Authorship Detection with PPM
Notebook for PAN at CLEF 2013

Victoria Bobicev

Technical University of Moldova
victoria_bobicev@rol.md

Abstract. This paper reports on our work in the PAN 2013 author identification
task. The task is to automatically detect the author of the given text having
small training sets with known authors. The task was solved by a system that
used the PPM (Prediction by Partial Matching) compression algorithm based on
an n-gram statistical model.

1 Introduction

With the emergence of user-generated web content, text author profiling is being
increasingly studied by the NLP community. Various works describe experiments
aiming to automatically discover hidden attributes of text which reveal author’s
gender, age, personality and others. Authorship identification is an important problem
in many areas including information retrieval and computational linguistics.

While a great number of works have presented investigations in this area there is
need for a common ground to evaluate different author recognition techniques. PAN
2013 as part of the CLEF campaigns aims to provide the common conditions and data
for this task.

We participated in this shared task with the PPM (Prediction by Partial Matching)
compression algorithm based on a character-based n-gram statistical model.

2 Model description

Authorship identification can be viewed as a type of classification task. Such tasks
are solved using learning methods. There are different types of text classification.
Authorship attribution, spam filtering, dialect identification are just several of the
purposes of text categorization. It is natural that for different types of categorization
different methods are pertinent. The most common type is the content-based
categorization which classifies texts by their topic and requires the most common
classification methods based on classical set of features. More specific methods are
necessary in cases when classification criterions are not so obvious, for example, in
the case of author identification.

In this paper the application of the PPM (Prediction by Partial Matching) model for
automatic text classification is explored. Prediction by partial matching (PPM) is an
adaptive finite-context method for text compression that is a back-off smoothing
technique for finite-order Markov models [1]. It obtains all information from the
original data, without feature engineering, is easy to implement and relatively fast.
PPM produces a language model and can be used in a probabilistic text classifier.

PPM is based on conditional probabilities of the upcoming symbol given several
previous symbols [2]. The PPM technique uses character context models to build an
overall probability distribution for predicting upcoming characters in the text. A
blending strategy for combining context predictions is to assign a weight to each
context model, and then calculate the weighted sum of the probabilities:

P(x) = 2 4, pi(x), (1)
i=1

where
A; and p; are weights and probabilities assigned to each order i (i=1...m).

For example, the probability of character 'm' in context of the word 'algorithm' is
calculated as a sum of conditional probabilities dependent on different context lengths
up to the limited maximal length:

Pppy('m") = s - P('m'|'orith") + Ay - P('m' | 'rith') + s - P('m' | 'ith") +

+A - P('m'|'th)+ A - P('m' |'h")++ Ay - P('m')+ A - P(‘esc’), (2)

where

A (1=1...5) is the normalization weight;
5 is the maximal length of the context;
P(‘esc’) — ‘escape’ probability, the probability of an unknown character.

PPM is a special case of the general blending strategy. The PPM models use an
escape mechanism to combine the predictions of all character contexts of length m,
where m is the maximum model order; the order 0 model predicts symbols based on
their unconditioned probabilities, the default order -1 model ensures that a finite
probability (however small) is assigned to all possible symbols. The PPM escape
mechanism is more practical to implement than weighted blending. There are several
versions of the PPM algorithm depending on the way the escape probability is
estimated. In our implementation, we used the escape method C [3], named PPMC.
Treating a text as a string of characters, a character-based PPM avoids defining word
boundaries; it deals with different types of documents in a uniform way. It can work
with texts in any language and be applied to diverse types of classification; more
details can be found in [4]. Our utility function for text classification was cross-

entropy of the test document:
n

H," - =X p"(x) log p"(x), 3)
i=1
where
n is the number of symbols in a text d,
H,;" — entropy of the text d obtained by model m,
p"(x;) is a probability of a symbol x; in the text d.
H,;" was estimated by the modelling part of the compression algorithm.

Usually, the cross-entropy is greater than the entropy, because the probabilities of
symbols in diverse texts are different. The cross-entropy can be used as a measure for
document similarity; the lower cross-entropy for two texts is, the more similar they
are. Hence, if several statistical models had been created using documents that belong
to different classes and cross-entropies are calculated for an unknown text on the basis
of each model, the lowest value of cross-entropy will indicate the class of the
unknown text. In this way cross-entropy is used for text classification.

On the training step, we created PPM models for each class of documents; on the
testing step, we evaluated cross-entropy of previously unseen texts using models for
each class. Thus, cross-entropy was used as similarity metrics, the lowest value of
cross-entropy indicated the class of the unknown text.

The maximal length of a context equal to 5 in PPM model was proven to be
optimal for text compression [6]. In all our experiments with character-based PPM
model we used maximal length of a context equal to 5; thus our method is PPMCS.

The character-based PPM models were used for spam detection, source-based text
classification and classification of multi-modal data streams that included texts. In [1],
the character-based PPM models were used for spam detection. In [5], the PPM
algorithm was applied to text categorization in two ways: on the basis of characters
and on the basis of words.

3 Method description

In the previous author identification experiments the standard PPM classification
methodology was applied to the large set of forum posts written by tens of forum
participants. More exactly, we experimented with 30 authors, 100 posts for each
authors; approximately length of posts was 150-200 words. The unknown unit was
one post. The task was to classify test posts having these 30 classes — authors. The
classification accuracy was surprisingly high: F-measure was around 0.8. Further
experiments showed that the test text length is the most influencing factor and the
maximal accuracy we reached with test texts of 300 words length. The F-measure was
0.97 and did not grow for the longer test texts.

The current task had several differences and we could not use the standard
classification methodology directly. First, the task was to make a decision about only
one test text whether it belonged to the same author as the several known texts which
were written by one author. Thus, we actually had only one class and could not
compare entropies of the test text for several classes in order to select one. Second, in
this task training and test data were extremely small; in some cases test text was larger
than the whole training set. It should be mentioned that the volume of test and
especially training data affected the classification results for our method; it tended to
attribute texts to the class with the larger training set. We applied a special
normalization procedure to normalize entropies of larger and smaller training texts for
better classification in the experiments with forum posts.

For the data in this experiment we needed a number of known and unknown texts;
thus we divided all given known and unknown texts in small fragments and compared
their entropies calculated on the basis of known texts models and on the basis of

unknown text models. If the entropies were considerably different we considered that
texts were written by two different authors. The following algorithm presents our
methodology in more details.

The algorithm:

- join all known texts into one;

- divide this known text in fragments with the similar length (about 350 words);

- divide unknown text in fragments with the similar length (about 350 words);

- for each known fragment in turn:

o create PPM statistical model on the rest of known texts;
o calculate entropy of this fragment on the basis of the created model.

- for each unknown fragment in turn:

o create PPM statistical model on the rest of unknown fragments;
o calculate entropy of this fragment on the basis of the created model.

- create PPM statistical model on all unknown texts;

- for each known fragment in turn:

o calculate entropy of this fragment on the basis of the created model.

- create PPM statistical model on all known texts;

- for each unknown fragment in turn:

o calculate entropy of this fragment on the basis of the created model.

- compare these four lists of the entropies as the statistical variables using t-test
for the null hypothesis that these variables are equivalent. If the null
hypothesis was accepted we considered that the unknown text was written by
the same author as known texts, otherwise we decided that the known and
unknown texts were written by two different authors.

References

1. Bratko, A., Filipic, B.: Spam Filtering Using Compression Models. Department of
Intelligent Systems, Jozef Stefan Institute, Ljubljana, Slovenia, 1JS-DP-9227
(2005)

2. Cleary, J., Witten, I.: Data Compression Using Adaptive Coding and Partial String
Matching. IEEE Transactions on Communications, vol. 32, no. 4, pp. 396 — 402
(1984)

3. Bell, T.C., Witten, L.H., Cleary, J. G.: Modeling for text compression. Computing
Surveys, 21(4), pp. 557-591 (1989)

4. Bobicev, V.: Comparison of Word-based and Letter-based Text Classification.
Recent Advances in Natural Language Processing V, Bulgaria, pp. 76—80 (2007)

5. Bobicev, V., Sokolova, M.: An effective and robust method for short text
classification. Proceedings of the 23rd national conference on Artificial
intelligence - Volume 3, pp. 1444—-1445 (2008)

6. Teahan, W.: Modelling English text. PhD Thesis, University of Waikato, New
Zealand (1998)

