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Game Playing Introduction

The game tree search here focuses on two-player perfect-information games:

q The rules of the game define legal moves; there is no room for chance.

q There is definite initial state s.

q The players take turns drawing.

q Three different goal states are distinguished:

1. win (W)
2. loss (L)
3. draw (D)

q Examples: chess, checkers, Go, but not poker or backgammon.
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Game Playing Introduction

The game tree search here focuses on two-player perfect-information games:

q The rules of the game define legal moves; there is no room for chance.

q There is definite initial state s.

q The players take turns drawing.

q Three different goal states are distinguished:

1. win (W)
2. loss (L)
3. draw (D)

q Examples: chess, checkers, Go, but not poker or backgammon.

A game tree is a representation of all possible plays of a game:

q The root node represents the initial state s. Leaf nodes represent goal states.

q Edges represent possible moves.

q Each path from the root s to a leaf nodes represents a complete game.
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Game Playing Introduction

Definition 103 (Game Tree)

A game tree is a (finite) directed tree representing a 2-player perfect information
game where nodes (both inner nodes and leaf nodes) are either of type “Max” or
“Min”. In particular holds:

1. All nodes at the same level of a game tree are of the same type.
2. Max nodes and Min nodes alternate between any two consecutive levels.
3. Terminal nodes represent the outcomes of the games (possible matches).

Illustration:

Max player

Max player

Max player

Min player

Min player

S:VII-4 Game Playing © Stein/Lettmann 2023



Remarks:

q As usual for directed trees, edge direction is form top to bottom.

q Without loss of generality we agree on the following:

– The interpretation of game trees is always done from the perspective of the Max player.
Hence, the nodes of the Min player are considered as AND nodes, and all labelings
reflect Max ’s view.

– Player 1 is called “Max player” or Max , and player 2 is called “Min player” or Min.

– Graphical notation and summary:

= player 1 = Max player = own view = Max node = OR node

= player 2 = Min player = adversarial view = Min node = AND node

– Finally, we assume that both players play optimum: each player wants to win.

q Although a game (like chess) can theoretically have an infinite number of moves, every
tournament has additional rules to limit the game. Therefore, for simplicity, we assume that a
game tree is a finite tree.

q In general, the OR nodes of player 2 are the AND nodes of player 1—and vice versa.

q Game trees are
:::::::::::
AND-OR

:::::::
trees. Unifying nodes representing the same game state results in

an AND-OR graph.

q In game theory, we often focus on payoff matrices that consider only the possible outcomes
of a game and the corresponding rewards. Therefore, game trees are often called the
extensive form of a game representation.
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Game Playing Introduction

Illustration: (continued)

Max player

Max player

Max player

Min player

Min playerD

W L

LW

WL LL D WWW

D

W = win
L  = loss
D = draw

Q: Is there a strategy such that Max will (start and) inevitably win?
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Game Playing Introduction

Illustration: (continued)

Max player

Max player

Max player

Min player

Min playerD

W L

LW

WL LL D WWW

D

W = win
L  = loss
D = draw

L

L

W

W

W

LL

D

D

D W

W

Q: Is there a strategy such that Max will (start and) inevitably win?
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Game Playing Introduction

Definition 104 (Status Labeling Procedure)

Let T be a finite game tree whose leaf nodes are labeled with “win”, “loss”, and
“draw” respectively. Then the label or status of an inner node n ∈ T with
successors(n) is defined as follows:

q If n is of type “Max” then

status(n) =


win if ∃n′ ∈ successors(n) : status(n′) = win

loss if ∀n′ ∈ successors(n) : status(n′) = loss

draw otherwise

q If n is of type “Min” then

status(n) =


win if ∀n′ ∈ successors(n) : status(n′) = win

loss if ∃n′ ∈ successors(n) : status(n′) = loss

draw otherwise
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Remarks:

q In the above definition, we obviously have:

– If n is of type “Max” then

status(n) = draw if and only if
{
∀n′ ∈ successors(n) : status(n′) 6= win and
∃n′ ∈ successors(n) : status(n′) = draw

}

– If n is of type “Min” then

status(n) = draw if and only if
{
∀n′ ∈ successors(n) : status(n′) 6= loss and
∃n′ ∈ successors(n) : status(n′) = draw

}
q Obviously node labeling in game trees happens bottom-up, which usually implies that the

game tree must be completely known.

q Compare the Definition “Status Labeling Procedure” to the Definition “Solved-Labeling
Procedure”, which defines whether or not an AND-OR graph contains a solution graph.
[
:::
S:II

:::::::
Basic

::::::::
Search

::::::::::::
Algorithms])
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Game Playing Introduction

Definition 105 (Game Strategy, Solution Tree, Winning Strategy)

Let T be a game tree whose leaf nodes are labeled with “win”, “loss”, and “draw”
respectively.

A game strategy for player Max is a subtree T+ of T . T+ has the root s, it contains
for each inner Max node exactly one successor and for each inner Min node all
successors.

A game strategy for player Min is a subtree T− of T . T− has the root s, it contains
for each inner Min node exactly one successor and for each inner Max node all
successors.

A winning strategy (for player Max) specifies how s is labeled with “win”,
irrespective of the moves of player Min.
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Game Playing Introduction

Illustration (continued):

Max player

Max player

Max player

Min player

Min playerD

W L

LW

WL LL D WWW

D

W = win
L  = loss
D = draw

L

L

W

W

W

LL

D

D

D W

W
Min strategy

Max strategy
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Game Playing Introduction

Two strategies T+, T−, of Max and Min respectively, share at each level either one
or no edge:

W Min strategy

Max strategy

Ü The intersection of two strategies T+, T−, defines a path that corresponds to
the play of the players Max and Min if both stick to their strategy.

Ü The intersection of two strategies T+, T−, defines the leaf (T+ u T−), which
corresponds to the final position of the game.
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Game Playing Introduction

Strategy considerations for two-player, perfect-information games:

1. Let player Max choose a strategy T+ and disclose it to player Min.

2. Min chooses T− such that a leaf is reached that is as unfavorable as possible
for Max . The label of this leaf computes as follows:

min
T−

status(T+ u T−)

3. (With foresight) Max chooses T+ such that the most unfavorable leaf is as
good as possible for him. The label of this leaf computes as follows:

max
T+

min
T−

status(T+ u T−)
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Game Playing Introduction

Strategy considerations for two-player, perfect-information games:

1. Let player Max choose a strategy T+ and disclose it to player Min.

2. Min chooses T− such that a leaf is reached that is as unfavorable as possible
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Game Playing Introduction

Strategy considerations for two-player, perfect-information games:

1. Let player Max choose a strategy T+ and disclose it to player Min.

2. Min chooses T− such that a leaf is reached that is as unfavorable as possible
for Max . The label of this leaf computes as follows:

min
T−

status(T+ u T−)

3. (With foresight) Max chooses T+ such that the most unfavorable leaf is as
good as possible for him. The label of this leaf computes as follows:

max
T+

min
T−

status(T+ u T−)
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Game Playing Introduction

Strategy considerations for two-player, perfect-information games:

1. Let player Max choose a strategy T+ and disclose it to player Min.

2. Min chooses T− such that a leaf is reached that is as unfavorable as possible
for Max . The label of this leaf computes as follows:

min
T−

status(T+ u T−)

3. (With foresight) Max chooses T+ such that the most unfavorable leaf is as
good as possible for him. The label of this leaf computes as follows:

max
T+

min
T−

status(T+ u T−)

By changing the roles we obtain: min
T−

max
T+

status(T+ u T−)

It holds (here without proof):

min
T−

max
T+

status(T+ u T−) = status(s) = max
T+

min
T−

status(T+ u T−)

S:VII-17 Game Playing © Stein/Lettmann 2023



Remarks:

q The strategy considerations formalize the fact that both players play optimum.

q The following ranking between status values is supposed:
“loss” ≺ “draw” ≺ “win” for Max
“win” ≺ “draw” ≺ “loss” for Min

Since we are using the view of player Max and, therefore, his ranking, player Min tries to
achieve a minimum result.

q The shown connections regarding status(T+ u T−) can be proven inductively, considering a
generic game tree, and starting with the leaf nodes.

q Observation:
It is irrelevant whether a strategy is chosen up-front and disclosed, or whether decisions are
made during the play.

q Other consequences:
In order to proof whether a root node can be labeled with “win” and “loss” respectively, only
one strategy T+ or T− is required. However, in order to proof whether a root node can be
labeled with “draw”, two strategies T+ and T− are required.
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Game Playing Introduction

The labeling of game trees is possible without distinguishing between Max and
Min players. Instead, each node can be labeled from the viewpoint of that player
who is currently moving: mover-oriented status labeling.

Definition 106 (mstatus Labeling Procedure)

Let T be a game tree whose leaf nodes are labeled with “win”, “loss”, and “draw”
respectively, from the perspective of the player whose turn it is. Then, under the
mover-oriented viewpoint, the label or mstatus(n) of an inner node n ∈ T with
successors(n) is defined as follows.

mstatus(n) =


win if ∃n′ ∈ successors(n) : mstatus(n′) = loss

loss if ∀n′ ∈ successors(n) : mstatus(n′) = win

draw otherwise
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Remarks:

q By encoding the status “win” as 1, “loss” as −1, and “draw” as 0, the definition of mstatus(n)
can be reformulated as follows:

mstatus(n) = max
n′∈successors(n)

{−mstatus(n′)}

Therefore, the mover-oriented labeling is also called Neg-Max labeling.
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Evaluation Functions for Game Trees

Status labeling requires the generation of nearly the complete game tree. The
following order of magnitudes illustrate the infeasibility of this prerequisite.

q Checkers:
A complete game tree contains about 1040 inner nodes. If we processed
3 billion nodes per second, tree generation would last about 1021 centuries.
[Samuel 1959]

q Chess:
A complete game tree contains about 10120 inner nodes, generated within
about 10101 centuries.

Even if time were not the problem, storage space would be:
There are about 1080 atoms in the observable universe.
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Evaluation Functions for Game Trees

Status labeling requires the generation of nearly the complete game tree. The
following order of magnitudes illustrate the infeasibility of this prerequisite.

q Checkers:
A complete game tree contains about 1040 inner nodes. If we processed
3 billion nodes per second, tree generation would last about 1021 centuries.
[Samuel 1959]

q Chess:
A complete game tree contains about 10120 inner nodes, generated within
about 10101 centuries.

Even if time were not the problem, storage space would be:
There are about 1080 atoms in the observable universe.

Ü We need heuristics to evaluate game positions.

Ü Evaluation is based on features that characterize game positions.

Ü Distinguish an immediate and a look-ahead evaluation of game positions.
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Remarks:

q Immediate (also called “static”) evaluations of game positions are usually not used for a
decision. Instead, for a certain search horizon (= search depth, bounded look-ahead) the
possible game position are generated, and then the nodes at the search horizon are
evaluated.

q The evaluations at the search horizon are considered as “true” values (recall: face-value
principle). The values are propagated back up to that point where a decision is to be met,
i.e., the starting point of the search.

“The backed-up evaluations give a more accurate estimate of the true values of
Max’s possible moves than would be obtained by applying the static evaluation function

directly to those moves and not looking ahead to their consequences.”
[Barr/Feigenbaum 1981]
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Evaluation Functions for Game Trees
Handling Huge or Even Infinite Game Trees

q An evaluation function e(n) analyzes the game
situation in a node n of a game tree T , e.g.,

e : V (T )→ [0, 1]

Values near 1 represent good situation for the
Max-player, values near 0 represent good situa-
tion for the Min-player.

q For simplicity, we consider the evaluation of a
search tree as a separate process using a depth
bound to limit the look-ahead.

q The game tree is processed in a depth-first
framework.

q A leaf node or a node at the search horizon is
evaluated by e(n).

q Evaluations are propagated back to s and ag-
gregated.

s

Search 
Horizon
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Evaluation Functions for Game Trees

Definition 107 (Minimax Rule)

Let T be a game tree and let k, k ≥ 0, be a depth bound. The nodes of T in depth k
and also the leafs of T in at most depth k form the current search horizon and can
be evaluated with an evaluation function e. Then, the value v(n) of a non-leaf
node n ∈ T in at most depth k is defined as follows.

v(n) =



e(n) n is leaf node or
n is a node at depth k

max
n′∈successors(n)

v(n′) n is of type “Max”

min
n′∈successors(n)

v(n′) n is of type “Min”
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Remarks:

q The minimax rule is a natural extension of the status labeling procedure for partially explored
game trees.

q Most game playing algorithms are based on variants of the minimax rule.

q When operationalizing (= implementing) the minimax rule, the available computing resources
are spent for two aspects:

1. Generation of a portion of the game tree.
2. Evaluation of the game positions at the leafs of the generated game tree portion.

Consider the tradeoff between the quality (complexity) of an evaluation function e and the
attainable search depth (amount of search effort) for look-ahead: Where to invest the
available computing resources?

q If a finite portion of the game tree was already created and evaluation is only required for this
portion, we can omit the depth bound in the above definition and all the following algorithms.

q For a fixed evaluation function e the search efforts is proportional to the number of generated
leaf nodes. Hence, in game theory the leaf node number is the standard measure to asses
the complexity of game playing algorithms.
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Propagation Algorithms for Game Trees [SOLVE, ALPHA-BETA]

Algorithm: MINIMAX-DFS
Input: n. A node in a game tree T .

successors(n). Returns the successors of node n.
k. Depth bound for evaluation.
e(n). Evaluation function (real-valued) for a leaf node n ∈ T .

Output: The value v(n) of the node n.

MINIMAX-DFS(n, successors, k, e)

1. IF ( successors(n) = ∅ OR depth(n) = k )
THEN RETURN(e(n));

2. FOREACH n′ IN successors(n) DO
v(n′) = MINIMAX-DFS(n′, successors, e);

ENDDO

3. IF nodeType(n) = "Max"
THEN RETURN(max{v(n′) | n′ ∈ successors(n)})
ELSE RETURN(min{v(n′) | n′ ∈ successors(n)})
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Remarks:

q A backtracking variant of algorithm MINIMAX-DFS, the algorithm MINIMAX-BT, would not
generate all successors of a node at once, but generate and evaluate only one successor
node at a time.

q Usually, the algorithm MINIMAX-DFS (as well as the algorithm MINIMAX-BT) generates
more nodes than necessary. The algorithm SOLVE introduced below illustrates this fact.
Successor nodes have to be processed recursively only, if the resulting value may influence
the maximum/minimum. Note, however, that the algorithm SOLVE employs a two-valued
evaluation function e.
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Propagation Algorithms for Game Trees [MINIMAX-DFS, ALPHA-BETA]

Algorithm: SOLVE
Input: n. A node in a game tree T .

successors(n). Returns the successors of node n.
k. Depth bound for evaluation.
e(n). Evaluation function (two-valued {win, loss}) for a leaf node n ∈ T .

Output: The value v(n) of the node n.

SOLVE(n, successors, k, e)

1. IF ( successors(n) = ∅ OR depth(n) = k )
THEN RETURN(e(n));

2. FOREACH n′ IN successors(n) DO
v(n′) = SOLVE(n′, successors, e);
IF nodeType(n) = "Max"
THEN IF v(n′) = "win" THEN RETURN("win") // Early termination.
ELSE IF v(n′) = "loss" THEN RETURN("loss") // Early termination.

ENDDO

3. IF nodeType(n) = "Max"
THEN RETURN("loss")
ELSE RETURN("win")
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Propagation Algorithms for Game Trees

The pruning rationale used by the algorithm SOLVE is not restricted to two-valued
evaluation functions but can be applied to multivalued (continuous) evaluation
functions as well.

Overview of propagation algorithms:

two-valued multivalued
evaluation function evaluation function

without pruning MINIMAX-DFS

with pruning SOLVE ALPHA-BETA
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Propagation Algorithms for Game Trees
Game tree with propagated minimax values:

Maximizing
level

Maximizing
level

Minimizing
level

21202231425141315141291110

s
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F

G
9

14 5

5

5

4
14

10

10

10

Argumentation:

1. The inspection of node B (its successors) yields information whether v(A)
must be decreased. What must hold for B to decrease v(A)?
If we learn that this condition cannot be fulfilled anymore, the inspection of B
can be aborted.
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Propagation Algorithms for Game Trees
Game tree with propagated minimax values:

Maximizing
level

Maximizing
level

Minimizing
level

21202231425141315141291110
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Argumentation:

2. The inspection of the nodes D or G (their successors) yield information
whether v(s) can be increased. What must hold for D or G to increase v(s)?
If we learn that this condition cannot be fulfilled anymore, the inspection of
D (G) can be aborted.

S:VII-34 Game Playing © Stein/Lettmann 2023



Remarks:

q The generalization of the previous argumentation will lead to the concept of α-bounds and
β-bounds.

q For the node D, the value 10, which is here obtained from s, forms an α-bound.

q For the node B, the value 10, which is here obtained from A, forms a β-bound.

q Without loss of generality, the inspection of the nodes goes strictly from left to right.
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Propagation Algorithms for Game Trees
Intuition of α-Bounds

q The α-bound is a lower bound and is used to prune (= to abort the inspection)
of a Min node n.

q The value of α is defined as the currently maximum value of all predecessors
of n that are of type “Max”.

q The inspection of the Min node n can be aborted if v(n) ≤ α.

Illustration:

...

...

...

A

B

C

α
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Remarks:

q The current α-bound can be found at the Max node A; it was propagated from the
Min node B.
Q. What must hold for the Min node C to increase v(A) = α?
A. C can increase α as long as v(C) > α holds.

q Observe that the successors of the Min node C can never increase v(C). Hence, as soon
as C got a value v(C) ≤ α, the investigation of the remaining successors of C can be
aborted.

q At each point in time holds: The current value of α defines for the highest (closest to the root)
Max node n̂ with v(n̂) = α a lower bound of the final value that would be computed for n̂ by
the algorithm MINIMAX-DFS.
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Propagation Algorithms for Game Trees
Intuition of β-Bounds

q The β-bound is an upper bound and is used to prune (= to abort the
inspection) of a Max node n.

q The value of β is defined as the currently minimum value of all predecessors
of n that are of type “Min”.

q The inspection of the Max node n can be aborted if v(n) ≥ β.

Illustration:

...

...

...

A

B

C

β
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Remarks:

q The current β-bound can be found at the Min node A; it was propagated from the
Max node B.
Q. What must hold for the Max node C to decrease v(A) = β?
A. C can decrease β as long as v(C) < β holds.

q Observe that the successors of the Max node C can never decrease v(C). Hence, as soon
as C got a value v(C) ≥ β, the investigation of the remaining successors of C can be
aborted.

q At each point in time holds: The current value of β defines for the highest (closest to the root)
Min node n̂ with v(n̂) = β an upper bound of the final value that would be computed for n̂ by
the algorithm MINIMAX-DFS.
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Propagation Algorithms for Game Trees

The α-β-pruning scheme:

“Perform the backtracking version of minimax search with one exception;

if in the course of updating
the minimax value of a given node n crosses a certain bound,

then no further exploration is needed beneath that node;

its current-value v(n) can be transmitted to its father
as if all of its sons have been evaluated.”

[Pearl 1981, p. 233]
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Remarks:

q The effectiveness of α-β pruning depends on the evaluation order of the nodes in depth k.

q Given a fixed evaluation effort, it can be shown that—if the depth k nodes (evaluation
function values) are randomly ordered—the attainable search depth is extended by 33% with
α-β pruning. [Pearl 1981]
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Propagation Algorithms for Game Trees

Algorithm: ALPHA-BETA
Input: n. A node in a game tree T .

successors(n). Returns the successors of node n.
k. Depth bound for evaluation.
e(n). Evaluation function (real-valued) for a node n ∈ T .
α, β. Two numbers in R with α < β. Initially, α = −∞, β = +∞.

Output: The minimax value v(n) of n for ALPHA-BETA(n, successors, k, e, α = −∞, β = +∞),

in general a value v′(n) with v′(n) =


v(n) if v(n) ∈ ]α, β[
α if v(n) ≤ α
β if v(n) ≥ β
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Propagation Algorithms for Game Trees [MINIMAX, SOLVE]

ALPHA-BETA(n, successors, k, e, α, β)

1. IF ( successors(n) = ∅ OR depth(n) = k )
THEN RETURN(e(n));

2.a IF nodeType(n) = ’Max’
THEN

// Try to increase α in interval ]α, β[.
FOREACH n′ IN successors(n) DO
α = max(α, ALPHA-BETA(n′, successors, e, α, β));
IF α ≥ β THEN RETURN(β); // No improvement of bounds possible.

// A better option for the Min-player is already known.
ENDDO
RETURN(α);

2.b ELSE // nodeType(n) = ’Min’.

// Try to decrease β in interval ]α, β[.
FOREACH n′ IN successors(n) DO
β = min(β, ALPHA-BETA(n′, successors, e, α, β));
IF β ≤ α THEN RETURN(α); // No improvement of bounds possible.

// A better option for the Max-player is already known.
ENDDO
RETURN(β);

ENDIF
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Remarks:

q The evaluation v(n) of a node is not stored explicitly. Instead, the bound that is to be
improved by v(n) will be adapted directly: α bounds for Max nodes and β bounds for Min
nodes.

q Therefore, the processing of a node is aborted if α ≥ β (corresponding to v(n) ≥ β for Max
nodes and v(n) ≤ α for Min nodes).
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Propagation Algorithms for Game Trees
Example: Propagating evaluations with ALPHA-BETA

Maximizing
level

Maximizing
level

Minimizing
level

21202231425141315141291110

s
α=
β=

–∞
+∞

α=
β=

–∞
+∞

α=
β=

–∞
+∞

α=
β=

–∞
+∞

q The initial call of the algorithm is

ALPHA-BETA(s, successors, k = 4, e(.), α = −∞, β = +∞).

q Nodes in depth 4 can be seen as leaf nodes.
q Recursive calls with current bounds α, β are performed up to the maximum depth level.
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Propagation Algorithms for Game Trees
Example: Propagating evaluations with ALPHA-BETA (continued)

Maximizing
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Maximizing
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q The value e(n) = 10 is computed at maximum depth level and returned.
q Adaption of the β-bound in the Min-node with the first successor’s evaluation results

in α = −∞ < 10 = β.
q A recursive call with current bounds α, β is performed for the next successor up to the

maximum depth level.
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Propagation Algorithms for Game Trees
Example: Propagating evaluations with ALPHA-BETA (continued)
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q The value e(n) = 11 is computed at maximum depth level and returned.
q Adaption of the β-bound in the Min-node with the first successor’s evaluation results

in α = −∞ < 10 = β. Then, β is returned.
q Adaption of the α-bound in the Max-node with the first successor’s evaluation results

in α = 10 < +∞ = β.
q A recursive call with current bounds α, β is performed for the next successor up to the

maximum depth level.
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Propagation Algorithms for Game Trees
Example: Propagating evaluations with ALPHA-BETA (continued)
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q The value e(n) = 9 is computed at maximum depth level and returned.
q Adaption of the β-bound in the Min-node with the first successor’s evaluation results

in α = 10 ≥ 9 = β. Then, α is returned.
q Adaption of the α-bound in the Max-node with the first successor’s evaluation results

in α = 10 < +∞ = β. Then, α is returned.
q Adaption of the β-bound in the Min-node with the first successor’s evaluation results

in α = −∞ < 10 = β. Then, the next recursive call with current bounds α, β is performed.
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Propagation Algorithms for Game Trees
Example: Propagating evaluations with ALPHA-BETA (continued)
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q The value e(n) = 14 is computed at maximum depth level and returned.
q Adaption of the β-bound in the Min-node with the first successor’s evaluation results

in α = −∞ < 10 = β. There is no change in the value for β.
q A recursive call with current bounds α, β is performed for the next successor up to the

maximum depth level.
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Propagation Algorithms for Game Trees
Example: Propagating evaluations with ALPHA-BETA (continued)
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q The value e(n) = 15 is computed at maximum depth level and returned.
q Adaption of β in the Min-node results in α = −∞ < 10 = β. Then, β is returned.
q Adaption of α in the Max-node results in α = 10 ≥ 10 = β. Then, β is returned.
q Adaption of β in the Min-node results in α = −∞ < 10 = β. Then, β is returned.
q Adaption of α in the Max-node results in α = 10 ≥ +∞ = β.
q A recursive call with current bounds α, β is performed for the next successor up to the

maximum depth level.
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Propagation Algorithms for Game Trees
Example: Propagating evaluations with ALPHA-BETA (continued)
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q The value e(n) = 5 is computed at maximum depth level and returned.
q Adaption of the β-bound in the Min-node with the first successor’s evaluation results

in α = 10 ≥ 5 = β. Then, α is returned.
q Adaption of the α-bound in the Max-node with the first successor’s evaluation results

in α = 10 < +∞ = β. There is no change in the value for α.
q A recursive call with current bounds α, β is performed for the next successor up to the

maximum depth level.
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Propagation Algorithms for Game Trees
Example: Propagating evaluations with ALPHA-BETA (continued)
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q The value e(n) = 4 is computed at maximum depth level and returned.
q Adaption of β in the Min-node results in α = 10 ≥ 4 = β. Then, α is returned.
q Adaption of α in the Max-node results in α = 10 < +∞ = β. Then, α is returned.
q Adaption of β in the Min-node results in α = 10 ≥ 10 = β. Then, α is returned.
q Adaption of α in the Max-node results in α = 10 < +∞ = β. Then, α is returned.
q It holds α = v(s).
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Propagation Algorithms for Game Trees
Example: Propagating evaluations with ALPHA-BETA (continued)
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Summary:

q α-bounds increase, β-bounds decrease.
q The interval ]α, β[ provided in a (recursive) call defines the range of helpful values.
q The interval ]α, β[ is decreased in a node by either decreasing β or increasing α.
q If the interval ]α, β[ runs empty, processing is stopped, the unchanged bound is returned.
q Otherwise, the changed bound is returned, i.e., the subtree gives an improvement.
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