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Using Information about Uncertainty of h
Using a Non-admissible Heuristic Function

Idea [Harris] :

The heuristic function h estimates the cheapest remaining cost h∗ mostly quite well,
but sometimes overestimates h∗ by no more than ε.

Ü A* using such a heuristic function h is ε-admissible.

The condition for ε-admissibility of A* is satisfied because at termination it holds

h(n)− h∗(n) ≤ ε for all n ∈ OPEN.

Also the weakened form of admissibility of h is often too restrictive.

Often it is easier to find a heuristic estimate for h∗ that mostly estimates precisely
but sometimes overestimates h∗ (by much more than any reasonable ε).

Ü The error in the estimate is not limited, but a large error is unlikely.
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Remarks:

q Heuristic functions h with h ≤ (1 + ε)h∗ are called ε-admissible.

q Analogously to Lemma
::::::::::::::::
C∗-Bounded

:::::::::
OPEN

::::::::
Node, it can be proven that, at any point in time

before termination, there exists some node n in OPEN with f(n) ≤ (1 + ε)C∗.

q The condition "h(n)− h∗(n) ≤ ε for all n ∈ OPEN" is sufficient, but not necessary, for A* being
ε-admissible.
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Using Information about Uncertainty of h
Illustration of Underestimating and Overestimating Estimation Functions
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Using Information about Uncertainty of h
Example: Search in “Random” Graphs

Given is a graph with randomly drawn edge costs. The minimum number of edges
to a target node is known in each node.

q Edge costs c(n, n′) are known to be drawn independently from a common distribution
function, uniform in interval [0; 1].

q For long paths with N edges from a node n to a goal node in Γ it is known that h*(n) is most
likely to be near N

2 .

q The only admissible heuristic estimate for h∗ is h1(n) = 0.

q The most reasonable heuristic estimate for h∗ is h2(n) = N
2 .

The heuristic estimate h2 leads to a worst-case cost overestimation of N
2 and is

therefore not (ε-)admissible. But the likelihood of this event is extremely small.
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Using Information about Uncertainty of h
Example: Search in “Random” Graphs

Given is a graph with randomly drawn edge costs. The minimum number of edges
to a target node is known in each node.

q Edge costs c(n, n′) are known to be drawn independently from a common distribution
function, uniform in interval [0; 1].

q For long paths with N edges from a node n to a goal node in Γ it is known that h*(n) is most
likely to be near N

2 .

q The only admissible heuristic estimate for h∗ is h1(n) = 0.

q The most reasonable heuristic estimate for h∗ is h2(n) = N
2 .

The heuristic estimate h2 leads to a worst-case cost overestimation of N
2 and is

therefore not (ε-)admissible. But the likelihood of this event is extremely small.

Ü Algorithm R*δ:

– Besides an estimation function h for h∗ there is also knowledge about the
uncertainty of the estimation process.

– Knowledge about the uncertainty of the estimation process is expressed
in the form of a probability density function ρh∗(x).
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Using Information about Uncertainty of h
Describing the Estimation Uncertainty Using Density Functions

Viewing cost functions as a random variables:

cost function random variable

h∗(n) h∗n

f ∗(n) = g∗(n) + h∗(n) f ∗n

f+(n) = g(n) + h∗(n) f+
n

Let ρh∗n be a density function for the random variable h∗n.

Semantics:

On the basis of ρh∗n one can define the probability with which h∗(n) can be found in a
neighborhood of x costs.

P (h∗n = x) = ρh∗n(x)
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Using Information about Uncertainty of h
Describing the Estimation Uncertainty Using Density Functions (continued)

Let ρh∗n be a density function for the random variable h∗n.

Further applies:

1. From ρh∗n(x) a density function ρf∗n(y) can be derived for the random variable
f ∗n, if g∗ is known (e.g., when searching a tree):

ρf∗n(y) := ρh∗n(y − g
∗)

2. Let Ps−n be the cheapest known path from s to an OPEN node n.
From ρh∗n(x) a density function ρf+n (y) can be derived for the random variable
f+
n , which specifies the cost of an optimal solution path that continues Ps−n:

ρf+n (y) := ρh∗n(y − g)
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Remarks:

q The random variable f+n with associated density function ρf+n is given for each node n.

q The random variable f+n describes the possible costs of an optimal solution path that
contains the pointer path Ps−n as a subpath.

q If goal nodes can be reached from s, the OPEN list always contains a node n, to which
f+(n) = f ∗(n) applies. [

::::::::::
Corollrary

::::::::::::
Shallowest

::::::::
OPEN

::::::
Node

::::
on

::::::::::
Optimum

:::::
Path]
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Using Information about Uncertainty of h
Describing the Estimation Uncertainty Using Density Functions (continued)

Uncertainty area:
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Using Information about Uncertainty of h
Describing the Estimation Uncertainty Using Density Functions (continued)

How should an evaluation order be calculated from the density functions ρf+n for the
nodes in the OPEN list?

Possible shapes of two density functions:

Case (b)Case (a)
Cost y 

ρ
nf
+(y)

n1 n2

Cost y

ρ
nf
+(y) n1

n2
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Remarks:

(a) If the density functions do not overlap, the node for which the corresponding density function
ρf+ has the lowest density value f+a with respect to all other nodes would be selected.

(b) f+n1 has the lower expected value; n2 has the possibility that the cost f+n2 may be lower than n1.
An admissible algorithm would expand n2.
It would make more sense to expand n1 because the “f+(n2) < f+(n1)” event is unlikely.

Ü Due to uncertainty, costs can be overestimated or underestimated. I.e., not expanding a
node in OPEN and terminating it too expensively as a result, represents a risk.

Ü Quantification of the risk of terminating with too high costs (= terminating too early).
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Risk Measures
Defining the Order of Node Evaluations

Idea:

Estimate the risk of terminating too early using a risk measure R for each node in
the OPEN list.

q For a given cost value C (of a goal node), the risk measure evaluates for each
node n in the OPEN list to what extent C can be improved by expanding n.

q R = R(C). The risk measure is a nondecreasing function of the C cost. The
greater the R(C) value of a node n, the greater the risk of missing an
improvement of C if terminating with C without expanding n.

q R(C) should use knowledge about the cost distribution for the node n, so it
should be based on ρf+n .
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Risk Measures
Principle of the Algorithm R*δ

Search continues until the risk value R(C) of each node in the OPEN list is below a
user accepted risk threshold δ.

Ü If a high risk is acceptable, nodes with a high risk value of R(C) (= high cost
reduction potential) remain unexpanded. As a result, cost underestimation
becomes less likely.
If only a small risk is acceptable, even nodes with a low risk value of R(C) (=
low cost reduction potential) are expanded. As a result, cost underestimation
becomes more likely.

Ü I.e., depending on a risk threshold δ the probability of a cost underestimation
(= probability of admissibility or optimality) can be controlled.
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Remarks:

q The observance of this principle by the algorithm R*δ is ensured — as shown later — by the
use of certain risk functions R(C).

q When a goal node with cost C is selected from OPEN, its risk function must guarantee the
property C ≤ Cδ. Otherwise, one of the remaining nodes in OPEN can have a risk for C that
is higher than δ.
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Risk Measures
Potential for Improvement to a Current Solution

Let n1, n2 be nodes of the OPEN list.

fa(n1) fa(n2)

Possible improvement by expanding n1

Possible improvement by expanding n2

Cost of a solution
already found

Example of risk functions R(C) for the nodes n1, n2:

fa(n1) fa(n2)

n1

n2R(C)

C (Costs, e.g., of a 
 current solution)

The nodes have different random variables f+
n1

and f+
n2

for the cost.
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Remarks:

q The potential for improvement is a statistical quantity defined for a node n using f+n .

q The evaluation of the potential for improvement regarding given costs C is done with the help
of a risk-measure R(C).
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Risk Measures
Risk Threshold and Cost Treshold

The risk threshold δ ≥ 0 defines for each node n in OPEN its cost threshold Cδ(n):

fa(n1) fa(n2)

n1

n2R(C)

C (Costs, e.g., of a 
 current solution)

δ

Cδ(n1)

Cδ(n2)

Let n1, n2 be nodes in OPEN. If the search was terminated with node n2 and cost
C ′ = Cδ(n2), the risk R(C ′) for n1 would be above the risk threshold δ.

Ü R*δ chooses the node n with the lowest cost threshold Cδ(n) in the OPEN list.
In the above example, node n1 would be preferred to node n2.
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Risk Measures

Definition 96 (Risk Measure)

Let M be the ordered set of cost values. A risk measure R(C) for a node is a
nondecreasing function R :M → [0,+∞] measuring the risk associated with leaving
that node unexplored when terminating with a solution with cost C.

Definition 97 (Cost Threshold)

Let δ be a nonnegative real number and let R(C) be the risk measure for a node n.
The solution Cδ(n) to the equation R(C) = δ is called the cost threshold.

Assuming the cost of a solution path found is C, then for each node n in OPEN with
C > Cδ(n) the risk of missing a better solution path is higher than risk threshold δ.
These nodes should be expanded before termination.
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Remarks:

q Risk measures and risk thresholds must be seen in context: not every risk threshold makes
sense for a risk measure.

q Depending on the f+n cost random variable of a n node, the δ risk threshold can lead to
different sequences in the OPEN list.

q The cost-threshold Cδ(n) indicates how high the cost of a solution may be without exceeding
the δ-risk-threshold for the node n.
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Risk Measures

Definition 98 (δ-Risk-Admissibility)

An algorithm is said to be δ-risk-admissible if it always terminates with a solution
cost C such that R(C) ≤ δ for each node left on OPEN.

The above version of the δ-risk-admissible condition is equivalent to stating that at
termination, the cost of the solution found is not greater than Cδ(n) for each n on
OPEN.

Definition 99 (Algorithm R*δ)

R*δ is a search algorithm which is identical to A* except that it chooses for
expansion that node n from OPEN with the lowest cost-threshold Cδ(n).

Note that with δ = 0, R*δ is identical to A* since it is guided by the (admissible)
lowest tail of the density of f , namely by g + ha.

For δ > 0, R*δ may prefer a node with high fa and narrow distribution over a node
with low fa but highly diffussed density.
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Remarks:

q The first definition of δ-risk-admissibility is from the perspective of risk, the second is from the
perspective of cost.

q With δ = 0, R*δ is identical to A*. Justification:

1. Computiong the cost-threshold Cδ(n) for nodes in OPEN is solving the equation
R(C) = 0 for δ = 0.

2. R(C) = 0 holds for the lowest point fa on the tail of the density of f+.
3. Hence, fa = g + ha ≤ g(n) + h∗(n)

4. R*δ is guided by an admissible heuristic function and, therefore, R*δ is admissible.

q As the δ increases, R*δ tends to abandon admissibility.
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Risk Measures
Risk Measures of Type R(C) = %[C − f+]

Starting point are density functions for the random variables f+
n of nodes n in the

OPEN list.

Examples:

y

fa

(y)ρ
f
+
n

y

fa

(y)ρ
f
+
n

fa (resp. ha) is the smallest positive preimage of the density function ρf+n (resp. ρh∗n).
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Risk Measures
Risk Measures of Type R(C) = %[C − f+] (continued)

1. Worst Case Risk R1:

R1(C) = sup
{y|ρ

f+n
(y)>0}

(C − y) = C − fa = C − g − ha

2. Probability of Suboptimal Termination R2:

R2(C) = P (C > f+
n ) = P (C − f+

n > 0) =

C∫
y=−∞

ρf+n (y)dy

3. Expected Risk R3:

R3(C) = E(max{C − f+
n ; 0}) =

C∫
y=−∞

(C − y)ρf+n (y)dy
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Remarks:

q The risk measures R1 and R3 describe costs, the risk measure R2 describes a probability.

– R1:
For the costs represented by the f+n random variable, the smallest possible value is
assumed. R1 quantifies the maximum possible loss if a solution is satisfied with C costs.

The lowest costs are the worst case because they represent the extreme case of a
missed cost reduction. The probability that the remaining costs are lower than ha is 0.

– R2:
The probability for the occurrence of the event "C > f+n " (i.e., event is a loss) is
calculated if you are satisfied with a solution with C cost.

– R3:
For the costs represented by the random variable f+n , the expected loss
E(max{C − f+n ; 0}) is calculated if one is satisfied with a solution with costs C.

R3 weights the probability of the loss (R2) with the amount of the occurring loss.
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Risk Measures
Example

Let f+
n be uniformly distributed between an optimistic estimate fa and a pessimistic

estimate fb (The fa and fb estimates depend on n, where n is in OPEN.):

fa = g + ha fb = g + hb

y

1
fb - fa

ρf+n
(y)

Density function:

ρf+n (y) =


1

fb−fa
fa ≤ y ≤ fb

0 else
Risk measure:

R1(C) = sup
{y|ρ

f+n
(y)>0}

(C − y) = C − fa
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Risk Measures
Example

Let f+
n be uniformly distributed between an optimistic estimate fa and a pessimistic

estimate fb (The fa and fb estimates depend on n, where n is in OPEN.):

fa = g + ha fb = g + hb

y

1
fb - fa

ρf+n
(y)

Density function:

ρf+n (y) =


1

fb−fa
fa ≤ y ≤ fb

0 else
Risk measure:

R2(C) =

C∫
y=−∞

ρf+n (y)dy =


0 C < fa

(C−fa)
(fb−fa) fa ≤ C ≤ fb

1 fb < C
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Risk Measures
Example

Let f+
n be uniformly distributed between an optimistic estimate fa and a pessimistic

estimate fb (The fa and fb estimates depend on n, where n is in OPEN.):

fa = g + ha fb = g + hb

y

1
fb - fa

ρf+n
(y)

Density function:

ρf+n (y) =


1

fb−fa
fa ≤ y ≤ fb

0 else
Risk measure:

R3(C) =

C∫
y=−∞

(C − y)ρf+n (y)dy =


0 C < fa

(C−fa)2

2(fb−fa) fa ≤ C ≤ fb

C − fa+fb
2 fb < C
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Risk Measures
Example (continued)

Shape of risk measures R1, R2, and R3 (f+
n uniformly distributed):

fa = g + ha fb = g + hb

δ
R(C)

0

R1(C) = max {C - fa, 0}

C

0.5 (fb - fa)

R3(C) = E(max {C - f , 0})
+

R2(C) = Pr(C - f  > 0)
+

1

The vertical axis represents the functions R(C) for the three risk measures considered.
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Risk Measures
Example (continued)

Computing the cost threshold Cδ for R3 (f+
n uniformly distributed):

Let δ be the user’s risk tolerance of the user. For each node n in OPEN, it defines
its cost threshold Cδ(n) using the equation R(C) = δ.

Cδ(n)

δ

C

R3(C)

fa

For a node n on OPEN, Cδ(n) is computed by transforming R3(Cδ) = δ:

Cδ(n) =


fa δ = 0

fa +
√

2 · (fb − fa) · δ 0 < δ ≤ fb−fa
2

δ + fa+fb
2

fb−fa
2 < δ
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Risk Measures
Example (continued)

For a goal node γ in OPEN, we have h(n) = h∗(n) = 0. Therefore, there remains no
uncertainty regarding f+

γ .

Graphs of random variable f+
γ for solution cost and risk measures R1, R2, and R3:

fa = fb = g

y

ρf+n
(y)

fa = fb = g

δ
R(C)

0

R1(C) = max {C - g, 0} = E(max {C - g, 0}) = R3(C)

C

R2(C) = Pr(C - g> 0)1

δ

Cost treshold:

Cδ(γ) =


g(γ) + δ for risk measure R1

g(γ) for risk measure R2 and δ < 1

g(γ) + δ for risk measure R3
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Risk Measures
δ-Risk-Admissibility

Theorem 100 (δ-Risk-Admissibility of R*δ)

R*δ is δ-risk-admissible with respect to risk measures R1, R2, and R3 when G is a
search space graph with PropA∗(G) and E(h∗) < +∞ on solution paths.
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Risk Measures
δ-Risk-Admissibility

Theorem 100 (δ-Risk-Admissibility of R*δ)

R*δ is δ-risk-admissible with respect to risk measures R1, R2, and R3 when G is a
search space graph with PropA∗(G) and E(h∗) < +∞ on solution paths.

Proof (sketch)

1. δ-Risk-Admissibility:

(a) According to the previous example, it holds for the cost C of a solution path found by R*δ
:

C = g(γ) ≤ Cδ(γ) for the risk measures R1, R2, R3.

(b) Since R*δ chooses for expansion that node n from OPEN with the lowest cost-threshold
Cδ(n), δ-risk-admissibility of R*δ follows for risk measures R1, R2, and R3.

...
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Risk Measures
δ-Risk-Admissibility (continued)

...

2. Completeness:

(a) At all times OPEN contains a node n on a solution path for which Cδ(n) is finite.

Obviously, R1(C) = δ and R2(C) = δ have a finite solution. If density ρh∗(x) possesses a
finite expectation E(h∗) < +∞ for any node on a solution path, for R3 we have

R3(C) ≥ C ·
(
1− P (f+>C)

)
− E(f+) ≥ C − 2E(f+) = C − 2g − 2E(h∗)

(b) Cδ(n) ≥ g(n) holds for each node n in OPEN since there is no risk in abandoning n after
finding a solution path with cost ≤ g(n). A positive lower bound of the edge cost values
guarantees that R*δ can neglect nodes on solution paths only for a limited number of
node expansions.
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Remarks:

q Expectations can have the value +∞, e.g., for a random variable that returns values 2n with
probability 2−n.

q In step 2(a) we use the fact R3(0) = 0 for graphs G with nonnegative edge cost values. As the
lower bound for R3(C) increases with C, there is a finite value C with R3(C) > δ. Hence,
Cδ(n) < +∞.

q The exact form of ρh∗n is generally unknown. For this the edge costs must have been
generated by a given probabilistic model.

q Generating a good estimate for Cδ(n) is often possible. For this, the knowledge of upper and
lower bounds of h∗n together with the often reasonable assumption of a standardized
distribution between them, such as an uniform distribution, an exponential distribution or a
normal distribution, is sufficient.

q The principle of the ε-admissible acceleration in A*ε for A* can also be applied to R*δ and
leads to the algorithm R*δ,ε. The special version R*δ,δ is δ-risk-admissible with respect to risk
measures R1, R2, and R3 under the preconditions of the previous theorem.
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