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Motivation

o Optimization problems.

If the available heuristic is an optimistic estimate of ~*, then A* is guaranteed
to find an optimum solution path if one exists.

The solution path found by A* is optimal.

o Constraint satisfaction problems.

If several near-optimum solutions exist, then A* uniformly follows the different
paths, spending a lot of time.

The admissibility property becomes a curse rather than a virtue.



Motivation
Basic Questions from Search Theory [Barr/Feigenbaum 1981]

1. Let minimizing effort be more important than minimizing solution cost.

Is f = g + h an appropriate evaluation function in this case?

2. Even if solution cost is important, an admissible search might take too long.

Can speed be gained at the cost of a bounded decrease in solution quality?



Remarks:
a Up to now, we used the paradigm “small-is-quick”: Focusing the search effort toward finding
a smallest solution (e.g., shortest solution path) leads to a smaller search effort in finding a
solution.

Q The above observations cast doubt on the appropriateness of the small-is-quick paradigm in
satisficing problems. Would it not be better to focus more on nodes which are assumed close

to some solution?



Motivation
Examination of g and A
Recall that A* orders nodes on OPEN by f = g + h.

o g represents the breadth-first component of A* search.
Nodes closer to the start s are preferred.

0 h represents the depth-first component of A* search.
Nodes estimated to be closer to a goal  are preferred.

We can adjust the balance of the breadth-first and depth-first components for
satisficing or semi-optimization problems.



Motivation
Examination of g and A

Recall that A* orders nodes on OPEN by f = g + h.

o g represents the breadth-first component of A* search.
Nodes closer to the start s are preferred.

0 h represents the depth-first component of A* search.
Nodes estimated to be closer to a goal  are preferred.

We can adjust the balance of the breadth-first and depth-first components for
satisficing or semi-optimization problems.

Adding weights to the components of f [Pohl 1970]:
fo(n)=(1—w)-g(n)+w-hn) with w € [0; 1]

o w=0 ~ Uniform-cost search

0 w:%«»A*

2 w=1 ~ BF*with f = h.



Remarks:

a 1. Forw = 0, the estimate of the remaining cost is (nearly) ignored.

2. Forw = 1, the current path cost is (nearly) ignored.
In which cases should the first option be preferred, in which cases the second option?

0 Forw € [0;3], if h is admissible, then best-first search with f,, is admissible.

But it can be shown that a weighted best-first search with w € [0; 1] will expand all nodes n
with i(n) > 0 that are expanded by A*. Thus it is disadvantageous to use w < 1.

0 Forw € (1;1], even if h is admissible, best-first search with f,, is not admissible in the general
case.

O Usually, the choice w = 1 is not adequate. Why?
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e-Admissible Speedup Versions of A*
Bounded Decrease in Solution Quality

General Idea

o Strengthening the depth-first component to find some solution faster.

o Guaranteeing that the cost of the found solution will be near the optimal cost.



e-Admissible Speedup Versions of A*
Bounded Decrease in Solution Quality

General Idea
o Strengthening the depth-first component to find some solution faster.

o Guaranteeing that the cost of the found solution will be near the optimal cost.

Definition 88 (c-Admissibility)
An algorithm is called s-admissible for some ¢ > 0, if — in case solutions exist — it
terminates with solution cost C' such that

C<(lte)-C*

Two approaches:
1. Adjusting the evaluation function in A*: WA*, DWA*,

2. Adjusting the node selection of A* from OPEN: A*..



e-Admissible Speedup Versions of A*
Static Weighting A* Search: WA*  [Pohi 1970]

We use the weighting function discussed previously:

fon) =01 —=w)-g(n)+w-h(n) with w € [0.5;1]

Equivalent formulation (scaling f,, by ﬁ):

f-(n)=g(n)+(1+¢)-h(n) withe >0

BF* using f. with ¢ > 0 is called (static) weighting A* or WA”.
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Equivalent formulation (scaling f,, by ﬁ):

f-(n)=g(n)+(1+¢)-h(n) withe >0

BF* using f. with ¢ > 0 is called (static) weighting A* or WA”.

Using evaluation functions f. with £ > 0 in A* does not change path cost
calculations (g-part).

When considering graphs G with Prop ,.(G), all results for A*, which do not
require further restrictions on the heuristic functions h, also apply to WA*.



e-Admissible Speedup Versions of A*
Static Weighting A* Search: WA*  [Pohi 1970]

We use the weighting function discussed previously:

fon) =01 —=w)-g(n)+w-h(n) with w € [0.5;1]

Equivalent formulation (scaling f,, by ﬁ):

f-(n)=g(n)+(1+¢)-h(n) withe >0

BF* using f. with ¢ > 0 is called (static) weighting A* or WA”.

Using evaluation functions f. with £ > 0 in A* does not change path cost
calculations (g-part).

When considering graphs G with Prop ,.(G), all results for A*, which do not
require further restrictions on the heuristic functions h, also apply to WA*.

e should be chosen in such a way that (1 + ¢) - h is not admissible. Why?



Remarks:
Q Property 8 of Prop ,.(G) restricts the heuristic function £ in A*:

For each node n in G a heuristic estimate h(n) of the cheapest path cost
from n to I" is computable and h(n) > 0. Especially, it holds h(y) = 0 for v € I.

Obviously, if the restrictions are met by a function h, then they are also met by function
(1+¢e)h with e > 0.

O Arelated approach was described by Harris [Harris 1974]. His Bandwidth Heuristic Search
algorithms is an A* algorithm using a heuristic function h with

h*(n) —d < h(n) <h*(n)+e
with some constants d, e > 0 for all nodes n in G.

Taking into account only the right hand side inequality and using an admissible function A for
a graph G with Prop ,.(G), this algorithm will — in case a solution exists — return a solution
with cost C' such that C' < C* + e.

However, such a bandwidth restriction for values of the heuristic function can only exist if the
condition h(n) < 400 < h*(n) < +oo holds. Obviously, there is no need to store a node n
with h(n) = oo on OPEN, since there is no path from n to a goal node in G. Then, the
bandwidth condition allows us to drop a node n with h(n) < +oo from OPEN whenever there
is another node »n' in OPEN with with h(n’) < 400 such that f(n') < f(n) — (e + d).

When dropping nodes from OPEN, it is essential to verify that shallowest OPEN nodes of
optimum solution paths will never be dropped.



e-Admissible Speedup Versions of A*
Static Weighting A* Search: WA*  [Pohi 1970]

Theorem 89 (s-Admissibility of WA*)

Let G be a search space graph with Prop ,.(G) and € > 0. Then WA* with selection
function f. and an admissible heuristic function h is s-admissible.



e-Admissible Speedup Versions of A*
Static Weighting A* Search: WA*  [Pohi 1970]

Theorem 89 (s-Admissibility of WA*)

Let G be a search space graph with Prop ,.(G) and € > 0. Then WA* with selection
function f. and an admissible heuristic function h is s-admissible.

Proof (sketch)

1. [Theorem “Completeness’] implies completeness of WA*, since WA* differs from A* only in the
evaluation function used and since all restrictions for & in Prop ,.(G) are also met by
(1+¢)-nh.

2. Let WA* terminate with goal node v and solution cost C = f.().

3. Letn be the shallowest OPEN node on some optimum solution path at termination. Then we
have f.(n') = g"(n') + (1 +¢) - h(n') < (1 +¢) - (g"(n) + h(n)).
[Carollary “Shallowest OPEN Node on Optimum Path” also holds for WA*]

4. Since h is admissible, we have f.(n') < (1 +¢) - (¢*(n') + " (1))
5. From ¢*(n’) + h*(n’) = C* (node on optimum path) follows that f.(n") < (1+4¢) - C".

6. Since WA* selects nodes with smallest f.-values, we have C < f.(n') < (1+¢) - C*.


https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#theorem-completeness
https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#corollary-shallowest-open-node-optimum-path

e-Admissible Speedup Versions of A*
Dynamic Weighting A* Search: DWA*  [Poni 1973]

|ldea: Emphasize the depth-first component at the start, but use a balanced
weighting near the end to find solutions closer to the optimum:

fa(n) = g(n) + (1 + (1 _ min(depth(n), ¥ >> -5) - h(n)

N

depth(n): depth of node n (length of back-pointer path to n)

N': (anticipated) depth of a desired goal node.

o depth(n) < N: his given a supportive weight equal to (1 + ¢).

Depth-first excursions are encouraged.

o depth(n) near N: Termination is likely to occur.

More emphasis on (near) optimality.

BF* using f4- with £ > 0 is called dynamic weighting A* or DWA*.



Remarks:

a

a

For e — 0 we have f).(n) — g(n) + h(n).

Like for WA*, Corollary “Shallowest OPEN Node on Optimum Path” can be proven
analogously for DWA*.

Note that, even if h is monotone, the f,.-values can decrease even along an optimum path.
Moreover, monotonicity does not longer imply that no nodes are reopened.
A revised version of DWA* uses a ratio of estimated distances to to goal nodes:

min(d(n), d(s))
d(s) e ) - hn)
The resulting algorithm is called RDWA?* [Thayer & Ruml 2009].

“If d(n) is an accurate estimate of the length of a cost-optimal path from » to a goal node,
then revised dynamically weighted A* will only reward progress towards a goal instead of
rewarding all movement away from the root.”

fa-(n) = g(n) + (1 +


https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#corollary-shallowest-open-node-optimum-path

e-Admissible Speedup Versions of A*
Dynamic Weighting A* Search: DWA*  [Pohi 1973]

Theorem 90 (s-Admissibility of DWA*)

Let G be a search space graph with Prop,.(G) and £ > 0. Then DWA* with selection
function f,;. and admissible heuristic function h is e-admissible.



e-Admissible Speedup Versions of A*
Dynamic Weighting A* Search: DWA*  [Poni 1973]

Theorem 90 (s-Admissibility of DWA*)

Let G be a search space graph with Prop,.(G) and £ > 0. Then DWA* with selection
function f,;. and admissible heuristic function h is e-admissible.

Proof (sketch)

1. Using the same argumentation as for WA*, we arrive at

futaty < (14 (1~ 2HEPRODRD Y. o) () 4 ()
\ . ) v

€[0;1]

2. Therefore we have C < f;.(n') < (1+4¢) - C*.



e-Admissible Speedup Versions of A*
Node Selection by hp(n): A*.  [Pearl/Kim 1982]

ldea: Selecting nodes depth-first-like from the cheapest OPEN nodes:
FOCAL={ne OPEN| f(n) < (1+¢)- min f(n')}

n'e OPEN

f— FOCAL

f-sorted OPEN

Nodes on FOCAL promise (roughly) equal quality solution paths.

o Instead of selecting the node n on OPEN with smallest f(n) for expansion,
we choose the node n’ on FOCAL with smallest hp(n').

o The function hp(n) estimates the computational effort for completing the
search from n.

BF* using hr(n) on FOCAL for node selection and ¢ > 0 is called A*..



Remarks:

a

Depth of a node in the traversal tree can be seen an indication of computational effort
required to solve the rest problem for that node.

Clearly, for e = 0, A*. reduces to A* with hr as a tie-breaker.

hr(n) utilizes knowledge about the problem domain or about the structure of the search
space graph (like h).

Q. How can the depth-first component of A* be emphasized using FOCAL and hz?

A*. uses two heuristic functions: ~ and hp.

h is used in forming FOCAL. It estimates the best-case reduction in solution quality for the
remaining path.

hr is used for selecting nodes from within FOCAL. It estimates the computational effort for
the remaining path.

The paradigm “small-is-quick” is implemented by hr = f = g + h.



e-Admissible Speedup Versions of A*
Node Selection by hp(n): A*.  [Pearl/Kim 1982]

Theorem 91 (s-Admissibility of A*,)

Let GG be a search space graph with Prop 4.(G) and € > 0. Then A*. is e-admissible
when using any hr to select from FOCAL and an admissible heuristic function h.



e-Admissible Speedup Versions of A*
Node Selection by hp(n): A*.  [Pearl/Kim 1982]

Theorem 91 (s-Admissibility of A*,)

Let GG be a search space graph with Prop 4.(G) and € > 0. Then A*. is e-admissible
when using any hr to select from FOCAL and an admissible heuristic function h.

Proof (sketch)

1. Completeness of A*. can be proven analogously to the proof of completeness of A*
[Theorem “Completeness”] using (1 + ¢) - M as cost bound for paths.

2. Let A*. terminate with goal node v and solution cost C' = f(v).

w

Let n’ be the shallowest OPEN node on some optimum solution path at termination. Then we
have f(n') = g*(n') + h(n'). [Corallary “Shallowest OPEN Node on Optimum Path’]

Since h is admissible, we have f(n’) < g*(n') + 1" (n/)

From g*(n') + h*(n’) = C* (node on optimum path) follows that f(n') < C*.

Let n be the OPEN node with smallest f(n). By definition we have f(n) < f(n').
Since v was selected from FOCAL, we have C < f(n) - (1 + ¢).

Therefore C < f(n/) - (1 +¢).

© © N O O &

Hence C < " - (1 +¢).


https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#theorem-completeness
https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#corollary-shallowest-open-node-optimum-path

Remarks:

Q A*and A*. use the same evaluation function f = g + h, only the selection rules based on f
differ. Hence, all results for A* that do not rely on the selection rule, e.g. termination on finite
graphs, completeness for finite graphs, Lemma “Shallowest OPEN Node on Path”, Corollary

“Shallowest OPEN Node on Optimum Path”, and Lemma “C*-bounded OPEN Node”, can be
proven in the same way for A*..

Completeness for infinite graphs can be proven analogously to the proof for A* (Theorem
“Completeness”) using bound (1 + ¢) - M instead of M in step 5.

0 hpis allowed to be non-admissible. This does not affect s-admissibility of A*..


https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#lemma-shallowest-open-node-on-path
https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#corollary-shallowest-open-node-optimum-path
https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#corollary-shallowest-open-node-optimum-path
https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#lemma-cstar-bounded-open-node
https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#theorem-completeness
https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#theorem-completeness

e-Admissible Speedup Versions of A*
Comparison of DWA* and A*,

o Advantage of DWA*:
Easy to implement on basis of A*.

o Disadvantage of DWA*:
Depth NV of optimal/good solutions has to be estimated a priori.

o Advantage of A*.:
The separation of the two heuristics h and hy enables the use of
sophisticated estimations of the computational cost, like
— global analysis of the back-pointer path from s to n, or
— utilization of non-additive or non-recursive functions.



e-Admissible Speedup Versions of A*
Comparison of DWA* and A*. (continued)

Application of A*, DWA* and A*. to Traveling Salesman problems. [Pearl/Kim 1982]

Q 9 cities. Simple TSPs: cities distributed independently and uniformly in the unit square, i.e.
distances in (0;1.414).
“Hard” TSPs: distances independently chosen from a uniform distribution over (0.75;1.25).

O A*, DWA*® and A*. use h = ), min; d;;, where d;; is the distance between city ¢ and city 7,
while ¢ ranges over the unvisited cities and j ranges over the all cities.

O DWA* uses N =9 (search depth is 9), DWA* and A*. use ¢ € (0;0.2].
Q The focal-heuristic Ay of A*, is the number of unvisited cities.




e-Admissible Speedup Versions of A*
Comparison of DWA* and A*. (continued)

Application of A*, DWA* and A*. to Traveling Salesman problems. [Pearl/Kim 1982]

Q 9 cities. Simple TSPs: cities distributed independently and uniformly in the unit square, i.e.
distances in (0;1.414).
“Hard” TSPs: distances independently chosen from a uniform distribution over (0.75;1.25).

O A*, DWA*® and A*. use h = ), min; d;;, where d;; is the distance between city ¢ and city 7,
while ¢ ranges over the unvisited cities and j ranges over the all cities.

O DWA* uses N =9 (search depth is 9), DWA* and A*. use ¢ € (0;0.2].
Q The focal-heuristic Ay of A*, is the number of unvisited cities.

Ratio of number
nodes expanded
to that epanded by A*

A

10 @ 'Hard" TSP problems

O Simple TSP problems
A

0.5
Ratio of number of

T — nodes expanded
05 1.0 to that epanded by A

Dynamic Weighting DWA*



e-Admissible Speedup Versions of A*
Comparison of DWA* and A*. (continued)

Application of A*, DWA* and A*. to Traveling Salesman problems. [Pearl/Kim 1982]

Q 9 cities. Simple TSPs: cities distributed independently and uniformly in the unit square, i.e.
distances in (0;1.414).
“Hard” TSPs: distances independently chosen from a uniform distribution over (0.75;1.25).
O A*, DWA*® and A*. use h = ), min; d;;, where d;; is the distance between city ¢ and city 7,
while ¢ ranges over the unvisited cities and j ranges over the all cities.

O DWA* uses N =9 (search depth is 9), DWA* and A*. use ¢ € (0;0.2].
Q The focal-heuristic Ay of A*, is the number of unvisited cities.

Ratio of number
nodes expanded
to that epanded by A*

A
10 @ 'Hard" TSP problems
’ O Simple TSP problems
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Remarks:

a Each coordinate represents the ratio of the number of nodes expanded by the corresponding
algorithm to that expanded by A* (with the same heuristic ).

O The e-admissible algorithms save computational effort (number of nodes expanded) ranging
between 60% and 90% for “hard” TSPs in comparison to A*.

Q The chart indicates comparable performances for the two algorithms with an advantage for
A*_ for this (simple) experiment.

QO If the Traveling Salesman problem is applied to a sparsely connected road map, the number
of edges in the unexplored portion of the graph would usually constitute a more valid

estimation of the remaining computational effort than the proportion of unexplored cities

<1 - de#h(”)), which guides the dynamic weighting algorithm.



e-Admissible Speedup Versions of A*
Unifying View: WA* and DWA* as Variants of A*,

Approach: Use hp = f. resp. hyp = f4- in A*..

f(a)e-sorted OPEN

(D)WA*

\ '
J FOCAL

f-sorted OPEN

Problem: Is it guaranteed that  (argmin, . gpey f(a)-(n)) € FOCAL

holds?



Remarks:

Q When implementing WA* and DWA* as variants of A*., we have to use the same tie breaking
strategy for . in A”. as was used in (D)WA™ for f,..



e-Admissible Speedup Versions of A*

Lemma 92 (WA* and DWA* are variants of A*,)

Let G be a search space graph with Prop ,.(G) and € > 0. Further let f = g + h be
the usual evaluation function and f’ a second evaluation function with

fin) < flln) < (1+¢)- f(n) foranyn e G.
Then, for any subset OPEN of nodes in G with n; := argmin,_qpgy f'(n) We have

flo) < (1+2) min f(n)



e-Admissible Speedup Versions of A*

Lemma 92 (WA* and DWA* are variants of A*,)

Let G be a search space graph with Prop ,.(G) and € > 0. Further let f = g + h be
the usual evaluation function and f’ a second evaluation function with

fin) < flln) < (1+¢)- f(n) foranyn e G.

Then, for any subset OPEN of nodes in G with n; := argmin,_qpgy f'(n) We have

flo) < (1+2) min f(n)

Proof (sketch)

Let ng := argmin,,. opey f (7). Then we have

flng) < f(ng)

f'(no)

(1+¢)- f(no)

(1 +¢) - min,ecopen f(n)
(Distinguish ny and ny, resp. f and f’ and the chain of inequalities above.)

IAIA A



e-Admissible Speedup Versions of A*
Pruning Power of i for A*.  [A* Condition II]

Corollary 93 (Necessary Condition for Node Expansion Il for A*,)

Let GG be a search space graph with Prop ,.(G), an admissible heuristic function A,
and ¢ > 0. For any node n expanded by A*. we have a (1 + ¢) - C*-bounded path
from stonin G.

At time of expansion of a node n we have f(n) < (1+¢) - C*.

Q. Is there a corresponding sufficient condition for node expansion?


https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal2.pdf#theorem-necessary-condition-expansion2

Remarks:

Q This corollary holds also for WA* and DWA* (as special cases of A*.).

Q A proof can be given analogously to the proof of Theorem “Necessary Condition for Node

Q Analogously to Lemma “C*-bounded OPEN Node”, it can be proven that at any time before
termination there is a node »’ on OPEN with f(n’) < C*.

Therefore, no node n with f(n) > (1 +¢) - C* is contained in FOCAL. Hence, such a node n
cannot be selected for expansion.


https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal2.pdf#theorem-necessary-condition-expansion2
https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal2.pdf#theorem-necessary-condition-expansion2
https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#lemma-cstar-bounded-open-node

e-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions h in A*.
When using a monotone heuristic function in A*,

o at time of expansion of a node n an optimal path from s to »n (the back-pointer
path) is known and

o path discarding will be performed only for nodes in OPEN, no node in
CLOSED will be reopened.

When using a monotone heuristic function in A*_, this is not true in general.



e-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions h in A*.
When using a monotone heuristic function in A*,

o at time of expansion of a node n an optimal path from s to »n (the back-pointer
path) is known and

o path discarding will be performed only for nodes in OPEN, no node in
CLOSED will be reopened.

When using a monotone heuristic function in A*., this is not true in general.

Restricted Parent Discarding

Parent discarding is applied only for nodes in OPEN, i.e. only for nodes that
have not been expanded.

An A*. algorithm using restricted path discarding is called NRA*..

What are the consequences of using restricted path discarding with respect to
e-admissibility ?



e-Admissible Speedup Versions of A*
Example: Monotone Heuristic Function A in A*.

Let s, ny,na, ..., be an optimum solution path and ¢ = 1.

A*. uses heuristic function hr = h.

o Node ny is suboptimally reached, but nevertheless expanded.
o Then n,; is expanded and — due to path discarding — », will be reopened.

Reopening cannot be avoided in A*. although a monotone heuristic function h
is used.



e-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions h in A*. (continued)

Lemma 94 (c-Restricted Reopening)

Let GG be a search space graph with Prop 4.(G) and € > 0. When using a monotone
heuristic function A in algorithm A*. the deviation of the cost of the back-pointer path
of an expanded node from its optimal path cost is limited, i.e., for any node n in
CLOSED we have

g(n) —g*(n) <e-(g"(n) + h(n))



e-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions h in A*. (continued)

Lemma 94 (c-Restricted Reopening)

Let GG be a search space graph with Prop 4.(G) and € > 0. When using a monotone
heuristic function A in algorithm A*. the deviation of the cost of the back-pointer path
of an expanded node from its optimal path cost is limited, i.e., for any node n in
CLOSED we have

g(n) —g*(n) <e-(g"(n) + h(n))

Proof (sketch)

Lets,...,n/,...,n be an optimal path from s to n. At time of expansion of n let n’ be the shallowest
OPEN node in that path and let ny be a node with smallest f-value in OPEN. The we have
fln) < (1+¢)- f(no)
< (14¢€)- f(n
< (I4¢)-(g"(n) +h(n) < (A +¢) - (g°(n)) + k(n',n) + h(n))
(1+¢)



e-Admissible Speedup Versions of A*
Example: Monotone heuristic function h in NRA*,

Let s, ny,na, ...,y be an optimum solution path, let e = 3.

NRA*. uses heuristic function hy = h.

NRA*. uses restricted path discarding.

o Node n, is suboptimally reached, but nevertheless expanded.

o Then n; is expanded and—due to restricted path discarding—n., will not be
reopened.

The deviation to optimal path cost increases with each non-reopening and
hence depends on the length of paths.



e-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions i in NRA*.

Theorem 95 (Bounded Admissibility of NRA*,)

Let G be a search space graph with Prop ,.(G) containing solution paths and let
e > 0. Let N be the maximal length of an optimum solution path. If the heuristic
function h is monotone, algorithm NRA*. terminates with solution cost C' with

c<(+elzl.c



e-Admissible Speedup Versions of A*
Using Monotone Heuristic Functions i in NRA*.

Theorem 95 (Bounded Admissibility of NRA*,)

Let G be a search space graph with Prop ,.(G) containing solution paths and let
e > 0. Let N be the maximal length of an optimum solution path. If the heuristic
function h is monotone, algorithm NRA*. terminates with solution cost C' with

c<(+elzl.c

Proof (sketch)
0 Consider an optimum solution path. Then the path length is bounded by V.

O Restricted path discarding occurs on this path if

— anode that is suboptimally reached is expanded and
— apredecessor node is expanded later.

Q Analogously to the preceding lemma it can be shown that the deviation in g-values is limited
for each occurrence of restricted path discarding.

O Since two new nodes must always be involved for an increase in deviation of a g-value to
occur, the deviation of a g-value from ¢* increases at most L%J times.
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