VI. Relaxed Models

- Motivation
- ε-Admissible Speedup Versions of A*
- Using Information about Uncertainty of h
- Risk Measures

- Nonadditive Evaluation Functions

- Heuristics Provided by Simplified Models
- Mechanical Generation of Admissible Heuristics
- Probability-Based Heuristics
Using Information about Uncertainty of \(h \)
Using a Non-admissible Heuristic Function

Idea [Harris]:

The heuristic function \(h \) estimates the cheapest remaining cost \(h^* \) mostly quite well, but sometimes overestimates \(h^* \) by no more than \(\varepsilon \).

\[\Rightarrow \text{A* using such a heuristic function } h \text{ is } \varepsilon\text{-admissible.} \]

The condition for \(\varepsilon\text{-admissibility of A*} \) is satisfied because at termination it holds

\[h(n) - h^*(n) \leq \varepsilon \text{ for all } n \in \text{OPEN}. \]

Also the weakened form of admissibility of \(h \) is often too restrictive.

Often it is easier to find a heuristic estimate for \(h^* \) that mostly estimates precisely but sometimes overestimates \(h^* \) (by much more than any reasonable \(\varepsilon \)).

\[\Rightarrow \text{The error in the estimate is not limited, but a large error is unlikely.} \]
Remarks:

- Heuristic functions h with $h \leq (1 + \varepsilon)h^*$ are called ε-admissible.

- Analogously to Lemma C^*-Bounded OPEN Node, it can be proven that, at any point in time before termination, there exists some node n in OPEN with $f(n) \leq (1 + \varepsilon)C^*$.

- The condition "$h(n) - h^*(n) \leq \varepsilon$ for all $n \in$ OPEN" is sufficient, but not necessary, for A* being ε-admissible.
Using Information about Uncertainty of h

Illustration of Underestimating and Overestimating Estimation Functions

Cost

C^*

$h \leq h^*$

g

Depth in search space graph

γ

C^*

$h = h^*$

g

Depth in search space graph

γ

C^*

$h \leq h^* \lor h > h^*$

g

Depth in search space graph

γ
Using Information about Uncertainty of h

Example: Search in “Random” Graphs

Given is a graph with randomly drawn edge costs. The minimum number of edges to a target node is known in each node.

- Edge costs $c(n, n')$ are known to be drawn independently from a common distribution function, uniform in interval $[0; 1]$.

- For long paths with N edges from a node n to a goal node in Γ it is known that $h^*(n)$ is most likely to be near $\frac{N}{2}$.

- The only \textit{admissible} heuristic estimate for h^* is $h_1(n) = 0$.

- The most reasonable heuristic estimate for h^* is $h_2(n) = \frac{N}{2}$.

The heuristic estimate h_2 leads to a worst-case cost overestimation of $\frac{N}{2}$ and is therefore not (ε-)admissible. But the likelihood of this event is extremely small.
Using Information about Uncertainty of h

Example: Search in “Random” Graphs

Given is a graph with randomly drawn edge costs. The minimum number of edges to a target node is known in each node.

- Edge costs $c(n, n')$ are known to be drawn independently from a common distribution function, uniform in interval $[0; 1]$.
- For long paths with N edges from a node n to a goal node in Γ it is known that $h^*(n)$ is most likely to be near $\frac{N}{2}$.
- The only admissible heuristic estimate for h^* is $h_1(n) = 0$.
- The most reasonable heuristic estimate for h^* is $h_2(n) = \frac{N}{2}$.

The heuristic estimate h_2 leads to a worst-case cost overestimation of $\frac{N}{2}$ and is therefore not (\(\varepsilon\)-)admissible. But the likelihood of this event is extremely small.

→ Algorithm R^*_δ:

- Besides an estimation function h for h^* there is also knowledge about the uncertainty of the estimation process.
- Knowledge about the uncertainty of the estimation process is expressed in the form of a probability density function $\rho_{h^*}(x)$.
Using Information about Uncertainty of h

Describing the Estimation Uncertainty Using Density Functions

Viewing cost functions as a random variables:

<table>
<thead>
<tr>
<th>cost function</th>
<th>random variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h^*(n)$</td>
<td>h^*_n</td>
</tr>
<tr>
<td>$f^(n) = g^(n) + h^*(n)$</td>
<td>f^*_n</td>
</tr>
<tr>
<td>$f^+(n) = g(n) + h^*(n)$</td>
<td>f^+_n</td>
</tr>
</tbody>
</table>

Let $\rho_{h^*_n}$ be a density function for the random variable h^*_n.

Semantics:

On the basis of $\rho_{h^*_n}$ one can define the probability with which $h^*(n)$ can be found in a neighborhood of x costs.

$$P(h^*_n = x) = \rho_{h^*_n}(x)$$
Using Information about Uncertainty of h

Describing the Estimation Uncertainty Using Density Functions (continued)

Let $\rho_{h_n^*}$ be a density function for the random variable h_n^*.

Further applies:

1. From $\rho_{h_n^*}(x)$ a density function $\rho_{f_n^*}(y)$ can be derived for the random variable f_n^*, if g^* is known (e.g., when searching a tree):

 $$\rho_{f_n^*}(y) := \rho_{h_n^*}(y - g^*)$$

2. Let P_{s-n} be the cheapest known path from s to an OPEN node n. From $\rho_{h_n^*}(x)$ a density function $\rho_{f_n^+}(y)$ can be derived for the random variable f_n^+, which specifies the cost of an optimal solution path that continues P_{s-n}:

 $$\rho_{f_n^+}(y) := \rho_{h_n^*}(y - g)$$
Remarks:

- The random variable f_n^+ with associated density function $\rho_{f_n^+}$ is given for each node n.
- The random variable f_n^+ describes the possible costs of an optimal solution path that contains the pointer path P_{s-n} as a subpath.
- If goal nodes can be reached from s, the OPEN list always contains a node n, to which $f^+(n) = f^*(n)$ applies. [Corrollary Shallowest OPEN Node on Optimum Path]
Using Information about Uncertainty of h

Describing the Estimation Uncertainty Using Density Functions (continued)

Uncertainty area:

Density functions ρ:

Related distribution function:
Using Information about Uncertainty of h
Describing the Estimation Uncertainty Using Density Functions (continued)

How should an evaluation order be calculated from the density functions $\rho_{f_n^+}$ for the nodes in the OPEN list?

Possible shapes of two density functions:

Case (a)

Case (b)
Remarks:

(a) If the density functions do not overlap, the node for which the corresponding density function ρ_{f^+} has the lowest density value f^+_a with respect to all other nodes would be selected.

(b) $f^+_{n_1}$ has the lower expected value; n_2 has the possibility that the cost $f^+_{n_2}$ may be lower than n_1. An admissible algorithm would expand n_2. It would make more sense to expand n_1 because the $f^+(n_2) < f^+(n_1)$ event is unlikely.

→ Due to uncertainty, costs can be overestimated or underestimated. I.e., not expanding a node in OPEN and terminating it too expensively as a result, represents a risk.

→ Quantification of the risk of terminating with too high costs (= terminating too early).
VI. Relaxed Models

- Motivation
- ε-Admissible Speedup Versions of A*
- Using Information about Uncertainty of h
- Risk Measures

- Nonadditive Evaluation Functions

- Heuristics Provided by Simplified Models
- Mechanical Generation of Admissible Heuristics
- Probability-Based Heuristics
Risk Measures
Defining the Order of Node Evaluations

Idea:

Estimate the risk of terminating too early using a risk measure R for each node in the OPEN list.

- For a given cost value C (of a goal node), the risk measure evaluates for each node n in the OPEN list to what extent C can be improved by expanding n.

- $R = R(C)$. The risk measure is a nondecreasing function of the C cost. The greater the $R(C)$ value of a node n, the greater the risk of missing an improvement of C if terminating with C without expanding n.

- $R(C)$ should use knowledge about the cost distribution for the node n, so it should be based on $\rho_{f_n^+}$.
Risk Measures

Principle of the Algorithm R^*_δ

Search continues until the risk value $R(C)$ of each node in the OPEN list is below a user accepted risk threshold δ.

- If a high risk is acceptable, nodes with a high risk value of $R(C)$ (= high cost reduction potential) remain unexpanded. As a result, cost underestimation becomes less likely. If only a small risk is acceptable, even nodes with a low risk value of $R(C)$ (= low cost reduction potential) are expanded. As a result, cost underestimation becomes more likely.

- I.e., depending on a risk threshold δ the probability of a cost underestimation (= probability of admissibility or optimality) can be controlled.
Remarks:

- The observance of this principle by the algorithm R^*_δ is ensured — as shown later — by the use of certain risk functions $R(C)$.

- When a goal node with cost C is selected from OPEN, its risk function must guarantee the property $C \leq C_\delta$. Otherwise, one of the remaining nodes in OPEN can have a risk for C that is higher than δ.
Risk Measures
Potential for Improvement to a Current Solution

Let n_1, n_2 be nodes of the OPEN list.

![Diagram showing possible improvements and costs for nodes n_1 and n_2.]

Example of risk functions $R(C)$ for the nodes n_1, n_2:

![Graph showing risk functions $R(C)$ for nodes n_1 and n_2.]

The nodes have different random variables $f_{n_1}^+$ and $f_{n_2}^+$ for the cost.
Remarks:

- The potential for improvement is a statistical quantity defined for a node n using f_n^+.
- The *evaluation* of the potential for improvement regarding given costs C is done with the help of a risk-measure $R(C)$.
Risk Measures
Risk Threshold and Cost Threshold

The risk threshold $\delta \geq 0$ defines for each node n in OPEN its cost threshold $C_\delta(n)$:

Let n_1, n_2 be nodes in OPEN. If the search was terminated with node n_2 and cost $C' = C_\delta(n_2)$, the risk $R(C')$ for n_1 would be above the risk threshold δ.

$\implies \quad R^*_\delta$ chooses the node n with the lowest cost threshold $C_\delta(n)$ in the OPEN list. In the above example, node n_1 would be preferred to node n_2.
Risk Measures

Definition 96 (Risk Measure)

Let M be the ordered set of cost values. A risk measure $R(C)$ for a node is a nondecreasing function $R : M \to [0, +\infty]$ measuring the risk associated with leaving that node unexplored when terminating with a solution with cost C.

Definition 97 (Cost Threshold)

Let δ be a nonnegative real number and let $R(C)$ be the risk measure for a node n. The solution $C_\delta(n)$ to the equation $R(C) = \delta$ is called the cost threshold.

Assuming the cost of a solution path found is C, then for each node n in OPEN with $C > C_\delta(n)$ the risk of missing a better solution path is higher than risk threshold δ. These nodes should be expanded before termination.
Remarks:

- Risk measures and risk thresholds must be seen in context: not every risk threshold makes sense for a risk measure.
- Depending on the f^+_n cost random variable of a node n, the δ risk threshold can lead to different sequences in the OPEN list.
- The cost-threshold $C_\delta(n)$ indicates how high the cost of a solution may be without exceeding the δ-risk-threshold for the node n.
Risk Measures

Definition 98 (δ-Risk-Admissibility)

An algorithm is said to be δ-risk-admissible if it always terminates with a solution cost C such that $R(C) \leq \delta$ for each node left on OPEN.

The above version of the δ-risk-admissible condition is equivalent to stating that at termination, the cost of the solution found is not greater than $C_\delta (n)$ for each n on OPEN.

Definition 99 (Algorithm R^*_δ)

R^*_δ is a search algorithm which is identical to A* except that it chooses for expansion that node n from OPEN with the lowest cost-threshold $C_\delta (n)$.

Note that with $\delta = 0$, R^*_δ is identical to A* since it is guided by the (admissible) lowest tail of the density of f, namely by $g + h_a$.

For $\delta > 0$, R^*_δ may prefer a node with high f_a and narrow distribution over a node with low f_a but highly diffussed density.
Remarks:

- The first definition of δ-risk-admissibility is from the perspective of risk, the second is from the perspective of cost.

- With $\delta = 0$, R^*_δ is identical to A^*. Justification:
 1. Computing the cost-threshold $C_\delta(n)$ for nodes in OPEN is solving the equation $R(C) = 0$ for $\delta = 0$.
 2. $R(C) = 0$ holds for the lowest point f_α on the tail of the density of f^+.
 3. Hence, $f_\alpha = g + h_\alpha \leq g(n) + h^*(n)$
 4. R^*_δ is guided by an admissible heuristic function and, therefore, R^*_δ is admissible.

- As the δ increases, R^*_δ tends to abandon admissibility.
Risk Measures

Risk Measures of Type $R(C) = \vartheta[C - f^+]$

Starting point are density functions for the random variables f_n^+ of nodes n in the OPEN list.

Examples:

f_a (resp. h_a) is the smallest positive preimage of the density function $\rho_{f_n^+}$ (resp. $\rho_{h_n^*}$).
Risk Measures

Risk Measures of Type $R(C) = \varrho[C - f^+]$ (continued)

1. Worst Case Risk R_1:

$$R_1(C) = \sup_{\{y|\rho_{f_n^+}(y) > 0\}} (C - y) = C - f_a = C - g - h_a$$

2. Probability of Suboptimal Termination R_2:

$$R_2(C) = P(C > f_n^+) = P(C - f_n^+ > 0) = \int_{y=-\infty}^{C} \rho_{f_n^+}(y) dy$$

3. Expected Risk R_3:

$$R_3(C) = E(\max\{C - f_n^+; 0\}) = \int_{y=-\infty}^{C} (C - y)\rho_{f_n^+}(y) dy$$
Remarks:

- The risk measures R_1 and R_3 describe costs, the risk measure R_2 describes a probability.

 - R_1: For the costs represented by the f_n^+ random variable, the smallest possible value is assumed. R_1 quantifies the maximum possible loss if a solution is satisfied with C costs. The lowest costs are the worst case because they represent the extreme case of a missed cost reduction. The probability that the remaining costs are lower than h_a is 0.

 - R_2: The probability for the occurrence of the event $"C > f_n^+"$ (i.e., event is a loss) is calculated if you are satisfied with a solution with C cost.

 - R_3: For the costs represented by the random variable f_n^+, the expected loss $E(\max\{C - f_n^+; 0\})$ is calculated if one is satisfied with a solution with costs C. R_3 weights the probability of the loss (R_2) with the amount of the occurring loss.
Risk Measures

Example

Let f_n^+ be uniformly distributed between an optimistic estimate f_a and a pessimistic estimate f_b (The f_a and f_b estimates depend on n, where n is in OPEN.):

\[
\begin{align*}
\rho_{f_n^+}(y) &= \begin{cases}
\frac{1}{f_b - f_a} & f_a \leq y \leq f_b \\
0 & \text{else}
\end{cases}
\end{align*}
\]

Density function:

Risk measure:

\[
R_1(C) = \sup_{\{y|\rho_{f_n^+}(y) > 0\}} (C - y) = C - f_a
\]
Risk Measures

Example

Let f_n^+ be uniformly distributed between an optimistic estimate f_a and a pessimistic estimate f_b (The f_a and f_b estimates depend on n, where n is in OPEN.):

Density function:

$$\rho_{f_n^+}(y) = \begin{cases} \frac{1}{f_b - f_a} & f_a \leq y \leq f_b \\ 0 & \text{else} \end{cases}$$

Risk measure:

$$R_2(C) = \int_{y=-\infty}^{C} \rho_{f_n^+}(y) \, dy = \begin{cases} 0 & C < f_a \\ \frac{(C-f_a)}{(f_b-f_a)} & f_a \leq C \leq f_b \\ 1 & f_b < C \end{cases}$$
Risk Measures

Example

Let f_n^+ be uniformly distributed between an optimistic estimate f_a and a pessimistic estimate f_b (The f_a and f_b estimates depend on n, where n is in OPEN.):

$$f_a = g + h_a \quad f_b = g + h_b$$

Density function:

$$\rho_{f_n^+}(y) = \begin{cases} \frac{1}{f_b - f_a} & f_a \leq y \leq f_b \\ 0 & \text{else} \end{cases}$$

Risk measure:

$$R_3(C) = \int_{-\infty}^{C} (C - y) \rho_{f_n^+}(y) dy = \begin{cases} 0 & C < f_a \\ \frac{(C-f_a)^2}{2(f_b-f_a)} & f_a \leq C \leq f_b \\ C - \frac{f_a+f_b}{2} & f_b < C \end{cases}$$
Shape of risk measures R_1, R_2, and R_3 (f_n^+ uniformly distributed):

The vertical axis represents the functions $R(C)$ for the three risk measures considered.
Risk Measures

Example (continued)

Computing the cost threshold C_δ for R_3 (f_n^+ uniformly distributed):

Let δ be the user’s risk tolerance of the user. For each node n in OPEN, it defines its cost threshold $C_\delta(n)$ using the equation $R(C) = \delta$.

For a node n on OPEN, $C_\delta(n)$ is computed by transforming $R_3(C_\delta) = \delta$:

$$
C_\delta(n) = \begin{cases}
 f_a & \delta = 0 \\
 f_a + \sqrt{2 \cdot (f_b - f_a) \cdot \delta} & 0 < \delta \leq \frac{f_b-f_a}{2} \\
 \delta + \frac{f_a+f_b}{2} & \frac{f_b-f_a}{2} < \delta
\end{cases}
$$
For a goal node γ in OPEN, we have $h(n) = h^*(n) = 0$. Therefore, there remains no uncertainty regarding f_{γ}^+.

Graphs of random variable f_{γ}^+ for solution cost and risk measures R_1, R_2, and R_3:

Cost threshold:

$$C_\delta(\gamma) = \begin{cases}
 g(\gamma) + \delta & \text{for risk measure } R_1 \\
 g(\gamma) & \text{for risk measure } R_2 \text{ and } \delta < 1 \\
 g(\gamma) + \delta & \text{for risk measure } R_3
\end{cases}$$
Risk Measures

δ-Risk-Admissibility

Theorem 100 (δ-Risk-Admissibility of R^*_δ)

R^*_δ is δ-risk-admissible with respect to risk measures R_1, R_2, and R_3 when G is a search space graph with $Prop_{A^*}(G)$ and $E(h^*) < +\infty$ on solution paths.
Risk Measures

\(\delta\)-Risk-Admissibility

\textbf{Theorem 100 (\(\delta\)-Risk-Admissibility of \(R^\delta\))}

\(R^\delta\) is \(\delta\)-risk-admissible with respect to risk measures \(R_1\), \(R_2\), and \(R_3\) when \(G\) is a search space graph with \(Prop_{A^*}(G)\) and \(E(h^*) < +\infty\) on solution paths.

\textbf{Proof (sketch)}

1. \(\delta\)-Risk-Admissibility:

 (a) According to the previous example, it holds for the cost \(C\) of a solution path found by \(R^\delta\):

 \[C = g(\gamma) \leq C_\delta(\gamma) \quad \text{for the risk measures} \quad R_1, R_2, R_3. \]

 (b) Since \(R^\delta\) chooses for expansion that node \(n\) from OPEN with the lowest cost-threshold \(C_\delta(n)\), \(\delta\)-risk-admissibility of \(R^\delta\) follows for risk measures \(R_1\), \(R_2\), and \(R_3\).

\[\vdots \]
Risk Measures

\(\delta \)-Risk-Admissibility (continued)

2. Completeness:

 (a) At all times OPEN contains a node \(n \) on a solution path for which \(C_\delta(n) \) is finite.

 Obviously, \(R_1(C) = \delta \) and \(R_2(C) = \delta \) have a finite solution. If density \(\rho_{h^*}(x) \) possesses a finite expectation \(E(h^*) < +\infty \) for any node on a solution path, for \(R_3 \) we have

 \[
 R_3(C) \geq C \cdot (1 - P(f^+ > C)) - E(f^+) \geq C - 2E(f^+) = C - 2g - 2E(h^*)
 \]

 (b) \(C_\delta(n) \geq g(n) \) holds for each node \(n \) in OPEN since there is no risk in abandoning \(n \) after finding a solution path with cost \(\leq g(n) \). A positive lower bound of the edge cost values guarantees that \(R^*_\delta \) can neglect nodes on solution paths only for a limited number of node expansions.
Remarks:

- Expectations can have the value $+\infty$, e.g., for a random variable that returns values 2^n with probability 2^{-n}.

- In step 2(a) we use the fact $R_3(0) = 0$ for graphs G with nonnegative edge cost values. As the lower bound for $R_3(C)$ increases with C, there is a finite value C with $R_3(C) > \delta$. Hence, $C'(n) < +\infty$.

- The exact form of ρ_{h_n} is generally unknown. For this the edge costs must have been generated by a given probabilistic model.

- Generating a good estimate for $C'_\delta(n)$ is often possible. For this, the knowledge of upper and lower bounds of h_n^* together with the often reasonable assumption of a standardized distribution between them, such as an uniform distribution, an exponential distribution or a normal distribution, is sufficient.

- The principle of the ε-admissible acceleration in A^* for A^* can also be applied to $R^*_{\delta,\varepsilon}$ and leads to the algorithm $R^*_{\delta,\varepsilon}$. The special version $R^*_{\delta,\delta}$ is δ-risk-admissible with respect to risk measures R_1, R_2, and R_3 under the preconditions of the previous theorem.