Chapter S:VI

VI. Relaxed Models

- Motivation
- □ ε-Admissible Speedup Versions of A*
- □ Using Information about Uncertainty of *h*
- Risk Measures
- Nonadditive Evaluation Functions
- □ Heuristics Provided by Simplified Models
- Mechanical Generation of Admissible Heuristics
- Probability-Based Heuristics

Using a Non-admissible Heuristic Function

Idea [Harris]:

The heuristic function h estimates the cheapest remaining cost h^* mostly quite well, but sometimes overestimates h^* by no more than ε .

→ A^{*} using such a heuristic function h is ε -admissible.

The condition for ε -admissibility of A* is satisfied because at termination it holds

 $h(n) - h^*(n) \le \varepsilon$ for all $n \in OPEN$.

Also the weakened form of admissibility of h is often too restrictive.

Often it is easier to find a heuristic estimate for h^* that mostly estimates precisely but sometimes overestimates h^* (by much more than any reasonable ε).

→ The error in the estimate is not limited, but a large error is unlikely.

- \Box Heuristic functions h with $h \leq (1 + \varepsilon)h^*$ are called ε -admissible.
- □ Analogously to Lemma <u>C</u>^{*}-Bounded OPEN Node, it can be proven that, at any point in time before termination, there exists some node n in OPEN with $f(n) \le (1 + \varepsilon)C^*$.
- □ The condition " $h(n) h^*(n) \le \varepsilon$ for all $n \in OPEN$ " is sufficient, but not necessary, for A* being ε -admissible.

Illustration of Underestimating and Overestimating Estimation Functions

Example: Search in "Random" Graphs

Given is a graph with randomly drawn edge costs. The minimum number of edges to a target node is known in each node.

- **□** Edge costs c(n, n') are known to be drawn independently from a common distribution function, uniform in interval [0; 1].
- □ For long paths with *N* edges from a node *n* to a goal node in Γ it is known that h*(n) is most likely to be near $\frac{N}{2}$.
- □ The only *admissible* heuristic estimate for h^* is $h_1(n) = 0$.
- \Box The most reasonable heuristic estimate for h^* is $h_2(n) = \frac{N}{2}$.

The heuristic estimate h_2 leads to a worst-case cost overestimation of $\frac{N}{2}$ and is therefore not (ε -)admissible. But the likelihood of this event is extremely small.

Example: Search in "Random" Graphs

Given is a graph with randomly drawn edge costs. The minimum number of edges to a target node is known in each node.

- **□** Edge costs c(n, n') are known to be drawn independently from a common distribution function, uniform in interval [0; 1].
- □ For long paths with *N* edges from a node *n* to a goal node in Γ it is known that h*(n) is most likely to be near $\frac{N}{2}$.
- □ The only *admissible* heuristic estimate for h^* is $h_1(n) = 0$.
- \Box The most reasonable heuristic estimate for h^* is $h_2(n) = \frac{N}{2}$.

The heuristic estimate h_2 leads to a worst-case cost overestimation of $\frac{N}{2}$ and is therefore not (ε -)admissible. But the likelihood of this event is extremely small.

- Algorithm R^*_{δ} :
 - Besides an estimation function h for h* there is also knowledge about the uncertainty of the estimation process.
 - Knowledge about the uncertainty of the estimation process is expressed in the form of a probability density function $\rho_{h^*}(x)$.

Describing the Estimation Uncertainty Using Density Functions

Viewing cost functions as	s a random variables:
---------------------------	-----------------------

cost function	random variable
$h^*(n)$	h_n^*
$f^{\ast}(n)=g^{\ast}(n)+h^{\ast}(n)$	f_n^*
$f^+(n) = g(n) + h^*(n)$	f_n^+

Let $\rho_{h_n^*}$ be a density function for the random variable h_n^* .

Semantics:

On the basis of $\rho_{h_n^*}$ one can define the probability with which $h^*(n)$ can be found in a neighborhood of x costs.

$$P(h_n^* = x) = \rho_{h_n^*}(x)$$

Describing the Estimation Uncertainty Using Density Functions (continued)

Let $\rho_{h_n^*}$ be a density function for the random variable h_n^* .

Further applies:

1. From $\rho_{h_n^*}(x)$ a density function $\rho_{f_n^*}(y)$ can be derived for the random variable f_n^* , if g^* is known (e.g., when searching a tree):

$$\rho_{f_n^*}(y) := \rho_{h_n^*}(y - g^*)$$

2. Let P_{s-n} be the cheapest known path from *s* to an OPEN node *n*. From $\rho_{h_n^*}(x)$ a density function $\rho_{f_n^+}(y)$ can be derived for the random variable f_n^+ , which specifies the cost of an optimal solution path that continues P_{s-n} :

$$\rho_{f_n^+}(y) \coloneqq \rho_{h_n^*}(y-g)$$

- \Box The random variable f_n^+ with associated density function $\rho_{f_n^+}$ is given for each node *n*.
- □ The random variable f_n^+ describes the possible costs of an optimal solution path that contains the pointer path P_{s-n} as a subpath.
- □ If goal nodes can be reached from *s*, the OPEN list always contains a node *n*, to which $f^+(n) = f^*(n)$ applies. [Corollrary Shallowest OPEN Node on Optimum Path]

Describing the Estimation Uncertainty Using Density Functions (continued)

fb

fa

Describing the Estimation Uncertainty Using Density Functions (continued)

How should an evaluation order be calculated from the density functions $\rho_{f_n^+}$ for the nodes in the OPEN list?

Possible shapes of two density functions:

- (a) If the density functions do not overlap, the node for which the corresponding density function ρ_{f^+} has the lowest density value f_a^+ with respect to all other nodes would be selected.
- (b) $f_{n_1}^+$ has the lower expected value; n_2 has the possibility that the cost $f_{n_2}^+$ may be lower than n_1 . An admissible algorithm would expand n_2 . It would make more sense to expand n_1 because the " $f^+(n_2) < f^+(n_1)$ " event is unlikely.
- Due to uncertainty, costs can be overestimated or underestimated. I.e., not expanding a node in OPEN and terminating it too expensively as a result, represents a *risk*.
- → Quantification of the risk of terminating with too high costs (= terminating too early).

Chapter S:VI

VI. Relaxed Models

- Motivation
- □ ε-Admissible Speedup Versions of A*
- □ Using Information about Uncertainty of *h*
- Risk Measures
- Nonadditive Evaluation Functions
- Heuristics Provided by Simplified Models
- Mechanical Generation of Admissible Heuristics
- Probability-Based Heuristics

Defining the Order of Node Evaluations

Idea:

Estimate the risk of terminating too early using a *risk measure* R for each node in the OPEN list.

- □ For a given cost value C (of a goal node), the risk measure evaluates for each node n in the OPEN list to what extent C can be improved by expanding n.
- $\begin{tabular}{ll} \square $R=R(C)$. The risk measure is a nondecreasing function of the C cost. The greater the $R(C)$ value of a node n, the greater the risk of missing an improvement of C if terminating with C without expanding n. \end{tabular}$
- $\label{eq:relation} \square \ R(C) \ {\rm should} \ {\rm use} \ {\rm knowledge} \ {\rm about} \ {\rm the} \ {\rm cost} \ {\rm distribution} \ {\rm for} \ {\rm the} \ {\rm node} \ n, \ {\rm so} \ {\rm it} \ {\rm should} \ {\rm be} \ {\rm based} \ {\rm on} \ \rho_{f_n^+}.$

Principle of the Algorithm R^*_{δ}

Search continues until the risk value R(C) of each node in the OPEN list is below a user accepted risk threshold δ .

→ If a high risk is acceptable, nodes with a high risk value of R(C) (= high cost reduction potential) remain unexpanded. As a result, cost underestimation becomes less likely.

If only a small risk is acceptable, even nodes with a low risk value of R(C) (= low cost reduction potential) are expanded. As a result, cost underestimation becomes more likely.

 → I.e., depending on a risk threshold δ the probability of a cost underestimation (= probability of admissibility or optimality) can be controlled.

- □ The observance of this principle by the algorithm R^*_{δ} is ensured as shown later by the use of certain risk functions R(C).
- □ When a goal node with cost *C* is selected from OPEN, its risk function must guarantee the property $C \le C_{\delta}$. Otherwise, one of the remaining nodes in OPEN can have a risk for *C* that is higher than δ .

Potential for Improvement to a Current Solution

Let n_1 , n_2 be nodes of the OPEN list.

Example of risk functions R(C) for the nodes n_1, n_2 :

The nodes have different random variables $f_{n_1}^+$ and $f_{n_2}^+$ for the cost.

S:VI-61 Relaxed Models

- \Box The potential for improvement is a statistical quantity defined for a node *n* using f_n^+ .
- □ The *evaluation* of the potential for improvement regarding given costs *C* is done with the help of a risk-measure R(C).

Risk Threshold and Cost Treshold

The risk threshold $\delta \ge 0$ defines for each node *n* in OPEN its cost threshold $C_{\delta}(n)$:

Let n_1 , n_2 be nodes in OPEN. If the search was terminated with node n_2 and cost $C' = C_{\delta}(n_2)$, the risk R(C') for n_1 would be above the risk threshold δ .

→ R^*_{δ} chooses the node *n* with the lowest cost threshold $C_{\delta}(n)$ in the OPEN list. In the above example, node n_1 would be preferred to node n_2 .

Definition 96 (Risk Measure)

Let *M* be the ordered set of cost values. A risk measure R(C) for a node is a nondecreasing function $R: M \to [0, +\infty]$ measuring the risk associated with leaving that node unexplored when terminating with a solution with cost *C*.

Definition 97 (Cost Threshold)

Let δ be a nonnegative real number and let R(C) be the risk measure for a node n. The solution $C_{\delta}(n)$ to the equation $R(C) = \delta$ is called the cost threshold.

Assuming the cost of a solution path found is *C*, then for each node *n* in OPEN with $C > C_{\delta}(n)$ the risk of missing a better solution path is higher than risk threshold δ . These nodes should be expanded before termination.

- □ Risk measures and risk thresholds must be seen in context: not every risk threshold makes sense for a risk measure.
- □ Depending on the f_n^+ cost random variable of a *n* node, the δ risk threshold can lead to different sequences in the OPEN list.
- □ The cost-threshold $C_{\delta}(n)$ indicates how high the cost of a solution may be without exceeding the δ -risk-threshold for the node n.

Definition 98 (δ-Risk-Admissibility)

An algorithm is said to be δ -risk-admissible if it always terminates with a solution cost *C* such that $R(C) \leq \delta$ for each node left on OPEN.

The above version of the δ -risk-admissible condition is equivalent to stating that at termination, the cost of the solution found is not greater than $C_{\delta}(n)$ for each n on OPEN.

Definition 99 (Algorithm R^*_{δ})

 R^*_{δ} is a search algorithm which is identical to A^* except that it chooses for expansion that node *n* from OPEN with the lowest cost-threshold $C_{\delta}(n)$.

Note that with $\delta = 0$, \mathbb{R}^*_{δ} is identical to \mathbb{A}^* since it is guided by the (admissible) lowest tail of the density of f, namely by $g + h_a$.

For $\delta > 0$, \mathbb{R}^*_{δ} may prefer a node with high f_a and narrow distribution over a node with low f_a but highly diffused density.

- □ The first definition of δ -risk-admissibility is from the perspective of risk, the second is from the perspective of cost.
- \Box With $\delta = 0$, R^*_{δ} is identical to A^* . Justification:
 - 1. Computiong the cost-threshold $C_{\delta}(n)$ for nodes in OPEN is solving the equation R(C) = 0 for $\delta = 0$.
 - 2. R(C) = 0 holds for the lowest point f_a on the tail of the density of f^+ .
 - 3. Hence, $f_a = g + h_a \le g(n) + h^*(n)$
 - 4. R^*_{δ} is guided by an admissible heuristic function and, therefore, R^*_{δ} is admissible.
- \Box As the δ increases, R^*_{δ} tends to abandon admissibility.

Risk Measures of Type $R(C) = \varrho[C - f^+]$

Starting point are density functions for the random variables f_n^+ of nodes n in the OPEN list.

Examples:

 f_a (resp. h_a) is the smallest positive preimage of the density function $\rho_{f_n^+}$ (resp. $\rho_{h_n^*}$).

Risk Measures of Type $R(C) = \varrho[C-f^+]$ (continued)

1. Worst Case Risk R_1 :

$$R_1(C) = \sup_{\{y \mid \rho_{f_n^+}(y) > 0\}} (C - y) = C - f_a = C - g - h_a$$

2. Probability of Suboptimal Termination R_2 :

$$R_2(C) = P(C > f_n^+) = P(C - f_n^+ > 0) = \int_{y=-\infty}^C \rho_{f_n^+}(y) dy$$

3. Expected Risk R_3 :

$$R_3(C) = E(\max\{C - f_n^+; 0\}) = \int_{y = -\infty}^C (C - y)\rho_{f_n^+}(y)dy$$

- \Box The risk measures R_1 and R_3 describe costs, the risk measure R_2 describes a probability.
 - R_1 :

For the costs represented by the f_n^+ random variable, the smallest possible value is assumed. R_1 quantifies the maximum possible loss if a solution is satisfied with C costs.

The lowest costs are the worst case because they represent the extreme case of a missed cost reduction. The probability that the remaining costs are lower than h_a is 0.

 $- R_2$:

The probability for the occurrence of the event " $C > f_n^+$ " (i.e., event is a loss) is calculated if you are satisfied with a solution with C cost.

 $- R_3$:

For the costs represented by the random variable f_n^+ , the expected loss $E(\max\{C - f_n^+; 0\})$ is calculated if one is satisfied with a solution with costs C.

 R_3 weights the probability of the loss (R_2) with the amount of the occurring loss.

Example

Let f_n^+ be uniformly distributed between an optimistic estimate f_a and a pessimistic estimate f_b (The f_a and f_b estimates depend on n, where n is in OPEN.):

Density function:

$$\rho_{f_n^+}(y) = \begin{cases} \frac{1}{f_b - f_a} & f_a \le y \le f_b \\ 0 & \text{else} \end{cases}$$

Risk measure:

$$R_1(C) = \sup_{\{y | \rho_{f_n^+}(y) > 0\}} (C - y) = C - f_a$$

Risk Measures Example

Let f_n^+ be uniformly distributed between an optimistic estimate f_a and a pessimistic estimate f_b (The f_a and f_b estimates depend on n, where n is in OPEN.):

Risk measure:

$$R_2(C) = \int_{y=-\infty}^{C} \rho_{f_n^+}(y) dy = \begin{cases} 0 & C < f_a \\ \frac{(C-f_a)}{(f_b - f_a)} & f_a \le C \le f_b \\ 1 & f_b < C \end{cases}$$

Risk Measures Example

Let f_n^+ be uniformly distributed between an optimistic estimate f_a and a pessimistic estimate f_b (The f_a and f_b estimates depend on n, where n is in OPEN.):

$$R_{3}(C) = \int_{y=-\infty}^{C} (C-y)\rho_{f_{n}^{+}}(y)dy = \begin{cases} \frac{(C-f_{a})^{2}}{2(f_{b}-f_{a})} & f_{a} \leq C \leq f_{b} \\ C - \frac{f_{a}+f_{b}}{2} & f_{b} < C \end{cases}$$

S:VI-74 Relaxed Models

© STEIN/LETTMANN 2023

Example (continued)

Shape of risk measures R_1 , R_2 , and R_3 (f_n^+ uniformly distributed):

The vertical axis represents the functions R(C) for the three risk measures considered.

Example (continued)

Computing the cost threshold C_{δ} for R_3 (f_n^+ uniformly distributed):

Let δ be the user's risk tolerance of the user. For each node n in OPEN, it defines its cost threshold $C_{\delta}(n)$ using the equation $R(C) = \delta$.

For a node *n* on OPEN, $C_{\delta}(n)$ is computed by transforming $R_3(C_{\delta}) = \delta$:

$$C_{\delta}(n) = \begin{cases} f_a & \delta = 0\\ f_a + \sqrt{2 \cdot (f_b - f_a) \cdot \delta} & 0 < \delta \le \frac{f_b - f_a}{2}\\ \delta + \frac{f_a + f_b}{2} & \frac{f_b - f_a}{2} < \delta \end{cases}$$

Example (continued)

For a goal node γ in OPEN, we have $h(n) = h^*(n) = 0$. Therefore, there remains no uncertainty regarding f_{γ}^+ .

Graphs of random variable f_{γ}^+ for solution cost and risk measures R_1 , R_2 , and R_3 :

Cost treshold:

$$C_{\delta}(\gamma) = \begin{cases} g(\gamma) + \delta & \text{ for risk measure } R_1 \\ g(\gamma) & \text{ for risk measure } R_2 \text{ and } \delta < 1 \\ g(\gamma) + \delta & \text{ for risk measure } R_3 \end{cases}$$

 δ -Risk-Admissibility

Theorem 100 (\delta-Risk-Admissibility of R^{*} $_{\delta}$ **)**

 R^*_{δ} is δ -risk-admissible with respect to risk measures R_1 , R_2 , and R_3 when G is a search space graph with $\operatorname{Prop}_{A^*}(G)$ and $E(h^*) < +\infty$ on solution paths.

 δ -Risk-Admissibility

Theorem 100 (δ **-Risk-Admissibility of R** $^*\delta$ **)**

 R^*_{δ} is δ -risk-admissible with respect to risk measures R_1 , R_2 , and R_3 when G is a search space graph with $\operatorname{Prop}_{A^*}(G)$ and $E(h^*) < +\infty$ on solution paths.

Proof (sketch)

- 1. δ -Risk-Admissibility:
 - (a) According to the previous example, it holds for the cost *C* of a solution path found by R^*_{δ} :

 $C = g(\gamma) \leq C_{\delta}(\gamma)$ for the risk measures R_1, R_2, R_3 .

(b) Since R^*_{δ} chooses for expansion that node *n* from OPEN with the lowest cost-threshold $C_{\delta}(n)$, δ -risk-admissibility of R^*_{δ} follows for risk measures R_1 , R_2 , and R_3 .

 δ -Risk-Admissibility (continued)

- 2. Completeness:
 - (a) At all times OPEN contains a node n on a solution path for which $C_{\delta}(n)$ is finite. Obviously, $R_1(C) = \delta$ and $R_2(C) = \delta$ have a finite solution. If density $\rho_{h^*}(x)$ possesses a finite expectation $E(h^*) < +\infty$ for any node on a solution path, for R_3 we have

 $R_3(C) \ge C \cdot \left(1 - P(f^+ > C)\right) - E(f^+) \ge C - 2E(f^+) = C - 2g - 2E(h^*)$

(b) $C_{\delta}(n) \ge g(n)$ holds for each node n in OPEN since there is no risk in abandoning n after finding a solution path with cost $\le g(n)$. A positive lower bound of the edge cost values guarantees that R^*_{δ} can neglect nodes on solution paths only for a limited number of node expansions.

- □ Expectations can have the value $+\infty$, e.g., for a random variable that returns values 2^n with probability 2^{-n} .
- □ In step 2(a) we use the fact $R_3(0) = 0$ for graphs *G* with nonnegative edge cost values. As the lower bound for $R_3(C)$ increases with *C*, there is a finite value *C* with $R_3(C) > \delta$. Hence, $C_{\delta}(n) < +\infty$.
- □ The exact form of $\rho_{h_n^*}$ is generally unknown. For this the edge costs must have been generated by a given probabilistic model.
- Generating a good estimate for $C_{\delta}(n)$ is often possible. For this, the knowledge of upper and lower bounds of h_n^* together with the often reasonable assumption of a standardized distribution between them, such as an uniform distribution, an exponential distribution or a normal distribution, is sufficient.
- □ The principle of the ε -admissible acceleration in A^*_{ϵ} for A^* can also be applied to R^*_{δ} and leads to the algorithm $R^*_{\delta,\epsilon}$. The special version $R^*_{\delta,\delta}$ is δ -risk-admissible with respect to risk measures R_1 , R_2 , and R_3 under the preconditions of the previous theorem.