
Chapter S:III

III. Informed Search
q Best-First Search Basics
q Best-First Search Algorithms
q Cost Functions for State-Space Graphs
q Evaluation of State-Space Graphs
q Algorithm A*

q BF* Variants
q Hybrid Strategies

q Best-First Search for AND-OR Graphs
q Relation between GBF and BF
q Cost Functions for AND-OR Graphs
q Evaluation of AND-OR Graphs

S:III-54 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs
Overview

BF defines a schema for the design of search strategies for state-space graphs. Up
to this point, the evaluation functions f remained unspecified.

Questions:

q How to compute f?

q How to evaluate a solution path?

q How to evaluate a search space graph?

q How to identify a most promising solution base?

Answering these question gives rise to a taxonomy of Best-First algorithms.

S:III-55 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs
Overview (continued)

The answers are developed in several steps by the following concepts:

1. (Recursive) Cost functions (for paths)

2. Solution cost (for a given solution path)
3. Optimum solution cost (for a complete search space graph)

4. Estimated solution cost (for a given solution base)
5. Estimated optimum solution cost (for a part of a search space graph)

S:III-56 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs
Overview (continued)

The answers are developed in several steps by the following concepts:

1. (Recursive) Cost functions (for paths)

2. Solution cost (for a given solution path)
3. Optimum solution cost (for a complete search space graph)

4. Estimated solution cost (for a given solution base)
5. Estimated optimum solution cost (for a part of a search space graph)

Names of the respective cost functions:

Solution

given optimum searched

Exploration
complete CP C∗

partial ĈP Ĉ ; n

S:III-57 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs
Overview (continued)

The answers are developed in several steps by the following concepts:

1. (Recursive) Cost functions (for paths)

2. Solution cost (for a given solution path)
3. Optimum solution cost (for a complete search space graph)

4. Estimated solution cost (for a given solution base)
5. Estimated optimum solution cost (for a part of a search space graph)

Names of the respective cost functions:

Solution

given optimum searched

Exploration
complete CP C∗

partial ĈP Ĉ ; n

S:III-58 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs
Overview (continued)

The answers are developed in several steps by the following concepts:

1. (Recursive) Cost functions (for paths)

2. Solution cost (for a given solution path)
3. Optimum solution cost (for a complete search space graph)

4. Estimated solution cost (for a given solution base)
5. Estimated optimum solution cost (for a part of a search space graph)

Names of the respective cost functions:

Solution

given optimum searched

Exploration
complete CP C∗

partial ĈP Ĉ ; n

S:III-59 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs
Overview (continued)

The answers are developed in several steps by the following concepts:

1. (Recursive) Cost functions (for nodes in paths)

2. Solution cost (for nodes in a given solution path)
3. Optimum solution cost (for nodes in a complete search space graph)

4. Estimated solution cost (for nodes in a given solution base)
5. Estimated optimum solution cost (for nodes in a part of a search space graph)

Names of the respective cost functions:

Solution

given optimum searched

Exploration
complete CP (n) C∗(n)

partial ĈP (n) Ĉ(n) ; n

S:III-60 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs
Overview (continued)

The answers are developed in several steps by the following concepts:

1. (Recursive) Cost functions (for nodes in paths)

2. Solution cost (for nodes in a given solution path)
3. Optimum solution cost (for nodes in a complete search space graph)

4. Estimated solution cost (for nodes in a given solution base)
5. Estimated optimum solution cost (for nodes in a part of a search space graph)

Names of the respective cost functions:

Solution

given optimum searched

Exploration
complete CP (s) C∗(s)

partial ĈP (s) Ĉ(s) ; n

n represents a most promising solution base.
S:III-61 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs

For a known solution path, the solution cost must be determined.

Definition 26 (Cost Function CP)

Let G be an OR-graph and let M be an ordered set.

A cost function CP is a (partial) function that assigns a cost value CP (n) in M to
nodes n and paths P in G. CP (n) is cost of P starting in n to the end of P .

Usage and notation of CP :

q As ordered set M usually R ∪ {−∞,+∞} is chosen.

q CP is at least defined for solution paths P and nodes in path P .

q No provisions are made how to compute CP (n) for a
::::::::::::::::
solution path P .

CP (s) specifies the cost of a solution path P for s :

f(γ) = CP (s) with P back-pointer path of γ.

q No provisions are made how to compute CP (n) for a path P that is no solution path or a node
n that is not in P . CP (n) :=∞ is reasonable in this case.

S:III-62 Informed Search © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-basic-search1.pdf#solution-path-or-graph

Remarks:

q CP (n) should be seen as a two-argument function with arguments P and n.

q The cost value CP (n) is meaningful only if n is a node in P .

q Solution cost does not measure efforts for finding a solution. Solution cost aggregates
properties of operations in a solution path to form a cost value.

q Instead of cost functions, we may employ merit functions or, even more general, weight
functions. The respective notations are QP for merits, and WP for weights.
For instance,

:::::::::
greedy

::::::::::::::
algorithms often employ merit functions.

q A cost function can be a complex accounting rule, considering properties of a solution path:

1. node costs, such as the processing effort of a manufacturing machine,
2. edge costs, such as the cost for transportation or transmission, and
3. terminal payoffs, which specify a lump value for the remaining solution effort at leaf

nodes.

q At places where the semantics was intuitively clear, we have already used the notation CP (n)
to denote the solution cost of a problem associated with node n. Definition 26 catches up for
the missing notation and semantics.

q Please note that in the above definition of CP (n) the path P is not required to be a solution
path for n. At least for solution paths P and their nodes n, CP (n) should be defined. If CP (n)
is undefined, we assume CP (n) :=∞.

S:III-63 Informed Search © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-informed-bf3.pdf#algorithm-greedy

Cost Functions for State-Space Graphs

If the entire search space graph rooted at a node s is known, the optimum solution
cost for the root node s can be determined.

Definition 27 (Optimum Solution Cost C∗, Optimum Solution)

Let G be an OR-graph with root node s and let CP (n) denote a cost function for G.

The optimum solution cost C∗(n) for a node n in G is defined as

C∗(n) := inf{CP (n) | P is solution path in G and n in P}

A solution path with solution cost C∗(n) is called optimum solution path for n.
The optimum solution cost C∗(s) for s is abbreviated as C∗.

Usage of C∗(n) :

q If G contains no solution path for n, let C∗(n) :=∞.

q inf denotes the operator that gives the greatest lower bound of a set.
For finite sets, the infimum is the minimum.

q A task should be modeled in such a way that the inf can be replaced by min.

S:III-64 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs

If the entire search space graph rooted at a node s is known, the optimum solution
cost extending a solution base for s can be determined.

Definition 28 (Optimum Solution Cost C∗
P for a Solution Base)

Let G be an OR-graph with root node s and let CP (n) denote a cost function for G.

The optimum solution cost C∗P (n) for a node n in a
:::::::::::::::::::::
solution base P for s is defined as

C∗P (n) := inf{CP ′(n) | P ′ is solution path for s in G extending P and n in P}

Usage of C∗P (n) :

q An algorithm A maintaining a set of solution bases can find a solution path with cost

C∗A(s) = min{C∗P (s) | P is solution base currently maintained in OPEN by A}

Therefore, it is essential for search algorithms to keep available enough solution bases such
that we have

C∗(s) = C∗A(s)

Optimistically estimating C∗P (n) in BF will direct the search into promising directions.

S:III-65 Informed Search © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-basic-search1.pdf#solution-base-or-graph

Cost Functions for State-Space Graphs

If the search space graph rooted at a node s is known partially, the optimum
solution cost extending a solution base for s can be estimated.

Definition 29 (Estimated Optimum Solution Cost ĈP for a Solution Base)

Let G be an OR-graph with root node s and let CP (n) denote a cost function for G.

The estimated optimum solution cost ĈP (n) for a node n in in a solution base P in G
is an estimate of C∗P (n).

ĈP (n) is optimistic, if and only if ĈP (n) ≤ C∗P (n).

For BF we define f (n) := ĈP (s) with P being the back-pointer path of n.

Usage of ĈP :

q f(n) is optimistic, if f(n) ≤ C∗P (s) with P being the back-pointer path of n.

q f(n) is an estimate of the optimum solution path cost for s when extending the solution base
identified by n, i.e., when extending the back-pointer path of n.

S:III-66 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs

If the search space graph rooted at a node s is known partially, the optimum
solution cost for s can be estimated. [Overview]

Definition 30 (Estimated Optimum Solution Cost Ĉ)

Let G be an OR-graph with root node s and let CP (n) denote a cost function for G.
Further, let T be a finite set of solution bases for s.

The estimated optimum solution cost Ĉ(n) for a node n occurring in T is defined as

Ĉ(n) := min{ĈP (n) | P is solution base in T containing n}

A solution base P for s in T with ĈP (s) = Ĉ(s) is called most promising solution
base (for s).

Usage of ĈP :

q In our algorithms, the finite set T is defined by the traversal tree available at a point in time.
The traversal tree of solution bases is defined by the nodes in OPEN.

q For solving optimization problems, we want to have Ĉ(s) = C∗(s), i.e. an optimum solution
path is in the reach of the algorithm.

S:III-67 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs
Cost Concept used in

::::::::::::::::::::
Uniform-Cost

::::::::::::
Search

q Edge weight.
Encode either cost values or merit values, which are accounted if the respective edges
become part of the solution.
c(n, n′) denotes the cost value of an edge from n to n′.

q Path cost.
The cost of a path, CP , results from applying a cost measure F , which specifies how cost of a
continuing edge is combined with the cost of the rest of the path.

Examples:
Sum cost := the sum of all edge costs of a path P from s to n:

CP (s) =
k−1∑
i=0

c(ni, ni+1), with n0 = s and nk = n

Maximum cost := the maximum of all edge costs of a path:

CP (s) = max
i∈{0,...,k−1}

c(ni, ni+1), with n0 = s and nk = n

q Estimated optimum solution cost.
The cost value for the solution base is taken as the estimate of optimum solution cost.

ĈP (n) := CP (n)
S:III-68 Informed Search © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-informed-bf1.pdf#algorithm-ucs

Cost Functions for State-Space Graphs
Recursive Cost Functions

The computation of the evaluation functions f would be nearly impracticable if the
cost of paths were based on complex global properties of the path.

Definition 31 (Recursive Cost Function, Cost Measure)

A cost function CP for a solution path P is called recursive, if for each node n in P it
holds:

CP (n) :=

{
F [E(n)] n is leaf in P (and, hence, n is goal node)
F [E(n), CP (n

′)] n is inner node in P and n′ direct successor of n in P

q n′ denotes the direct successor of n in P ,

q E(n) ∈ E denotes a set of local properties of n with respect to P ,

q F is a function that prescribes how local properties of n are accounted
(better: combined) with properties of the direct successor of n:

F : E×M →M, where M is an ordered set.

F is called cost measure.

S:III-69 Informed Search © Stein/Lettmann 2023

Remarks:

q CP is a recursively defined function. Hence, CPs−γ(s) can be computed bottom-up, from the
end node γ to the start node s along path Ps−γ.

q Function E and F should be given in such away that computation of CP (n) is possible for
solution paths P and nodes n in such P .

q The brackets [. . .] indicate a list notation. For AND/OR graphs, there is usually not only one
successor node n′ that is taken into account.

q Observe that for each node n in a solution path P the subpath of P starting in n is a solution
path for n.

q Local properties have to be seen with respect to the successor node in the path P . An
example is cost of the operation that was applied at n to get to n′.

q If merits, quality, or other positive aspects are measured for a solution base, F is called merit
measure.

S:III-70 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs
Recursive Cost Functions (continued)

If the search space graph rooted at a node s is known partially and a recursive cost
function is used, cost estimates for a solution base

1. can be built upon estimates for optimum solution cost of non-goal leaf nodes
in this solution base and,

2. can be computed by taking the estimations of h for granted and propagating
the cost values bottom-up. Keyword: Face-Value Principle

Definition 32 (Heuristic Function h)

Let G be an OR graph. A function h, which assigns each node n in G an estimate
h(n) of the optimum solution cost value C∗(n) (i.e., the optimum cost of a solution
path for n), is called heuristic function (for G).

Usage of h(n) :

q In order to emphasize the dualism of estimated and real values again, we often write h∗(n)
instead of C∗(n) (i.e., h(n) is an estimate of h∗(n)).

S:III-71 Informed Search © Stein/Lettmann 2023

Remarks:

q If algorithm BF were equipped with a dead end recognition function ⊥ (n), no unsolvable
node would be stored. A dead end recognition could also be incorporated in h in such a way
that h returns∞ for unsolvable nodes:

h(n) :=∞ ⇔ ⊥ (n) = true

S:III-72 Informed Search © Stein/Lettmann 2023

Cost Functions for State-Space Graphs
Recursive Cost Functions (continued)

Definition 33 (Recursive Estimated Solution Cost Function ĈP for a Solution Base)

Let G be an OR-graph with root node s and let CP (n) denote a cost function for G,
recursively defined using functions F and E. Further, let h be a heuristic function.

The recursively defined estimated solution cost ĈP (n) for solution base P in G
based on CP (n) is defined as

ĈP (n) :=

c(n) n is leaf in P and n is goal node
h(n) n is leaf in P but n is no goal node
F [E(n), ĈP (n

′)] n is inner node in P and n′ direct successor of n in P

Usage of h(n) :

q The computation of an estimated solution cost is based on the the face-value principle:
Estimated cost values CP (n′) are used as if they were the real values.

q As a shorthand we use c(n) := F [E(n)] for the remaining cost at a (nontrivial) goal node.
Often we have c(n) = 0.

q ĈP is a recursive function. Hence, ĈPs−n(s) can be computed bottom-up, from n to s along
path Ps−n.

S:III-73 Informed Search © Stein/Lettmann 2023

Chapter S:III

III. Informed Search
q Best-First Search Basics
q Best-First Search Algorithms
q Cost Functions for State-Space Graphs
q Evaluation of State-Space Graphs
q Algorithm A*

q BF* Variants
q Hybrid Strategies

q Best-First Search for AND-OR Graphs
q Relation between GBF and BF
q Cost Functions for AND-OR Graphs
q Evaluation of AND-OR Graphs

S:III-74 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Recursive Cost Functions and Efficiency

If the search space graph is an OR graph rooted at a node s and is known partially
and a recursive cost function is used that is defined via a

1. monotone cost measure F

(i.e., for e, c, c′ with c ≤ c′ we have F [e, c] ≤ F [e, c′])

the (estimated) optimum solution cost can be computed bottom-up.

A solution base can be determined which has the estimated optimum solution cost
as its estimated solution cost.

If additionally the recursive cost function is based on an

2. underestimating heuristic function h (i.e., h(n) ≤ C∗(n))

then the estimated solution cost ĈP (s) is underestimating the optimum solution cost
C∗P (s) for a solution base P .

S:III-75 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Recursive Cost Functions and Efficiency (continued)

Corollary 34 (Optimum Solution Cost C∗ using Recursive Cost Functions)

Let G be an OR graph rooted at s. Let CP (n) be a recursive cost function for G
based on the local properties E and a monotone cost measure F .

The optimum solution cost C∗(n) for a node n in G can be computed by

C∗(n) =

c(n) n is goal node and leaf in G
∞ n is unsolvable leaf node in G

mini{F [E(n), C∗(ni)]} n is inner node in G,
ni direct successors of n in G

Usage of the recursive computation of C∗(n):

q Optimum solution cost can be computed this way, only if there are no further solution
constraints that have to be considered.

S:III-76 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Recursive Cost Functions and Efficiency (continued)

Corollary 35 (Estimated Optimum Solution Cost Ĉ using Recursive Cost Estimations)

Let G be an OR graph rooted at s. Let CP (n) be a recursive cost function for G
based on the local properties E and a monotone cost measure F .
Further, let h be a heuristic function and let T be a finite set of solution bases for s.

The estimated optimum solution cost Ĉ(n) for a node n occurring in T can be
computed by

Ĉ(n) =

c(n) n is goal node and leaf in T
h(n) n is leaf in T but no goal node

mini{F [E(n), Ĉ(ni)]} n is inner node in T
ni direct successors of n in G

Most promising solution base P for s in T :
If P contains an inner node n, then the direct successor n′ of n in P is a node n′ in
T with F [E(n), Ĉ(n′)] = mini{F [E(n), Ĉ(ni)]}.

S:III-77 Informed Search © Stein/Lettmann 2023

Remarks:

q In the computation of Ĉ(n) we again make use the face value principle.

q In our algorithms, T is defined by the traversal tree rooted in s and the OPEN nodes available
at some point in time.

q Ĉ(n) computes for a node n the minimum of the estimated costs among all solution bases in
T containing n (paths from n to a leaf in the traversal tree defining T). In particular, Ĉ(s)
computes the estimated optimum solution cost for the entire problem, and it hence defines a
most promising solution base in T .
Observe that in algorithms Basic_BF and Basic_BF* we might have multiple occurrences of
nodes referring to the same state in a traversal tree. Then, the minimum is computed using
all solution bases sharing the same occurrence of a state.

S:III-78 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Illustration of Ĉ(n), ĈP (n)

Solved rest problem

Node on OPEN

Node on CLOSED

n4

n3n2n1

n5

s

S:III-79 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Illustration of Ĉ(n), ĈP (n)

Solved rest problem

Node on OPEN

Node on CLOSED

n4

n3n2n1

n5

s

Computation of ĈPs−n(s) for each node n on OPEN:

n4

n3n2n1

n5

s

n4

n3n2n1

n5

s

n4

n3n2n1

n5

s

^
CPs-n5

(s) = 7

^
C(n2) = 6

^
CPs-n3

(s) = 9

^
CPs-n4

(s) = 8

^
CPs-n1

(s) = 11

^
C(s) = 7

h = 9

h = 4h = 5

h = 7 h = 9

h = 4h = 5

h = 9

h = 4h = 5

h = 7 h = 7

2 1
2

2
2

2 1
2

2
2

2 1
2

2
2

Most promising solution basePath cost computation based
on summation of edge costs.

S:III-80 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Additive Cost Measures

To compute ĈPs−n(s), a bottom-up propagation from n to s may not be necessary.
Dependent on the cost measure F , it can be sufficient to pass a single (several)
parameter(s) top-down, from a node to its direct successors.

Illustration for F = “+” and a path Ps−n = (s, n1, . . . , nk, n) from s to n:

ĈPs−n(s) = F [E(s), ĈPs−n(n1)]

= F [E(s), F [E(n1), F [E(n2), . . . , F [E(nk), h(n)] . . .]]]

= c(s, n1) + c(n1, n2) + . . . + c(nk, n) + h(n)

= gPs−n(n) + h(n)

S:III-81 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Additive Cost Measures

To compute ĈPs−n(s), a bottom-up propagation from n to s may not be necessary.
Dependent on the cost measure F , it can be sufficient to pass a single (several)
parameter(s) top-down, from a node to its direct successors.

Illustration for F = “+” and a path Ps−n = (s, n1, . . . , nk, n) from s to n:

ĈPs−n(s) = F [E(s), ĈPs−n(n1)]

= F [E(s), F [E(n1), F [E(n2), . . . , F [E(nk), h(n)] . . .]]]

= c(s, n1) + c(n1, n2) + . . . + c(nk, n) + h(n)

= gPs−n(n) + h(n)

Definition 36 (Additive Cost Measure)

Let G be an OR graph, n a node in G, n′ a direct successor of n, and F a cost
measure. F is called additive cost measure iff (↔) it is of the following form:

F [e, c] = e + c

S:III-82 Informed Search © Stein/Lettmann 2023

Remarks:

q gPs−n(n) is a shorthand for the sum of the edge costs of a path Ps−n = (s, n1, . . . , nk, n) from s

to n.

q h(n) estimates the rest problem cost at node n.

q Here, we use the computation of estimated optimum solution cost extending a solution base
for recursive cost functions.

S:III-83 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Relation to the Algorithm BF

BF∗(s, successors, ?, f) //
:::::
BF∗: The delayed termination variant of

:::
BF.

...

2. LOOP
3. IF (OPEN = ∅) THEN RETURN(Fail);
4. n = min(OPEN, f); // Find most promising (cheapest) solution base.

IF ?(n) THEN RETURN(n); // Delayed termination.

Define f (n) as ĈP (s) with P back-pointer path of n using Definition 33:

Ü f (n) is defined by a recursive cost function.

Ü Algorithm BF becomes Algorithm Z.

Make use of delayed termination:

Ü Algorithm BF becomes Algorithm BF*.

Ü Algorithm Z becomes Algorithm Z*.

Make use of an additive cost measure (f = g + h for short):

Ü Algorithm Z* becomes Algorithm A*.

S:III-84 Informed Search © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-informed-bf1.pdf#algorithm-bf-star
https://webis.de/downloads/lecturenotes/search/unit-en-informed-bf1.pdf#algorithm-bf

Evaluation of State-Space Graphs
Optimum Solution Cost and

:::::::::
Order

::::::::::::::::::::
Preservation

Recall that BF discards the inferior of two paths leading to the same node:

s

γ

t1 : f(n'old) = 9 t2 : f(n') = 4n'

Ps-n' P's-n'

Pn'-γ

5. FOREACH n′ IN successors(n) DO
...
IF (n′ 6∈ OPEN AND n′ 6∈ CLOSED)
THEN ...
ELSE

n′old = retrieve(n′, OPEN ∪ CLOSED);
IF (f(n′) < f(n′old))
THEN

update_backpointer(n′old, n);
IF n′old ∈ CLOSED THEN ...ENDIF

ENDIF

S:III-85 Informed Search © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-informed-bf1.pdf#order-preserving-f

Evaluation of State-Space Graphs
Optimum Solution Cost and

:::::::::
Order

::::::::::::::::::::
Preservation

Recall that BF discards the inferior of two paths leading to the same node:

s

γ

t1 : f(n'old) = 9 t2 : f(n') = 4n'

Ps-n' P's-n'

Pn'-γ

5. FOREACH n′ IN successors(n) DO
...
IF (n′ 6∈ OPEN AND n′ 6∈ CLOSED)
THEN ...
ELSE

n′old = retrieve(n′, OPEN ∪ CLOSED);
IF (f(n′) < f(n′old))
THEN

update_backpointer(n′old, n);
IF n′old ∈ CLOSED THEN ...ENDIF

ENDIF

Ü An optimistic evaluation function f is not sufficient for Z* to be optimum.

Ü Necessary: cost estimations for alternative solution bases must be
independent of their shared continuation.

Formally: The cost function ĈP (s) must be order-preserving.
S:III-86 Informed Search © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-informed-bf1.pdf#order-preserving-f

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Definition 37 (Order-Preserving Cost Estimation)

A cost function ĈP (n) is called order-preserving if for all nodes n1, n2, n3 and for all
paths Pn1−n2, P

′
n1−n2 from n1 to n2, and all paths Pn2−n3 from n2 to n3 holds:

ĈPn1−n2(n1) ≤ ĈP ′n1−n2
(n1) ⇒ ĈPn1−n3(n1) ≤ ĈP ′n1−n3

(n1)

Pn1−n3 resp. P ′n1−n3 denote the paths from n1 to n3 that result from concatenating the paths Pn1−n2
resp. P ′n1−n2 with Pn2−n3.

S:III-87 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Definition 37 (Order-Preserving Cost Estimation)

A cost function ĈP (n) is called order-preserving if for all nodes n1, n2, n3 and for all
paths Pn1−n2, P

′
n1−n2 from n1 to n2, and all paths Pn2−n3 from n2 to n3 holds:

ĈPn1−n2(n1) ≤ ĈP ′n1−n2
(n1) ⇒ ĈPn1−n3(n1) ≤ ĈP ′n1−n3

(n1)

Pn1−n3 resp. P ′n1−n3 denote the paths from n1 to n3 that result from concatenating the paths Pn1−n2
resp. P ′n1−n2 with Pn2−n3.

Corollary 38 (Order-Preserving Cost Estimation)

If a cost function ĈP (n) is order-preserving, then for all nodes n1, n2, n3 and for all
paths Pn1−n2, P

′
n1−n2 from n1 to n2, and all paths Pn2−n1,n2,n3 from n2 to n1, n2, n3 holds:

ĈPn1−n3(n1) > ĈP ′n1−n3
(n1) ⇒ ĈPn1−n2(n1) > ĈP ′n1−n2

(n1)

and
ĈPn1−n2(n1) = ĈP ′n1−n2

(n1) ⇒ ĈPn1−n3(n1) = ĈP ′n1−n3
(n1)

Again, Pn1−n3 and P ′n1−n3 denote the paths from n1 to n3 that result from concatenating the paths
Pn1−n2 and P ′n1−n2 with Pn2−n3.
S:III-88 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Definition 39 (Order-Preserving Cost Estimation for Solution Paths)

A cost function ĈP (n) is called order-preserving for solution paths if for all nodes
n2, γ and for all paths Ps−n2, P

′
s−n2 from s to n2, and all paths Pn2−γ from n2 to γ holds:

ĈPs−n2(s) ≤ ĈP ′s−n2
(s) ⇒ ĈPs−γ(s) ≤ ĈP ′s−γ(s)

Ps−γ resp. P ′s−γ denote the paths from s to γ that result from concatenating the paths Ps−n2 resp.
P ′s−n2 with Pn2−γ.

S:III-89 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Definition 39 (Order-Preserving Cost Estimation for Solution Paths)

A cost function ĈP (n) is called order-preserving for solution paths if for all nodes
n2, γ and for all paths Ps−n2, P

′
s−n2 from s to n2, and all paths Pn2−γ from n2 to γ holds:

ĈPs−n2(s) ≤ ĈP ′s−n2
(s) ⇒ ĈPs−γ(s) ≤ ĈP ′s−γ(s)

Ps−γ resp. P ′s−γ denote the paths from s to γ that result from concatenating the paths Ps−n2 resp.
P ′s−n2 with Pn2−γ.

Corollary 40 (Order-Preserving Cost Estimation for Solution Paths)

An order-preserving cost function ĈP (n) is order-preserving for solution paths.

Corollary 41 (Order-Preserving)

An evaluation functions f that is defined by an order preserving cost function ĈP (n)
is order-preserving.

S:III-90 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Lemma 42 (Order-Preserving)

Evaluation functions f that rely on additive cost measures F [e, c] = e + c are
order-preserving.

S:III-91 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Lemma 42 (Order-Preserving)

Evaluation functions f that rely on additive cost measures F [e, c] = e + c are
order-preserving.

Proof (of Lemma, sketch)

Let Ps−n′ = (s, n1,1, . . . , n1,k, n
′), P ′s−n′ = (s, n2,1, . . . , n2,l, n

′) be paths from s to n′, where

ĈPs−n′(s) = c(s, n1,1) + . . .+ c(n1,k, n
′) + h(n′) ≤ c(s, n2,1) + . . .+ c(n2,l, n

′) + h(n′) = ĈP ′
s−n′

(s)

Let Pn′−n = (n′, n1, . . . , nr, n) be a path from n′ to n. Then follows (by induction on length of Pn′−n):

c(s, n1,1) + . . .+ c(n1,k, n
′)+ c(s, n2,1) + . . .+ c(n2,l, n

′)+

c(n′, n1) + . . .+ c(nr, n) + h(n) ≤ c(n′, n1) + . . .+ c(nr, n) + h(n)

⇔ ĈPs−n(s) ≤ ĈP ′s−n(s)

S:III-92 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Lemma 42 (Order-Preserving)

Evaluation functions f that rely on additive cost measures F [e, c] = e + c are
order-preserving.

Proof (of Lemma, sketch)

Let Ps−n′ = (s, n1,1, . . . , n1,k, n
′), P ′s−n′ = (s, n2,1, . . . , n2,l, n

′) be paths from s to n′, where

ĈPs−n′(s) = c(s, n1,1) + . . .+ c(n1,k, n
′) + h(n′) ≤ c(s, n2,1) + . . .+ c(n2,l, n

′) + h(n′) = ĈP ′
s−n′

(s)

Let Pn′−n = (n′, n1, . . . , nr, n) be a path from n′ to n. Then follows (by induction on length of Pn′−n):

c(s, n1,1) + . . .+ c(n1,k, n
′)+ c(s, n2,1) + . . .+ c(n2,l, n

′)+

c(n′, n1) + . . .+ c(nr, n) + h(n) ≤ c(n′, n1) + . . .+ c(nr, n) + h(n)

⇔ ĈPs−n(s) ≤ ĈP ′s−n(s)

S:III-93 Informed Search © Stein/Lettmann 2023

Remarks:

q g(n) denotes the sum of the edge cost values along the back-pointer path from s to n. Since
A* as BF* variant maintains for each node generated at each point in time a unique
back-pointer, there is only one solution base for each terminal node in the explored
subgraph G of the search space graph for which a cost value has to be computed. Therefore,
gPs−n(n) can be seen as a function g(n) that only depends on n.

q For clarity, the proof of the above lemma was given for the special case that the node
properties used in the recursive computation are the edge cost values to its successor in the
considered path. In a general proof use E(ni) instead of c(ni, nj) for edges (ni, nj).

S:III-94 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Example for a cost function that is recursive but not order-preserving:

ĈP (n) =

c(n) n is goal node and leaf in P
h(n) n is leaf in P but no goal node

F [E(n), ĈP (n
′)] n is inner node in P and

= |c(n, n′) + ĈP (n
′)− 5| n′ is direct successor of n in P

S:III-95 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Example for a cost function that is recursive but not order-preserving:

ĈP (n) =

c(n) n is goal node and leaf in P
h(n) n is leaf in P but no goal node

F [E(n), ĈP (n
′)] n is inner node in P and

= |c(n, n′) + ĈP (n
′)− 5| n′ is direct successor of n in P

s

γ

n1 n2

1

11

5

h(n3) = 0

c(γ) = 0

1

n3

Ps-n3
P's-n3

Pn3-γ

Ps−n3 = (s, n1, n3)

P ′s−n3 = (s, n2, n3)

Pn3−γ = (n3, γ)

S:III-96 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Example for a cost function that is recursive but not order-preserving:

ĈP (n) =

c(n) n is goal node and leaf in P
h(n) n is leaf in P but no goal node

F [E(n), ĈP (n
′)] n is inner node in P and

= |c(n, n′) + ĈP (n
′)− 5| n′ is direct successor of n in P

s

γ

n1 n2

1

11

5

h(n3) = 0

c(γ) = 0

1

n3

Ps-n3
P's-n3

Pn3-γ

Ps−n3 = (s, n1, n3)

P ′s−n3 = (s, n2, n3)

Pn3−γ = (n3, γ)

ĈPs−n3(s) = |1+|5 + 0− 5| − 5| = 4

S:III-97 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Example for a cost function that is recursive but not order-preserving:

ĈP (n) =

c(n) n is goal node and leaf in P
h(n) n is leaf in P but no goal node

F [E(n), ĈP (n
′)] n is inner node in P and

= |c(n, n′) + ĈP (n
′)− 5| n′ is direct successor of n in P

s

γ

n1 n2

1

11

5

h(n3) = 0

c(γ) = 0

1

n3

Ps-n3
P's-n3

Pn3-γ

Ps−n3 = (s, n1, n3)

P ′s−n3 = (s, n2, n3)

Pn3−γ = (n3, γ)

ĈPs−n3(s) = |1+|5 + 0− 5| − 5| = 4

S:III-98 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Example for a cost function that is recursive but not order-preserving:

ĈP (n) =

c(n) n is goal node and leaf in P
h(n) n is leaf in P but no goal node

F [E(n), ĈP (n
′)] n is inner node in P and

= |c(n, n′) + ĈP (n
′)− 5| n′ is direct successor of n in P

s

γ

n1 n2

1

11

5

h(n3) = 0

c(γ) = 0

1

n3

Ps-n3
P's-n3

Pn3-γ

Ps−n3 = (s, n1, n3)

P ′s−n3 = (s, n2, n3)

Pn3−γ = (n3, γ)

ĈPs−n3(s) = |1+|5 + 0− 5| − 5| = 4

ĈP ′s−n3
(s) = |1 + |1 + 0− 5| − 5| = 0

S:III-99 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Optimum Solution Cost and Order Preservation (continued)

Example for a cost function that is recursive but not order-preserving:

ĈP (n) =

c(n) n is goal node and leaf in P
h(n) n is leaf in P but no goal node

F [E(n), ĈP (n
′)] n is inner node in P and

= |c(n, n′) + ĈP (n
′)− 5| n′ is direct successor of n in P

s

γ

n1 n2

1

11

5

h(n3) = 0

c(γ) = 0

1

n3

Ps-n3
P's-n3

Pn3-γ

Ps−n3 = (s, n1, n3)

P ′s−n3 = (s, n2, n3)

Pn3−γ = (n3, γ)

ĈPs−n3(s) = |1+|5 + 0− 5| − 5| = 4

ĈP ′s−n3
(s) = |1 + |1 + 0− 5| − 5| = 0

ĈPs−γ(s) = |1 + |5 + |1 + 0− 5| − 5| − 5| = 0

ĈP ′s−γ(s) = |1 + |1 + |1 + 0− 5| − 5| − 5| = 4

S:III-100 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Examples of simple path cost functions based on non-negative edge cost values

q Maximum Edge-Cost: smaller is better, recursively definable

CP = max
e∈P

c(e)

ĈP using h = 0: order-preserving, optimistic.

q Minimum Edge-Cost: smaller is better, recursively definable

CP = min
e∈P

c(e)

ĈP using h = 0: not order-preserving, but optimistic.
(Observe: ĈP (n) = 0 for non-solution paths P .)

ĈP := CP : order-preserving, not optimistic.

q Edge-Cost Bandwidth: smaller is better, not recursively definable

CP = max
e∈P

c(e)−min
e∈P

c(e)

ĈP := CP : not order-preserving, not optimistic
S:III-101 Informed Search © Stein/Lettmann 2023

Evaluation of State-Space Graphs
Taxonomy of Best-First Algorithms

GBF

AO*

F[E(n),CH(n1),..,CH(nk)]

 = E(n)+CH(n1)+..+CH(nk)

additive cost measure:

delayed
termination

f1 defined by recursive
cost function

f1 defined by
recursive cost function

delayed
termination

GBF*

BF* Z

Z*

A*

additive cost measure:
F[e,c] = e + c
⇒
f(n) = g(n) + h(n)
with g(n') = g(n) + c(n, n')
and g(s) = 0

delayed
termination

f defined by recursive
cost function

f defined by
recursive cost function

delayed
termination

BF

state-space graph,
irrevocable path discarding

S:III-102 Informed Search © Stein/Lettmann 2023

Chapter S:III

III. Informed Search
q Best-First Search Basics
q Best-First Search Algorithms
q Cost Functions for State-Space Graphs
q Evaluation of State-Space Graphs
q Algorithm A*

q BF* Variants
q Hybrid Strategies

q Best-First Search for AND-OR Graphs
q Relation between GBF and BF
q Cost Functions for AND-OR Graphs
q Evaluation of AND-OR Graphs

S:III-103 Informed Search © Stein/Lettmann 2023

Algorithm A*

Algorithm: A* (Compare
:::::::::::::
Basic-BF∗,

:::::
BF∗)

Input: s. Start node representing the initial state (problem) in G.
successors(n). Returns new instances of nodes for the successor states in G.
?(n). Predicate that is True if n represents a goal state in G.
c(n, n′). Cost of the edge in G represented by (n, n′).
h(n). Heuristic cost estimation for the state in G represented by n.

Output: A node γ representing an (optimum) solution path for s in G or the symbol Fail .

Definition of f :

q The evaluation function in A* is f = g + h.

q f is order-preserving.

q g(n) is the sum of edge cost values c(n′, n′′) in the current back-pointer path PPs−n of n.

q f can be defined by f(n) := ĈPPs−n(s) with ĈP recursively defined using addition "+" as cost
measure F , local property c(n′, n′′), and estimation h(n) in non-goal nodes n.

S:III-104 Informed Search © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-informed-bf1.pdf#algorithm-basic-bf-star
https://webis.de/downloads/lecturenotes/search/unit-en-informed-bf1.pdf#algorithm-bf-star

Algorithm A*
A∗(s, successors, ?, c, h) // A special case of

:::::
BF∗.

1. s.parent = null; g(s) = 0; f(s) = g(s) + h(s); add(s, OPEN, f(s));
2. LOOP
3. IF (OPEN == ∅) THEN RETURN(Fail);
4. n = min(OPEN, g + h); // Most promising sol. base minimizes f = g + h.

IF ?(n) THEN RETURN(n); // Delayed termination.
remove(n, OPEN); add(n, CLOSED);

5. FOREACH n′ IN successors(n) DO // Expand n.
n′.parent = n;
g(n′) = g(n) + c(n, n′); f(n′) = g(n′) + h(n′);
n′old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′old == null)
THEN // n′ refers to a new state.

add(n′, OPEN, f(n′));
ELSE // n′ refers to an already visited state.
IF (g(n′) < g(n′old)) // Compare cost of backpointer paths.
THEN // Solution base of n′ is cheaper: path discarding.
n′old.parent = n′.parent; g(n′old) = g(n′);
IF n′old ∈ CLOSED THEN remove(n′old, CLOSED); add(n′old, OPEN, f(n

′
old)); ENDIF

ENDIF
ENDIF

ENDDO
6. ENDLOOP

S:III-105 Informed Search © Stein/Lettmann 2023

https://webis.de/downloads/lecturenotes/search/unit-en-informed-bf1.pdf#algorithm-bf-star

Remarks:

q h(n) estimates the rest problem cost at node n (optimum cost of a solution path starting in n).

q h(n) = c(n) is assumed for all goal nodes n.
Often, we even have h(n) = c(n) = 0 for all goal nodes n.

q Although only the order-preserving property of f = g + h was proven, we still have to assume
for the case of additional solution constraints that the following equivalence holds:

“Solution base Ps−n′ can be completed by Pn′−γ to a solution path.”
⇔

“Solution base P ′s−n′ can be completed by Pn′−γ to a solution path.”

This equivalence is trivially satisfied, if solution constraints restrict only local properties of γ
but not properties of the back-pointer path of γ.

S:III-106 Informed Search © Stein/Lettmann 2023

Algorithm A*
Example: Knight Moves Search a shortest sequence of knight moves leading from s to X.

X

s

K

Knight move

Let n′ be a direct successor of n.

q f(n′) = g(n′) + h(n′)

q g(n′) = g(n) + c(n, n′)

q g(s) = 0

q c(n, n′) = 1

S:III-107 Informed Search © Stein/Lettmann 2023

Algorithm A*
Example: Knight Moves Search a shortest sequence of knight moves leading from s to X.

X

s

K

Knight move

Let n′ be a direct successor of n.

q f(n′) = g(n′) + h(n′)

q g(n′) = g(n) + c(n, n′)

q g(s) = 0

q c(n, n′) = 1

h1 = d#rows2 e

h2 = dmax{#rows, #columns}
2 e

h3 = d#rows + #columns
3 e

S:III-108 Informed Search © Stein/Lettmann 2023

Algorithm A*
Example: Knight Moves (continued)

X

s

OPEN CLOSED

{s} {}
n g(n) h1(n) f(n)

s 0 2 2

h = h1 = d#rows2 e

Notation:

q OPEN and CLOSED contain nodes, not states. Therefore, a listed state has to be seen as a
node structure that refers to this state. If a state is listed more than once, these occurrences
have to be understood as different node structures that refer to the same state. Therefore,
diffferent values can be assigned by f and g. A better but more cumbersome notation would
be ni(s), where i uniquely identifies a node.

S:III-109 Informed Search © Stein/Lettmann 2023

Algorithm A*
Example: Knight Moves (continued)

X

s

OPEN CLOSED

{s} {}
n g(n) h1(n) f(n)

s 0 2 2

h = h1 = d#rows2 e

X

K
c

a b

s

OPEN CLOSED

{s} {}
{a, b, c} {s}

n g(n) h1(n) f(n)

s 0 2 2

a 1 1 2
b 1 1 2
c 1 2 3

S:III-110 Informed Search © Stein/Lettmann 2023

Remarks:

q In this example, successor nodes in node expansions are enumerated clockwise, starting
from top left.

q In this example, nodes in OPEN are sorted by the criteria

1. f -value (major, smallest first),
2. h-value (minor, smallest first) with preference to goal nodes.

Ties are broken arbitrarily. (E.g., nodes found earlier last.)

Therefore, we can assume that A* will select the first node from OPEN.

S:III-111 Informed Search © Stein/Lettmann 2023

Algorithm A*
Example: Knight Moves (continued)

X

K
a

f

d

e

s

OPEN CLOSED

{s} {}
{a, b, c} {s}
{d, b, e, c, f} {a, s}

n g(n) h1(n) f(n)

s 0 2 2

a 1 1 2
b 1 1 2
c 1 2 3

d 2 0 2
e 2 1 3
f 2 2 4
s 2 2 4

Position s was reached again with f(s) = 4,
no reopening.

S:III-112 Informed Search © Stein/Lettmann 2023

Algorithm A*
Example: Knight Moves (continued)

XK

a

d

g h

i

j

s

b

OPEN CLOSED

{s} {}
{a, b, c} {s}
{d, b, e, c, f} {a, s}
{b, e, c, g, h, i, j, f} {d, a, s}

n g(n) h1(n) f(n)

s 0 2 2

a 1 1 2
b 1 1 2
c 1 2 3

d 2 0 2
e 2 1 3
f 2 2 4
s 2 2 4

g 3 1 4
h 3 1 4
i 3 1 4
j 3 1 4
b 3 1 4
a 3 1 4

S:III-113 Informed Search © Stein/Lettmann 2023

Algorithm A*
Example: Knight Moves (continued)

X

K
b

d m

n

s

k

l

o

p

OPEN CLOSED

{s} {}
{a, b, c} {s}
{d, b, e, c, f} {a, s}
{b, e, c, f, g, h, i, j} {d, a, s}
{m,n, l, e, c, {b, d, a, s}
o, p, k, g, h, i, j, f}

n g(n) h1(n) f(n)

s 0 2 2

a 1 1 2
b 1 1 2
c 1 2 3

d 2 0 2
e 2 1 3
f 2 2 4
s 2 2 4

g 3 1 4
h 3 1 4
i 3 1 4
j 3 1 4
b 3 1 4
a 3 1 4

d 2 0 2
m 2 0 2
n 2 1 3
o 2 2 4
p 2 2 4
s 2 2 4
k 2 2 4
l 2 1 3

S:III-114 Informed Search © Stein/Lettmann 2023

Algorithm A*
Example: Knight Moves (continued)

XK

b

m

s

OPEN CLOSED

{s} {}
{a, b, c} {s}
{d, b, e, c, f} {a, s}
{b, e, c, f, g, h, i, j} {d, a, s}
{m,n, l, e, c, {b, d, a, s}
o, p, k, g, h, i, j, f}

n g(n) h1(n) f(n)

s 0 2 2

a 1 1 2
b 1 1 2
c 1 2 3

d 2 0 2
e 2 1 3
f 2 2 4
s 2 2 4

g 3 1 4
h 3 1 4
i 3 1 4
j 3 1 4
b 3 1 4
a 3 1 4

d 2 0 2
m 2 0 2
n 2 1 3
o 2 2 4
p 2 2 4
s 2 2 4
k 2 2 4
l 2 1 3

Goal node found, termination.

S:III-115 Informed Search © Stein/Lettmann 2023

Algorithm A*
Example: Knight Moves (continued)

Analyzed part of the search space graph at termination (tree unfolding):

Goal node

Node on OPEN

Node on CLOSED

Discarded node

g
h1 = 1,
f = 4

i
h1 = 1,
f = 4

h
h1 = 1,
f = 4

j
h1 = 1,
f = 4

b
h1 = 1,
f = 4

a
h1 = 1,
f = 4

e
h1 = 1,
f = 3

dh1 = 0,
f = 2

f
h1 = 2,
f = 4

s
h1 = 2,
f = 3

n

h1 = 1,
f = 3

o

h1 = 2,
f = 4

p

h1 = 2,
f = 4

s

h1 = 2,
f = 4

k

h1 = 2,
f = 4

m

h1 = 0,
f = 2

d

h1 = 0
f = 2

l

h1 = 1,
f = 3

ah1 = 1,
f = 2

b
h1 = 1,
f = 2 ch1 = 2,

f = 3

h1 = 2,
f = 2

s

S:III-116 Informed Search © Stein/Lettmann 2023

Algorithm A*
Exponential Runtime Example

22122k-222k-122k

'n1

h=0
'n2k-3

h=0
'n2k-1

h=0

Detour #k Detour #k-1 Detour #1

2k+3111111111
γ

h=0

n0

h=0

n1

h=23

n2

h=0

n2k-4

h=0

n2k-3

h=2k+1

n2k-2

h=0

n2k-1

h=2k+2

n2k

h=0

s

h=0

G k

q Optimum cost path with path cost 2k+3 + 2k + 1.
q Additional cost for using detours starting from n2j, 1 ≤ j ≤ k less than 2j+1.
q At each point in time before A* terminates,

– at most one node n2j, 1 ≤ j ≤ k is on OPEN,
– any two nodes on OPEN share the initial part of their back-pointer paths (starting from s

to the predecessor of the leftmost of the two),
– for any two non-goal nodes on OPEN with different position from left to right the leftmost

node has a higher f -value,
– for two nodes n2j+1 and n′2j+1, 1 ≤ j < k on OPEN n2j+1 has a higher f -value,
– for γ on OPEN the f -value is maximal wrt. OPEN.

Ü Gk has 3k + 3 nodes and 4k + 2 edges. h is optimistic.
A* requires more than 2k node expansions before termination.

S:III-117 Informed Search © Stein/Lettmann 2023

Algorithm A*
Exponential Runtime Example (continued)

22122k-222k-122k

'n1

h=0
'n2k-3

h=0
'n2k-1

h=0

Detour #k Detour #k-1 Detour #1

2k+3111111111
γ

h=0

n0

h=0

n1

h=23

n2

h=0

n2k-4

h=0

n2k-3

h=2k+1

n2k-2

h=0

n2k-1

h=2k+2

n2k

h=0

s

h=0

G k

q Optimum cost path with path cost 2k+3 + 2k + 1.
q Additional cost for using detours starting from n2j, 1 ≤ j ≤ k less than 2j+1.
q At each point in time before A* terminates,

– at most one node n2j, 1 ≤ j ≤ k is on OPEN,
– any two nodes on OPEN share the initial part of their back-pointer paths (starting from s

to the predecessor of the leftmost of the two),
– for any two non-goal nodes on OPEN with different position from left to right the leftmost

node has a higher f -value,
– for two nodes n2j+1 and n′2j+1, 1 ≤ j < k on OPEN n2j+1 has a higher f -value,
– for γ on OPEN the f -value is maximal wrt. OPEN.

Ü Gk has 3k + 3 nodes and 4k + 2 edges. h is optimistic.
A* requires more than 2k node expansions before termination.

S:III-118 Informed Search © Stein/Lettmann 2023

Algorithm A*
Exponential Runtime Example (continued)

22122k-222k-122k

'n1

h=0
'n2k-3

h=0
'n2k-1

h=0

Detour #k Detour #k-1 Detour #1

2k+3111111111
γ

h=0

n0

h=0

n1

h=23

n2

h=0

n2k-4

h=0

n2k-3

h=2k+1

n2k-2

h=0

n2k-1

h=2k+2

n2k

h=0

s

h=0

G k

q Optimum cost path with path cost 2k+3 + 2k + 1.
q Additional cost for using detours starting from n2j, 1 ≤ j ≤ k less than 2j+1.
q At each point in time before A* terminates,

– at most one node n2j, 1 ≤ j ≤ k is on OPEN,
– any two nodes on OPEN share the initial part of their back-pointer paths (starting from s

to the predecessor of the leftmost of the two),
– for any two non-goal nodes on OPEN with different position from left to right the leftmost

node has a higher f -value,
– for two nodes n2j+1 and n′2j+1, 1 ≤ j < k on OPEN n2j+1 has a higher f -value,
– for γ on OPEN the f -value is maximal wrt. OPEN.

Ü Gk has 3k + 3 nodes and 4k + 2 edges. h is optimistic.
A* requires more than 2k node expansions before termination.

S:III-119 Informed Search © Stein/Lettmann 2023

Algorithm A*
Exponential Runtime Example (continued)

22122k-222k-122k

'n1

h=0
'n2k-3

h=0
'n2k-1

h=0

Detour #k Detour #k-1 Detour #1

2k+3111111111
γ

h=0

n0

h=0

n1

h=23

n2

h=0

n2k-4

h=0

n2k-3

h=2k+1

n2k-2

h=0

n2k-1

h=2k+2

n2k

h=0

s

h=0

G k

q Optimum cost path with path cost 2k+3 + 2k + 1.
q Additional cost for using detours starting from n2j, 1 ≤ j ≤ k less than 2j+1.
q At each point in time before A* terminates,

– at most one node n2j, 1 ≤ j ≤ k is on OPEN,
– any two nodes on OPEN share the initial part of their back-pointer paths (starting from s

to the predecessor of the leftmost of the two),
– for any two non-goal nodes on OPEN with different position from left to right the leftmost

node has a higher f -value,
– for two nodes n2j+1 and n′2j+1, 1 ≤ j < k on OPEN n2j+1 has a higher f -value,
– for γ on OPEN the f -value is maximal wrt. OPEN.

Ü Gk has 3k + 3 nodes and 4k + 2 edges. h is optimistic.
A* requires more than 2k node expansions before termination.

S:III-120 Informed Search © Stein/Lettmann 2023

	Cost Functions for State-Space Graphs
	Optimum Solution Cost for OR Graphs
	Estimated Solution Cost for OR Graphs
	Recursive Cost Function

	Evaluation of State-Space Graphs
	Additive Cost Measure
	Order Preserving Cost Estimation
	Order Preserving Cost Estimation for Solution Paths

	Algorithm A*

