
path) is known and

q path discarding will be performed only for nodes in OPEN, no node in
CLOSED will be reopened.

When using a monotone heuristic function in A*ε, this is not true in general.

Ü Restricted Parent Discarding
Parent discarding is applied only for nodes in OPEN, i.e. only for nodes that
have not been expanded.

An A*ε algorithm using restricted path discarding is called NRA*ε.

What are the consequences of using restricted path discarding with respect to
ε-admissibility?
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ε-Admissible Speedup Versions of A*
Example: Monotone Heuristic Function h in A*ε
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h=1
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h=1

Let s, n1, n2, ..., γ be an optimum solution path and ε = 1
2.

A*ε uses heuristic function hF = h.

q Node n2 is suboptimally reached, but nevertheless expanded.

q Then n1 is expanded and – due to path discarding – n2 will be reopened.

Ü Reopening cannot be avoided in A*ε although a monotone heuristic function h
is used.
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ε-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions h in A*ε (continued)

Lemma 94 (ε-Restricted Reopening)

Let G be a search space graph with PropA∗(G) and ε > 0. When using a monotone
heuristic function h in algorithm A*ε the deviation of the cost of the back-pointer path
of an expanded node from its optimal path cost is limited, i.e., for any node n in
CLOSED we have

g(n)− g∗(n) ≤ ε · (g∗(n) + h(n))
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ε-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions h in A*ε (continued)

Lemma 94 (ε-Restricted Reopening)

Let G be a search space graph with PropA∗(G) and ε > 0. When using a monotone
heuristic function h in algorithm A*ε the deviation of the cost of the back-pointer path
of an expanded node from its optimal path cost is limited, i.e., for any node n in
CLOSED we have

g(n)− g∗(n) ≤ ε · (g∗(n) + h(n))

Proof (sketch)

Let s, . . . , n′, . . . , n be an optimal path from s to n. At time of expansion of n let n′ be the shallowest
OPEN node in that path and let n0 be a node with smallest f -value in OPEN. The we have

f(n) ≤ (1 + ε) · f(n0)

≤ (1 + ε) · f(n′)

≤ (1 + ε) · (g∗(n′) + h(n′)) ≤ (1 + ε) · (g∗(n′) + k(n′, n) + h(n))

= (1 + ε) · (g∗(n) + h(n))
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ε-Admissible Speedup Versions of A*
Example: Monotone heuristic function h in NRA*ε
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Let s, n1, n2, . . . , γ be an optimum solution path, let ε = 1
2.

NRA*ε uses heuristic function hF = h.

NRA*ε uses restricted path discarding.

q Node n2 is suboptimally reached, but nevertheless expanded.

q Then n1 is expanded and—due to restricted path discarding—n2 will not be
reopened.

Ü The deviation to optimal path cost increases with each non-reopening and
hence depends on the length of paths.
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ε-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions h in NRA*ε

Theorem 95 (Bounded Admissibility of NRA*ε)

Let G be a search space graph with PropA∗(G) containing solution paths and let
ε > 0. Let N be the maximal length of an optimum solution path. If the heuristic
function h is monotone, algorithm NRA*ε terminates with solution cost C with

C ≤ (1 + ε)b
N
2 c · C∗
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ε-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions h in NRA*ε

Theorem 95 (Bounded Admissibility of NRA*ε)

Let G be a search space graph with PropA∗(G) containing solution paths and let
ε > 0. Let N be the maximal length of an optimum solution path. If the heuristic
function h is monotone, algorithm NRA*ε terminates with solution cost C with

C ≤ (1 + ε)b
N
2 c · C∗

Proof (sketch)

q Consider an optimum solution path. Then the path length is bounded by N .

q Restricted path discarding occurs on this path if

– a node that is suboptimally reached is expanded and
– a predecessor node is expanded later.

q Analogously to the preceding lemma it can be shown that the deviation in g-values is limited
for each occurrence of restricted path discarding.

q Since two new nodes must always be involved for an increase in deviation of a g-value to
occur, the deviation of a g-value from g∗ increases at most

⌊
N
2

⌋
times.
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