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Problem-Reduction Representation
Problem Solving: Constructing Solutions

Example Solution Step Rest Problem

8-Queens Fix position of next queen. Positioning of remaining queens
on the unattacked fields of the board.

8-Puzzle Fix next move. Resulting board configuration that must be
transformed into the target configuration.

TSP Fix next town to visit. Find trip from this town back to the
starting point.

Blocks World Fix next action (block move). Resulting block configuration on floor
must be transformed into target configuration.

Previous Assumption:

Problem solutions can be described by a linear sequence of applications of
(relatively simple) operators that transform a problem into a (hopefully) simpler rest
problem.

Q. Is there anything else we may want to do?
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Problem-Reduction Representation
Disadvantage of State-Space Search

A state space search can only determine solutions that are described as paths.
Solutions are constructed in a linear way.

Desired solutions can be structured:
q Action-Reaction-Problems

Solutions are AND-OR trees with AND nodes that represent the reactions of the environment
to actions of an agent. A solution describes effective behavior for each of the unpredictable
reactions of the environment.

q 2-Player Games

Solutions are AND-OR trees with AND nodes that represent the reactions of the opponent. A
solution describes a game strategy that determines the best move in every game situation.

q Means-end Analysis

A goal-oriented analysis of the problem leads to a decomposition into a sequence of
subproblems. Solutions can be constructed as sequences of solutions for the subproblems.

Ü Independent subproblems can be solved in any order.

Ü Subsolutions can be shared.
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Problem-Reduction Representation
Applicable Heuristic Problem Solving Methods [Zanakis, 1989]

A. Construction
Construction algorithms generate a solution by adding individual components
one at a time until a feasible solution is obtained.

Ü OR Graph Search (= State Space Search)

B. Improvement
Improvement heuristics begin with a feasible solution and successively
improve it by a sequence of exchanges or mergers in a local search.

Ü Local search algorithms like Hill-Climbing

E. Partitioning (Decomposition [Pearl])
Partitioning algorithms break or ’partition’ a problem into smaller
subproblems, each of which is solved independently.

Ü AND-OR Graph Search
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Problem-Reduction Representation
Problem Solving: Solution Steps

q Problem Transformation (Simplification)
A problem is transformed into a single (simpler) problem.

q Problem Decomposition
A problem is decomposed into a finite number of (sub-) problems.

– Problem Transformation (Simplification)
A problem is transformed into a (simpler) problem.

– Means-End Analysis
A problem is decomposed into a finite number of (sub-) problems.
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Problem-Reduction Representation
Problem Solving Steps as Different Link Types

The application of an operator may lead to different kinds of subproblems. A graph
that captures such a search space structure has two kinds of links:

1. AND links.
Lead to independent subproblems all of which, however, must be solved in
order to solve the problem associated with the parent node. AND links of a
decomposition step are marked as sibling links.

2. OR links.
Lead to alternative subproblems one of which has to be solved in order to
solve the problem associated with the parent node.

AND links OR links

A graph of this type is called problem-reduction graph or AND-OR graph.
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Remarks:

q As in the state-space graph: OR links encode applied operators (problem transformation).

q As in the state-space graph: A sequence of OR links along a path that starts at the root node
s defines a solution base.

q Q. Does a path from the root node to a goal node represent a solution to the problem?

q AND links model a problem decomposition. They are employed to decompose a problem
according to possible outcomes (as in the counterfeit problem) or to decompose a complex
problem into less complex subproblems. [Towers of Hanoi]

q Several possibilities may exist to decompose a given rest problem (at a parent node) into
subproblems. The AND links of those subproblems that belong together (sibling links) are
hence marked as such.

sibling links sibling links
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Problem-Reduction Representation
Counterfeit Problem
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Problem-Reduction Representation
Counterfeit Problem
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Remarks:

q In the 2-suspect problem, we have two coins for which the balance tips one way or another,
along with ten remaining coins from which we know that they are honest.

q The 2-suspect problem (for instance) may occur several times in a weighing strategy.

q The 2-suspect problem can be solved independently from all other weighing problems.

q The solution of the 2-suspect problem can be determined, saved, and reused.
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Problem-Reduction Representation
The Different Node types

The application of an operator may lead to different kinds of subproblems. A
canonical graph that captures such a search space structure has two kinds of
nodes:

1. AND nodes.
Nodes with outgoing AND links only; more precisely: AND links that belong
together, sibling AND links.

Examples: decisions of an opponent (Keyword: game tree search), random
processes in the nature, (artificial) experiments, results of external
computations, all kinds of events controlled by a third party

2. OR nodes.
Nodes with outgoing OR links only.

Examples: the own decisions, the actual strategy
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Remarks:

q The AND-OR graph of the counterfeit problem has a canonical representation by nature.

q In the AND-OR graph of the counterfeit problem the child nodes of an OR node are AND
nodes and vice versa. This alternation of node types is typical for action-reaction problems,
e.g. represented in the form of a game tree. [S:VII Game Playing Introduction].
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Problem-Reduction Representation
Search Building Blocks [State-Space]

Definition 5 (Problem-Reduction Graph, AND-OR Graph)

Consider the set of all problems that can be generated by applying either the
operators or a problem decomposition to the database.

One obtains the problem-reduction graph or AND-OR graph by

1. connecting each parent node with its generated successors using directed
links,

2. labeling those links that belong to an operator with the applied operator,

3. comprising those links that belong to a problem decomposition as sibling
links, and

4. introducing additional intermediate nodes and OR-links for each set of sibling
AND-links if a node would have more than one set of outgoing sibling links or
outgoing AND-links together with outgoing OR-links.
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Remarks:

q Usually, solved-labeling is not applied to an underlying search space graph G. Instead, it is
applied to the finite, explored subgraph of G as a termination test: If the root node s is labeled
“solved”, the explored part of G contains a solution graph.
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Problem-Reduction Representation

Algorithm: solved-labeling
Input: G. A finite, acyclic AND-OR graph.

n. A node in G.
successors(n). Returns the successors of node n.
?(n). Predicate that is True if n is a goal node.

Output: The symbol True if a solution exists, False otherwise.
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Problem-Reduction Representation

Algorithm: solved-labeling (without labeling)
Input: G. A finite, acyclic AND-OR graph.

n. A node in G.
successors(n). Returns the successors of node n.
?(n). Predicate that is True if n is a goal node.

Output: The symbol True if a solution exists, False otherwise.

solved-labeling(G, n, successors, ?)

1. IF |successors(n)| = 0 THEN
IF ?(n)
THEN RETURN(True);
ELSE RETURN(False);

2. FOREACH n′ IN successors(n) DO
IF solved-labeling(G, n′, successors, ?)
THEN
IF OR_node(n) THEN RETURN(True); // One success is enough.

ELSE
IF AND_node(n) THEN RETURN(False); // One fail is one too much.

ENDDO

3. IF OR_node(n)
THEN RETURN(False); // OR_node n has no solvable successor.
ELSE RETURN(True); // All successors of AND_node n are solvable.
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Problem-Reduction Representation

Algorithm: solved-labeling (without labeling)
Input: G. A finite, acyclic AND-OR graph.

n. A node in G.
successors(n). Returns the successors of node n.
?(n). Predicate that is True if n is a goal node.

Output: The symbol True if a solution exists, False otherwise.

solved-labeling(G, n, successors, ?)

1. IF |successors(n)| = 0 THEN
IF ?(n)
THEN RETURN(True);
ELSE RETURN(False);

2. FOREACH n′ IN successors(n) DO
IF solved-labeling(G, n′, successors, ?)
THEN
IF OR_node(n) THEN RETURN(True); // One success is enough.

ELSE
IF AND_node(n) THEN RETURN(False); // One fail is one too much.

ENDDO

3. IF OR_node(n)
THEN RETURN(False); // OR_node n has no solvable successor.
ELSE RETURN(True); // All successors of AND_node n are solvable.
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Problem-Reduction Representation

Algorithm: solved-labeling (without labeling)
Input: G. A finite, acyclic AND-OR graph.

n. A node in G.
successors(n). Returns the successors of node n.
?(n). Predicate that is True if n is a goal node.

Output: The symbol True if a solution exists, False otherwise.

solved-labeling(G, n, successors, ?)

1. IF |successors(n)| = 0 THEN
IF ?(n)
THEN RETURN(True);
ELSE RETURN(False);

2. FOREACH n′ IN successors(n) DO
IF solved-labeling(G, n′, successors, ?)
THEN
IF OR_node(n) THEN RETURN(True); // One success is enough.

ELSE
IF AND_node(n) THEN RETURN(False); // One fail is one too much.

ENDDO

3. IF OR_node(n)
THEN RETURN(False); // OR_node n has no solvable successor.
ELSE RETURN(True); // All successors of AND_node n are solvable.
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Problem-Reduction Representation

Algorithm: solved-labeling (with labeling)
Input: G. A finite, acyclic AND-OR graph.

n. A node in G.
successors(n). Returns the successors of node n.
?(n). Predicate that is True if n is a goal node.

Output: The symbol True if a solution exists, False otherwise.

solved-labeling(G, n, successors, ?)

1. IF solved(n) THEN RETURN(True);

2. IF |successors(n)| = 0 THEN
IF ?(n)
THEN solved(n) = True,RETURN(True);
ELSE RETURN(False);

3. FOREACH n′ IN successors(n) DO
IF solved-labeling(G, n′, successors, ?)
THEN
IF OR_node(n) THEN solved(n) = True,RETURN(True);

ELSE
IF AND_node(n) THEN RETURN(False);

ENDDO

4. IF OR_node(n)
THEN RETURN(False);
ELSE solved(n) = True,RETURN(True);
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Problem-Reduction Representation
Solution Graphs with Cycles (1)

Cyclic problem-reduction graphs can entail infinite solution graphs, caused by
“unfolding”:

s
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Problem-Reduction Representation
Solution Graphs with Cycles (1)

Cyclic problem-reduction graphs can entail infinite solution graphs, caused by
“unfolding”:

s
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Problem-Reduction Representation
Solution Graphs with Cycles (1)

Cyclic problem-reduction graphs can entail infinite solution graphs, caused by
“unfolding”:

s

...
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Remarks:

q “Unfolding” means that when a node is reached a second time, the state is not reused but a
copy is created instead. I.e., we are completely omitting an occurrence check.

q Note that the solution graph definition restricts to acyclic AND-OR graphs.

Q. How could the solved-labeling procedure be adapted to deal with cyclic AND-OR graphs?

q Usually the search space underlying a problem is only partially explored, and hence the
AND-OR graph H does not show the complete picture.

Q. How could the solved-labeling procedure be adapted to deal with incomplete AND-OR
graphs?

q Q. How could an “unsolvable-labeling procedure” be defined, which proves whether a
problem is unsolvable?
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Problem-Reduction Representation
Hypergraphs

AND-OR graphs can be considered as a generalization of ordinary graphs, called
hypergraphs:

q Ordinary graph: Directed links (edges, arcs) connect two nodes.

q Hypergraph: Directed hyperedges, also called “connectors”, connect two sets
of nodes.

q AND-OR graph: The links of an AND node form a single hyperedge.

Ü The determination of a solution graph corresponds to the determination of a
hyperpath between the root node s and a set of goal nodes that represent
solved rest problems.
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Choosing a Representation
Problem-Reduction Graphs with Alternating Node Types

...

...

Event 1

...

...

...

Operator 1
Operator 2

Operator k

Subproblem 1 Subproblem 2 Subproblem k 

Original problem

Subproblem 1_1 Subproblem 1_l

Subproblem 1_1_1 Subproblem 1_1_2

Event l

Subproblem ... Subproblem ...

Operator 1
Operator 2

Operator k

Operator 1 Operator 2
Operator k 

Subproblem 1_1_k

Event 1 Event l

Reaction problems

Reaction problems
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Remarks:

q By introducing OR nodes with a single operator resp. by introducing additional AND nodes
with a single event, each AND-OR graph can be transformed into a problem-reduction graph
with alternating node types. W.l.o.g. the start node of such graphs is an OR node.
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Choosing a Representation
Problem-Reduction Graphs with Alternating Node Types (continued)

Interpretation:

q k operators ∼ own actions, decisions, strategy

q l events ∼ reactions

q Action problems.
Consequences that result from a subproblem under the impact of applicable
operators.

q Reaction problems.
Consequences that result from a subproblem under the impact of possible
events.

Examples of problem-reduction graphs with strictly alternating node types are
balance puzzles and 2-player games like chess.
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Choosing a Representation
Transforming Problem-Reduction into State-Space Graphs

...
Operator 1 Operator 2

Operator k 

Original problem

Orgproblem + Operator 1 + Event 1 → Subproblem 1_1
...
Orgproblem + Operator 1 + Event l → Subproblem 1_l

Orgproblem + Operator 2 + Event 1 → Subproblem 2_1
...
Orgproblem + Operator 2 + Event l → Subproblem 2_l

n'
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Choosing a Representation
Transforming Problem-Reduction into State-Space Graphs

...
Operator 1 Operator 2

Operator k 

Original problem

Orgproblem + Operator 1 + Event 1 → Subproblem 1_1
...
Orgproblem + Operator 1 + Event l → Subproblem 1_l

Orgproblem + Operator 2 + Event 1 → Subproblem 2_1
...
Orgproblem + Operator 2 + Event l → Subproblem 2_l

n'

Subproblem 1_1 + Operator 1
Subproblem 1_2 + Operator 1
...
Subproblem 1_l + Operator 1

Subproblem 1_1 + Operator 2
Subproblem 1_2 + Operator 1
...
Subproblem 1_l + Operator 1

Subproblem 1_1 + Operator k
Subproblem 1_2 + Operator k
...
Subproblem 1_l + Operator k
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Choosing a Representation
Transforming Problem-Reduction into State-Space Graphs

...
Operator 1 Operator 2

Operator k 

Original problem

Orgproblem + Operator 1 + Event 1 → Subproblem 1_1
...
Orgproblem + Operator 1 + Event l → Subproblem 1_l

Orgproblem + Operator 2 + Event 1 → Subproblem 2_1
...
Orgproblem + Operator 2 + Event l → Subproblem 2_l

n'

Subproblem 1_1 + Operator 1
Subproblem 1_2 + Operator 1
...
Subproblem 1_l + Operator 1

Subproblem 1_1 + Operator 2
Subproblem 1_2 + Operator 1
...
Subproblem 1_l + Operator 1

Subproblem 1_1 + Operator k
Subproblem 1_2 + Operator k
...
Subproblem 1_l + Operator k

n''
Subproblem 1_1 + Operator 1 + Event 1 → Subproblem ...
...
Subproblem 1_1 + Operator 1 + Event l → Subproblem ...

...

Subproblem 1_2 + Operator 1 + Event 1 → Subproblem ...
...
Subproblem 1_2 + Operator 1 + Event l → Subproblem ...

Subproblem 1_l + Operator 1 + Event 1 → Subproblem ...
...
Subproblem 1_l + Operator 1 + Event l → Subproblem ...

...

...
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Choosing a Representation
Transforming Problem-Reduction into State-Space Graphs (continued)

Transformation rules:

q To the node s the applicable operators are applied.

q A successor node n′ of s is comprised of all reaction problems that may result
from applying the chosen operator.

q To a node n′ all applicable operator combinations are applied, whereas each
subproblem p ∈ n′ gets its own operator, i.e., a set of |n′| operators is
associated with the link (n′, n′′).

q The successor node n′′ of n′ is comprised of all reaction problems that may
result from applying the chosen operator set.

Observe that the node n′ has as many successors as operator combinations
are possible, given the subproblems p ∈ n′. This number is in O(k|n′|)

Ü Goal nodes are nodes that contain only trivial (solved) subproblems.
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Remarks:

q If a subproblem in a node is already solved, no further operator is applied to it.

q Instead of handling all subproblems in a node simultaneously, one subproblem could be
selected at a time and an operator applied to it.
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Choosing a Representation
Transformed Counterfeit Problem

Test Ti  if  P3
Test Tj  if  P4
Test Tk  if  P5

... ...

... ...

Test Ti  if  P1
Test Tj  if  P2

Test T1  if  P1
Test T1  if  P2

P0 + T6 + R1 (balance right) → P1: 2-subjects problem
P0 + T6 + R2 (balance left) → P1: 2-subjects problem
P0 + T6 + R3 (balance neutral) → P2: 10-subjects problem

P1 + Ti + R1 (balance right) → identified heavy counterfeit
P1 + Ti + R2 (balance left) → identified light counterfeit
P1 + Ti + R3 (balance neutral) → identified light counterfeit

P2 + Tj + R1 (balance right) → P3
P2 + Tj + R2 (balance left) → P4
P2 + Tj + R3 (balance neutral) → P5

n'

n''

T6: Test with
      2 coins

T1: Test with
      12 coins      ...

P0: 12-suspect problem
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Choosing a Representation
State-Space versus Problem-Reduction Representation

A state-space representation is advisable if solutions are paths (or nodes).

Ü The solution graph is a path in the state-space graph.

Examples:

q constraint satisfaction problems
q sequence seeking problems
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Choosing a Representation
State-Space versus Problem-Reduction Representation (continued)

A problem-reduction representation is advisable if solutions are trees, graphs, or
partially ordered node sets.

Ü The solution graph is a tree-like subgraph of the problem-reduction graph.

Examples:

q strategy seeking problems
q symbolic integration
q theorem proving

Characteristics:

q Problems may be decomposed into subproblems that can be solved
independently of each other (= in parallel).

q The divide-and-conquer paradigm can be applied to find a global optimum.
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Remarks:

q Choosing a search space representation requires the analysis whether and how the solutions
of subproblem interact with each other when being composed.

q Q. Is a problem-reduction representation possible for the 8-puzzle problem?

q Q. Is a problem-reduction representation an advisable choice for the 8-puzzle problem?

q There are sequence seeking problems where the solutions of subproblems interact with each
other (e.g., the 8-puzzle problem), but where a problem-reduction representation is superior
to a state-space representation. Example: The tower of Hanoi problem.
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Choosing a Representation
Tower of Hanoi Problem [Wikipedia]

D1

Dn

1 2 3

A stack of n disks D1, . . . , Dn (different sizes, sorted, smallest on top) is to be moved from peg 1 to
peg 3. Only one of the topmost disks can be moved at a time, no disk may be placed on top of a
smaller one.
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Choosing a Representation
Tower of Hanoi Problem [Wikipedia]

D1

Dn

1 2 3

A stack of n disks D1, . . . , Dn (different sizes, sorted, smallest on top) is to be moved from peg 1 to
peg 3. Only one of the topmost disks can be moved at a time, no disk may be placed on top of a
smaller one.

Observations:

q The problem can be solved analogously to solving the 8-puzzle problem. A sequence of legal
moves of single disks has to be determined.

q The recursive definition of moving a stack of disks D1, . . . , Dk from one peg to another peg
can be exploited: problem decomposition.
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Choosing a Representation
Tower of Hanoi Problem [Wikipedia]

D1

Dn

1 2 3

A stack of n disks D1, . . . , Dn (different sizes, sorted, smallest on top) is to be moved from peg 1 to
peg 3. Only one of the topmost disks can be moved at a time, no disk may be placed on top of a
smaller one.

Observations:

q The problem can be solved analogously to solving the 8-puzzle problem. A sequence of legal
moves of single disks has to be determined.

q The recursive definition of moving a stack of disks D1, . . . , Dk from one peg to another peg
can be exploited: problem decomposition.

Ü Moving a stack of disks D1, . . . , Dk from peg a to peg b can be done in three “steps”:

1. Move the stack of disks D1, . . . , Dk−1 from peg a to peg c.
2. Move disk Dk peg a to peg b.
3. Move the stack of disks D1, . . . , Dk−1 steps peg c to peg b.
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Choosing a Representation
Tower of Hanoi Problem (continued)

D1 ... Dn 
P1 → P3

D1 ... Dn-1 
P1 → P2

Dn 
P1 → P3

D1 ... Dn-1 
P2 → P3

D1 ... Dn-2 
P1 → P3

Dn-1 
P1 → P2

D1 ... Dn-2 
P3 → P2

D1 ... Dn-2 
P2 → P1

Dn-1 
P2 → P3

D1 ... Dn-2 
P1 → P3

... .........

Ü Problem decomposition can be a powerful tool, even if order constraints have
to be taken into account.
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Choosing a Representation
Tower of Hanoi Problem (continued)

A stack of n disks D1, . . . , Dn (different sizes, sorted, smallest on top) is to be moved from peg 1 to
peg 3. Only one of the topmost disks can be moved at a time, no disk may be placed on top of a
smaller one.

OR Graph Representation:

q Nodes are states (i.e., the stacked disks for each peg). The remaining problem is known.

q Edges correspond to legal moves of some single disk.

Ü Cyclic paths can be pruned.
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Choosing a Representation
Tower of Hanoi Problem (continued)

A stack of n disks D1, . . . , Dn (different sizes, sorted, smallest on top) is to be moved from peg 1 to
peg 3. Only one of the topmost disks can be moved at a time, no disk may be placed on top of a
smaller one.

AND-OR Graph Representation:

q Nodes are states (i.e., the stacked disks for each peg). The remaining problem has to be
stored explicitly.

q All nodes are AND nodes.

q Families of AND edges correspond to the following problem decomposition:

– hardest single move problem,
(Moving the biggest misplaced disk from its current position to its target position.)

– establishing a state that allows that move,
(Moving all disks on top of the biggest misplaced disk out of the way.)

– establishing the target state out of the state resulting from that move.
(Moving the remaining misplaced disks to their target psotions.)

Ü A solution graph will be constructed directly.

S:IV-104 Search Space Representation © STEIN/LETTMANN 2023



Choosing a Representation
Tower of Hanoi Problem (continued)

A stack of n disks D1, . . . , Dn (different sizes, sorted, smallest on top) is to be moved from peg 1 to
peg 3. Only one of the topmost disks can be moved at a time, no disk may be placed on top of a
smaller one.

AND-OR Graph Representation: (continued)

Ü Start with the most difficult problem: Dn from peg 1 to peg 3.

Ü Dn must be clear and peg 3 must be empty.

Ü Introduce new subproblems: D1, . . . , Dn−1 from peg 1 to peg 2.

Ü Solve the remaining problems.
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Choosing a Representation
Means-End Analysis

Characteristic for the tower of Hanoi problem is that the set of subproblems
p1, . . . , pn is serializable. Formally, this means that there is a sequence i1, . . . , in
such that for problems pi1, . . . , pin :

1. pi1, . . . , pik can be solved after pik+1
, . . . , pin have been solved.

2. Solving pi1, . . . , pik will not compromise the solutions of pik+1
, . . . , pin.
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Choosing a Representation
Means-End Analysis

Characteristic for the tower of Hanoi problem is that the set of subproblems
p1, . . . , pn is serializable. Formally, this means that there is a sequence i1, . . . , in
such that for problems pi1, . . . , pin :

1. pi1, . . . , pik can be solved after pik+1
, . . . , pin have been solved.

2. Solving pi1, . . . , pik will not compromise the solutions of pik+1
, . . . , pin.

If this underlying problem structure is identified, the powerful operator selection
strategy “means end analysis” can be applied:

“The basic difference between this method [means end analysis] and
the state-space approach is its purposeful behavior: operators are
invoked by virtue of their potential in fulfilling a desirable subgoal, and
new subgoals are created in order to enable the activation of a
desirable operator.” [Pearl 1984, p.29]
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Remarks:

q Planning a trip (e.g. to New York) is another example for a problem that can be tackled by a
means end analysis:

1. New York→ plane from Frankfurt
2. plane from Frankfurt→ train to Frankfurt
3. train to Frankfurt→ bus to train station
4. . . .

q The power of problem reduction representation under a regime of a means end analysis:
AND-linked subproblems can be solved independently, though for processing the global plan
a strict order (from left to right) must be obeyed.

q Q. What is the complexity class of the tower of Hanoi problem?
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Chapter S:IV

IV. Search Space Representation
q Problem Solving
q Systematic Search
q Search Space Encoding
q State-Space Representation

q Problem-Reduction Representation
q Choosing a Representation
q Relation to Dynamic Programming
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Relation to Dynamic Programming
Optimum Solution Cost and Bellman’s Principle of Optimality

Dynamic programming has been developed to solve

q discrete optimization problems and

q planning problems for which an optimum sequence of decisions is sought.

Bellman’s principle of optimality:

“An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.”

[Bellman 1954]
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Relation to Dynamic Programming
Optimum Solution Cost and Bellman’s Principle of Optimality

Dynamic programming has been developed to solve

q discrete optimization problems and

q planning problems for which an optimum sequence of decisions is sought.

Bellman’s principle of optimality:

“An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.”

[Bellman 1954]

A stronger version of Bellman’s optimality principle:

Each partial solution of an optimum solution is in turn an optimum
solution for the respective subproblem.

Ü Optimum (estimated) solution cost can be defined via systems of equations.
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Relation to Dynamic Programming
Optimum Solution Cost and Bellman’s Principle of Optimality (continued)

Definition 6 (Bellman Equations for C∗ [
::::::::::
Overview])

Let G be an acyclic AND-OR graph rooted at s. Let CH(n) be a recursive cost
function for G based on E (local properties).

C∗(n) =



c(n) n is goal node and leaf in G
∞ n is leaf in G but no goal node

mini{F [E(n), C∗(ni)]} n is inner OR node in G,
ni direct successor of n in G

F [E(n), C∗(n1), . . . , C
∗(nk)] n is inner AND node in G,

ni direct successor of n in G
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Relation to Dynamic Programming
Optimum Solution Cost and Bellman’s Principle of Optimality (continued)

Definition 6 (Bellman Equations for C∗ [
::::::::::
Overview])

Let G be an acyclic AND-OR graph rooted at s. Let CH(n) be a recursive cost
function for G based on E (local properties).

C∗(n) =



c(n) n is goal node and leaf in G
∞ n is leaf in G but no goal node

mini{F [E(n), C∗(ni)]} n is inner OR node in G,
ni direct successor of n in G

F [E(n), C∗(n1), . . . , C
∗(nk)] n is inner AND node in G,

ni direct successor of n in G

If F is properly chosen (“If F obeys Bellman’s principle of optimality”), the equations
stated in Definition 6 form necessary and complete conditions for the optimality of
the solution cost C∗.

“⇒” The values that fulfill the Bellman equations are the optimum solution cost (for the respective
node).

“⇐” The optimum solution cost for a node fulfill the Bellman equations.
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Remarks:

q The name “dynamic programming” was introduced by Bellman. As with “linear
programming”, the terms “program” and “programming” should be read as “plan” and “plan
generation” respectively.

q The term “policy” characterizes the process of decision making and corresponds to the
principle of selecting a most promising solution base.

q The objective function in discrete optimization problems corresponds to the evaluation
functions f (state-space search) or f1 (problem-reduction search).

q Observe the rationale behind the Bellman equations (Definition 6) and optimality:

1. Given a problem (modeled as AND-OR graph) we “may be lucky” that its solutions obey
Bellman’s principle of optimality (consider that we have no free choice of F ).
Similarly: The cost measure F imposed by the problem obeys Bellman’s principle of
optimality (examples for F include “+” and “max”). In this case we should formulate the
optimization (= cost) function according to Definition 6.

2. Then, operationalizing Definition 6 will yield the optimum solution cost for our problem.

Conversely, the fact that the solutions of our problem won’t obey Bellman’s principle of
optimality means that we cannot formulate its cost function recursively and equip it with an
amenable cost measure (examples for F include “+” and “max”). We still may be able to
compute a cost function as solution of Bellman’s equations according to Definition 6, but this
operationalization will probably not yield the optimum solution cost for our problem.
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Relation to Dynamic Programming
Optimum Solution Cost and Bellman’s Principle of Optimality (continued)

Using the face-value principle for partially explored search spaces, Bellman’s
principle of optimality induces a system of equations defining estimated optimum
solution cost Ĉ(n).

Definition 7 (Bellman Equations for Ĉ [
::::::::::
Overview, monotone F] )

Let G be an explored subgraph of an acyclic AND-OR graph G rooted at s. Let h be
an underestimating heuristic function, let CH(n) be a recursive cost function for G
based on E and F , and let F obey Bellman’s principle of optimality.

Ĉ(n) =



c(n) n is goal node and leaf in G
h(n) n is leaf in G but no goal node

mini{F [E(n), Ĉ(ni)]} n is inner OR node in G,
ni direct successors of n in G

F [E(n), Ĉ(n1), . . . , Ĉ(nk)] n is inner AND node in G,
ni direct successors of n in G
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Relation to Dynamic Programming
Optimum Solution Cost and Bellman’s Principle of Optimality (continued)

Corollary 8 (Bellman Equations for Ĉ)

A recursive cost function CH(n) that is based on local properties E and a monotone
cost measure F obeys Bellman’s principle of optimality.
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Relation to Dynamic Programming
Partially Explored State Spaces

Definition 9 (Bellman Equations for Ĉ [
::::::::::
Overview, monotone F])

Let G be an explored subgraph of a state-space graph G rooted at s. Let h be an
underestimating heuristic function, let CP (n) be a recursive cost function for G
based on E and F , and let F obey Bellman’s principle of optimality.

Ĉ(n) =


c(n) n is goal node and leaf in G
h(n) n is leaf in G but no goal node

mini{F [E(n), Ĉ(ni)]} n is inner OR node in G,
ni direct successors of n in G
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Relation to Dynamic Programming
Partially Explored State Spaces

Definition 9 (Bellman Equations for Ĉ [
::::::::::
Overview, monotone F])

Let G be an explored subgraph of a state-space graph G rooted at s. Let h be an
underestimating heuristic function, let CP (n) be a recursive cost function for G
based on E and F , and let F obey Bellman’s principle of optimality.

Ĉ(n) =


c(n) n is goal node and leaf in G
h(n) n is leaf in G but no goal node

mini{F [E(n), Ĉ(ni)]} n is inner OR node in G,
ni direct successors of n in G

Special case A*:

q use top down propagation of path cost values g(n)
q consider only paths to nodes in OPEN

Ĉ(n) =

{
h(n) n is on OPEN
mini{c(n, ni) + Ĉ(ni)]} n is on CLOSED, ni direct successors of n
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Relation to Dynamic Programming
Partially Explored State Spaces (continued)

Algorithm A* and Bellman’s principle of optimality:

1. Top-down Propagation.

Superior (optimum) paths to non-goal states are extended to superior
(optimum) paths to successor states until a goal is reached.

Ü Right-Monotonicity ∼
:::::::::
Order

::::::::::::::::::::
Preservation.

For all nodes n′ and paths Ps−n′, P ′s−n′ from s to n′, and for all nodes n and
paths Pn′−n from n′ to n holds:

ĈPs−n′(s) ≤ ĈP ′
s−n′

(s) ⇒ ĈPs−n(s) ≤ ĈP ′s−n(s)

where Ps−n uses subpath Ps−n′ and P ′s−n uses P ′s−n′.
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Relation to Dynamic Programming
Partially Explored State Spaces (continued)

Algorithm A* and Bellman’s principle of optimality:

2. Bottom-up Propagation.

Starting from optimum solutions for rest problems, optimum solutions for
complexer problems are synthesized until the original problem is solved.

Ü Left-Monotonicity.

For all nodes n′ and paths Pn′−γ, P ′n′−γ from n′ to γ, and for all paths Ps−n′ from
s to n′ holds:

ĈPn′−γ(n
′) ≤ ĈP ′

n′−γ
(n′) ⇒ ĈPs−γ(s) ≤ ĈP ′s−γ(s)
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