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Using Information about Uncertainty of h
Using a Non-admissible Heuristic Function

|dea [Harris] :

The heuristic function & estimates the cheapest remaining cost 2* mostly quite well,
but sometimes overestimates ~2* by no more than «.

A* using such a heuristic function h is e-admissible.

The condition for e-admissibility of A* is satisfied because at termination it holds

h(n) — h*(n) <e foralln € OPEN.

Also the weakened form of admissibility of / is often too restrictive.

Often it is easier to find a heuristic estimate for ~* that mostly estimates precisely
but sometimes overestimates ~* (by much more than any reasonable ¢).

The error in the estimate is not limited, but a large error is unlikely.



Remarks:
Q Heuristic functions h with h < (1 + ¢)h* are called e-admissible.

O Analogously to Lemma C*-Bounded OPEN Node, it can be proven that, at any point in time
before termination, there exists some node n in OPEN with f(n) < (1 +¢)C™.

Q The condition "h(n) — h*(n) < e for all n € OPEN" is sufficient, but not necessary, for A* being
e-admissible.


https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#lemma-cstar-bounded-open-node

Using Information about Uncertainty of h
lllustration of Underestimating and Overestimating Estimation Functions

Cost A
S [Jh<h*
L 19
” » Depth in search space graph
Cost A
c [Jh=h
L 19
Y » Depth in search space graph
Cost &
C* """""""" e s * *
[ ]h=h*v h>h
19

= Depth in search space graph



Using Information about Uncertainty of h
Example: Search in “Random” Graphs

Given is a graph with randomly drawn edge costs. The minimum number of edges
to a target node is known in each node.

O Edge costs ¢(n,n’) are known to be drawn independently from a common distribution
function, uniform in interval [0; 1].

Q For long paths with N edges from a node n to a goal node in T" it is known that h*(n) is most
likely to be near %.

Q The only admissible heuristic estimate for h* is hy(n) = 0.
0 The most reasonable heuristic estimate for h* is ha(n) = 5.

The heuristic estimate h, leads to a worst-case cost overestimation of % and is
therefore not (¢-)admissible. But the likelihood of this event is extremely small.



Using Information about Uncertainty of h
Example: Search in “Random” Graphs

Given is a graph with randomly drawn edge costs. The minimum number of edges
to a target node is known in each node.

O Edge costs ¢(n,n’) are known to be drawn independently from a common distribution
function, uniform in interval [0; 1].

Q For long paths with N edges from a node n to a goal node in T" it is known that h*(n) is most
likely to be near %.

Q The only admissible heuristic estimate for h* is hy(n) = 0.

0 The most reasonable heuristic estimate for h* is ha(n) = 5.

The heuristic estimate h- leads to a worst-case cost overestimation of % and is
therefore not (¢-)admissible. But the likelihood of this event is extremely small.

Algorithm R*;:
— Besides an estimation function A for A* there is also knowledge about the
uncertainty of the estimation process.

— Knowledge about the uncertainty of the estimation process is expressed
in the form of a probability density function py«(x).



Using Information about Uncertainty of h
Describing the Estimation Uncertainty Using Density Functions

Viewing cost functions as a random variables:

cost function random variable
h*(n) hoy
fr(n) = g*(n) + h*(n) fn
f(n) = g(n) + h*(n) fu

Let p;« be a density function for the random variable 7;,.

Semantics:

On the basis of p,: one can define the probability with which 1*(n) can be found in a
neighborhood of x costs.

P, = ) = piy (a)



Using Information about Uncertainty of h
Describing the Estimation Uncertainty Using Density Functions (continued)

Let p,: be a density function for the random variable ;.

Further applies:

1. From py: (z) a density function p:(y) can be derived for the random variable
*, if g* is known (e.g., when searching a tree):

pr:(y) = pri(y — g°)
2. Let P,_, be the cheapest known path from s to an OPEN node n.

From pp.: () @ density function p,+(y) can be derived for the random variable
. which specifies the cost of an optimal solution path that continues P;_,:

pi+(y) = pn(y — 9g)



Remarks:
0 The random variable f,” with associated density function p - is given for each node n.

O The random variable f;F describes the possible costs of an optimal solution path that
contains the pointer path P, _,, as a subpath.

Q If goal nodes can be reached from s, the OPEN list always contains a node n, to which
f*(n) = f*(n) applies.  [Corollrary Shallowest OPEN Node on Optimum Path]


https://webis.de/downloads/lecturenotes/search/unit-en-astar-formal1.pdf#corollary-shallowest-open-node-optimum-path

Using Information about Uncertainty of h
Describing the Estimation Uncertainty Using Density Functions (continued)
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Using Information about Uncertainty of h
Describing the Estimation Uncertainty Using Density Functions (continued)

How should an evaluation order be calculated from the density functions p,+ for the
nodes in the OPEN list?

Possible shapes of two density functions:

p+(y) 4 > pr)d "
fn n1 n fi

Cost 37 Cost 37
Case (a) Case (b)




Remarks:

(a)

(b)

If the density functions do not overlap, the node for which the corresponding density function
ps+ has the lowest density value f;” with respect to all other nodes would be selected.

[, has the lower expected value; n, has the possibility that the cost f,, may be lower than n;.
An admissible algorithm would expand n..
It would make more sense to expand n; because the “f*(ny) < f*(n1)” event is unlikely.

Due to uncertainty, costs can be overestimated or underestimated. l.e., not expanding a
node in OPEN and terminating it too expensively as a result, represents a risk.

Quantification of the risk of terminating with too high costs (= terminating too early).
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Risk Measures
Defining the Order of Node Evaluations

|dea:

Estimate the risk of terminating too early using a risk measure R for each node in
the OPEN list.

o For a given cost value C' (of a goal node), the risk measure evaluates for each
node n in the OPEN list to what extent C' can be improved by expanding n.

o R = R(C). The risk measure is a nondecreasing function of the C' cost. The
greater the R(C') value of a node n, the greater the risk of missing an
improvement of C' if terminating with C' without expanding n.

o R(C) should use knowledge about the cost distribution for the node n, so it
should be based on p .



Risk Measures
Principle of the Algorithm R*;

Search continues until the risk value R(C') of each node in the OPEN list is below a
user accepted risk threshold .

If a high risk is acceptable, nodes with a high risk value of R(C') (= high cost
reduction potential) remain unexpanded. As a result, cost underestimation
becomes less likely.

If only a small risk is acceptable, even nodes with a low risk value of R(C) (=
low cost reduction potential) are expanded. As a result, cost underestimation
becomes more likely.

l.e., depending on a risk threshold o the probability of a cost underestimation
(= probability of admissibility or optimality) can be controlled.



Remarks:

Q The observance of this principle by the algorithm R*; is ensured — as shown later — by the
use of certain risk functions R(C).

Q When a goal node with cost C' is selected from OPEN, its risk function must guarantee the

property C' < Cs. Otherwise, one of the remaining nodes in OPEN can have a risk for C' that
is higher than §.



Risk Measures
Potential for Improvement to a Current Solution

Let ny, ny be nodes of the OPEN list.

Possible improvement by expanding n1

[ ] T b >
fa(n1) fa(n2) _
: Cost of a solution

already found

Possible improvement by expanding n2

Example of risk functions R(C') for the nodes ny, ns:

R(C) 4 n2

n4

| | = C (Costs, e.g., of a
fa(n4) fa(n2) current solution)

The nodes have different random variables n+1 and ;‘2 for the cost.



Remarks:

O The potential for improvement is a statistical quantity defined for a node n using f,.

Q The evaluation of the potential for improvement regarding given costs C is done with the help
of a risk-measure R(C).



Risk Measures
Risk Threshold and Cost Treshold

The risk threshold § > 0 defines for each node n in OPEN its cost threshold Cs(n):

R(C) A no

N4

f 1 ? » C (Costs, e.g., of a
fa(nq) fa(no) I Cs(n2) current solution)

Cs(n1)

Let ny, no be nodes in OPEN. If the search was terminated with node n, and cost
C" = Cs(ny), the risk R(C") for n; would be above the risk threshold §.

R*; chooses the node n with the lowest cost threshold Cs(n) in the OPEN list.
In the above example, node n; would be preferred to node n..



Risk Measures

Definition 96 (Risk Measure)

Let M be the ordered set of cost values. A risk measure R(C') for a node is a
nondecreasing function R : M — [0, +oc] measuring the risk associated with leaving
that node unexplored when terminating with a solution with cost C.

Definition 97 (Cost Threshold)

Let § be a nonnegative real number and let R(C') be the risk measure for a node n.
The solution Cs(n) to the equation R(C') = ¢ is called the cost threshold.



Remarks:
O Risk measures and risk thresholds must be seen in context: not every risk threshold makes
sense for a risk measure.

0 Depending on the f.F cost random variable of a n node, the ¢ risk threshold can lead to
different sequences in the OPEN list.

Q The cost-threshold Cj(n) indicates how high the cost of a solution may be without exceeding
the ¢-risk-threshold for the node n.



Risk Measures

Definition 98 (s-Risk-Admissibility)
An algorithm is said to be J-risk-admissible if it always terminates with a solution
cost C such that R(C) < ¢ for each node left on OPEN.

The above version of the J-risk-admissible condition is equivalent to stating that at
termination, the cost of the solution found is not greater than Cjs(n) for each n on
OPEN.

Definition 99 (Algorithm R*;)

R*; is a search algorithm which is identical to A* except that it chooses for
expansion that node n from OPEN with the lowest cost-threshold Cs(n).

Note that with 6 = 0, R*; is identical to A* since it is guided by the (admissible)
lowest tail of the density of £, namely by g + h,.

For 6 > 0, R*s; may prefer a node with high f, and narrow distribution over a node
with low f, but highly diffussed density.
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Remarks:

Q The first definition of §-risk-admissibility is from the perspective of risk, the second is from the
perspective of cost.
o With § =0, R*s is identical to A*. Justification:

1. Computiong the cost-threshold Cs(n) for nodes in OPEN is solving the equation
R(C)=0ford=0.

2. R(C) = 0 holds for the lowest point f, on the tail of the density of /™.
3. Hence, f, =g+ h, < g(n)+ h*(n)
4. R*;is guided by an admissible heuristic function and, therefore, R*s is admissible.

a Asthe ¢ increases, R*; tends to abandon admissibility.



Risk Measures
Risk Measures of Type R(C) = o[C' — fT]

Starting point are density functions for the random variables f," of nodes n in the
OPEN list.

Examples:

P} p )
n

Y

Y

Ja (resp. h,) is the smallest positive preimage of the density function p .+ (resp. px:).



Risk Measures
Risk Measures of Type R(C) = o[C' — f™] (continued)

1. Worst Case Risk R;:
Ri(C)= sup (C—y)=C—-f,=C—g—h,

{y!pf; (y)>0}

2. Probability of Suboptimal Termination Rs:

C
RalC) = P(C> 11) = PIC~ £7 > 0= [ pyi(w)dy

n

Yy=—00
3. Expected Risk Rj:

C
Ry(C) = Blmax(C — £1:0) = [ (C = y)o iy

y=—00



Remarks:

Q The risk measures R; and R3 describe costs, the risk measure R, describes a probability.

Rl:
For the costs represented by the f.7 random variable, the smallest possible value is
assumed. R; quantifies the maximum possible loss if a solution is satisfied with C' costs.

The lowest costs are the worst case because they represent the extreme case of a
missed cost reduction. The probability that the remaining costs are lower than £, is O.

RQ:
The probability for the occurrence of the event "C' > fI" (i.e., event is a loss) is
calculated if you are satisfied with a solution with C' cost.

Rj:
For the costs represented by the random variable f.", the expected loss
E(max{C — f;0}) is calculated if one is satisfied with a solution with costs C.

R3 weights the probability of the loss (R;) with the amount of the occurring loss.



Risk Measures
Example

Let f." be uniformly distributed between an optimistic estimate f, and a pessimistic
estimate f, (The f, and f;, estimates depend on n, where n is in OPEN.):

A
Pt (Y)

1

fp - fa

fa=g+ha fb=g+hb

Density function:

g JoSys

0 else
Risk measure:
Ri(C)= sup (C—y)=C~f,

{ylpf;(y)>0}



Risk Measures
Example

Let f." be uniformly distributed between an optimistic estimate f, and a pessimistic
estimate f, (The f, and f;, estimates depend on n, where n is in OPEN.):

A
Pt (Y)

1 —
fb fa

fa=g+ha fb=g+hb

Density function:

g JoSys

pi+(y) =
0 else

Risk measure:
(0 C<f,

C
Ry(C) = / pi+(y)dy = < (fb “;‘; f,<C<fy
1 i< C

\
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Risk Measures
Example

Let f." be uniformly distributed between an optimistic estimate f, and a pessimistic
estimate f, (The f, and f;, estimates depend on n, where n is in OPEN.):

A
Pt (Y)

1

fp - fa

fa=g+ha fb=g+hb

Density function:

g JoSys

0 else
Risk measure:
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Risk Measures
Example (continued)

Shape of risk measures Ry, R», and Rs (f,” uniformly distributed):

A R1(C) = max {C -fa, 0}  R3(C) = E(max {C - 0})

Ro(C) = Pr(C - > 0)

Y
@)

A . ;
fa=g+ha fo=g+hp

The vertical axis represents the functions R(C') for the three risk measures considered.



Risk Measures
Example (continued)
Computing the cost threshold C5 for R; (f,7 uniformly distributed):

Let 6 be the user’s risk tolerance of the user. For each node n in OPEN, it defines
its cost threshold Cjs(n) using the equation R(C) = 4.

O

Y

fa Cs(n)

For a node n on OPEN, Cj(n) is computed by transforming Rs(Cj) = 6:
( f 6=0

Csn) =< fut/2-(fo—fa) 0 0<o< il

Jat ] Jo—Ja
(S‘l—Tb bT<5



Risk Measures
Example (continued)

For a goal node ~ in OPEN, we have h(n) = h*(n) = 0. Therefore, there remains no
uncertainty regarding f.".

Graphs of random variable fj for solution cost and risk measures R;, R,, and Rj:

prt(y) 4 R(C) A R1(C) = max {C - g, 0} = E(max {C - g, 0}) = R3(C)

R2(C) = Pr(C - g> 0)

fa=fo=g
Cost treshold:
(g(y)+6  for risk measure R,
Cs(v) =3 g(v) for risk measure Ry and § < 1
L g(y)+6  forrisk measure R;




Risk Measures
o-Risk-Admissibility

Theorem 100 (5-Risk-Admissibility of R*;)
R*; is d-risk-admissible with respect to risk measures R;, Ry, and R3 when G is a
search space graph with Prop ,.(G) and E(h*) < +oc on solution paths.



Risk Measures
o-Risk-Admissibility

Theorem 100 (5-Risk-Admissibility of R*;)
R*; is d-risk-admissible with respect to risk measures R;, Ry, and R3 when G is a
search space graph with Prop ,.(G) and E(h*) < +oc on solution paths.

Proof (sketch)
1. 0-Risk-Admissibility:
(a) According to the previous example, it holds for the cost C of a solution path found by R*;

C =g(v) < Cs(v) for the risk measures Ry, R, R3.

(b) Since R*; chooses for expansion that node n from OPEN with the lowest cost-threshold
Cs(n), o-risk-admissibility of R*; follows for risk measures R;, Rs, and Rs.



Risk Measures
0-Risk-Admissibility (continued)

2. Completeness:
(a) Atall times OPEN contains a node n on a solution path for which Cs(n) is finite.
Obviously, R, (C) = § and Ry(C') = ¢ have a finite solution. If density p,«(z) possesses a
finite expectation E(h*) < +oo for any node on a solution path, for R; we have

Ry(C)>C-(1=P(f*>C)) = E(f*)>C—2E(f") =C — 29 — 2E(h")

(b) Cs(n) > g(n) holds for each node n in OPEN since there is no risk in abandoning » after
finding a solution path with cost < g(n). A positive lower bound of the edge cost values
guarantees that R*; can neglect nodes on solution paths only for a limited number of
node expansions.



Remarks:

Q Expectations can have the value 400, e.g., for a random variable that returns values 2" with
probability 27".

Q In step 2(a) we use the fact R3(0) = 0 for graphs G with nonnegative edge cost values. As the
lower bound for R3(C') increases with C, there is a finite value C' with R3(C') > §. Hence,
C(s(n) < +00.

Q0 The exact form of pj. is generally unknown. For this the edge costs must have been
generated by a given probabilistic model.

O Generating a good estimate for Cs(n) is often possible. For this, the knowledge of upper and
lower bounds of 1} together with the often reasonable assumption of a standardized
distribution between them, such as an uniform distribution, an exponential distribution or a
normal distribution, is sufficient.

a The principle of the e-admissible acceleration in A*, for A* can also be applied to R*; and
leads to the algorithm R*;.. The special version R*;; is d-risk-admissible with respect to risk
measures R, Ry, and R3 under the preconditions of the previous theorem.
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