
A Production Oriented Approach for
Vandalism Detection in Wikidata

The Buffaloberry Vandalism Detector at WSDM Cup 2017

Rafael Crescenzi
Austral University

rafael.crescenzi@gmail.com

Marcelo Fernandez
Austral University

marcelofernandez99@gmail.com

Federico A. Garcia
Calabria

Austral University
federico.garciacalabria@gmail.com

Pablo Albani
Austral University

albanipablo@gmail.com

Diego Tauziet
Austral University

diego.tauziet@gmail.com

Adriana Baravalle
Austral University

fliafog@hotmail.com

Andrés Sebastián
D’Ambrosio

Austral University
andresdambrosio@gmail.com

ABSTRACT
Wikidata is a free and open knowledge base from the Wikimedia
Foundation, that not only acts as a central storage of structured data
for other projects of the organization, but also for a growing array
of information systems, including search engines. Like Wikipedia,
Wikidata’s content can be created and edited by anyone; which is
the main source of its strength, but also allows for malicious users
to vandalize it, risking the spreading of misinformation through all
the systems that rely on it as a source of structured facts. Our task
at the WSDM Cup 2017 was to come up with a fast and reliable
prediction system that narrows down suspicious edits for human
revision [8]. Elaborating on previous works by Heindorf et al. we
were able to outperform all other contestants, while incorporating
new interesting features, unifying the programming language used
to only Python and refactoring the feature extractor into a simpler
and more compact code base.

Keywords
Knowledge Base, Vandalism, Wikidata

1. INTRODUCTION
The WSDM Cup is a competition held annually as part of the

ACM International Conference on Web Search and Data Mining,
WSDM (pronounced “wisdom”), one of the premier conferences
on web-inspired research involving search and data mining. For the
2017 edition, one of the challenges was to build a production ready
model for the scoring of revisions made to Wikidata, denoting the
likelihood of it being malicious (or similarly damaging).

Wikidata is one of the fastest growing knowledge bases of the
Internet. It receives over 6000 human made revisions an hour and
-lately- only between 0.1% and 0.2% of them are malicious. Burden-
ing the community with reviewing such a large flow of edits would
not only be infeasible, but would defeat the purpose of having a
crowd sourced knowledge base. In the WSDM Cup 2017 we took
up the challenge of contributing a machine learning approach for

vandalism detection. Building on the works by Heindorf et al., we
were able to create a prediction system that got the highest area
under the ROC in the competition.

2. RELATED WORK
To the best of our knowledge, the state-of-the-art in this task was

achieved by Heindorf et al. and documented in two consecutive
papers: [6] and [7]. The first one concentrates on providing an
extensive report on the construction of the Wikidata Vandalism
Corpus, the definition of what constitutes vandalism and an extensive
series of descriptive statistics of several features and their correlation
with ill-intended revisions. The second one, advances the work
towards the creation of useful features and the training of machine
learning algorithms that provide hints at vandalism across a wide
range of precision/recall points; in such a way that it would be
possible to use fully automatic methods at high precision, as well
as ranking the urgency of revisions at high recall. In the later paper
they report a staggering 0.991 ROCAUC at 0.491 PRAUC . In
the following sections we will discuss both papers, particularly the
features and methods used, and how they compare to our own.

3. APPROACH
The training corpus provided to us was XML data, with records

of the user performing the revision, a timestamp, a JSON represen-
tation of the entities state after the edit and a comment. In most
cases, the comment was automatically generated and codified as
<action> <subaction>? <param>+ <tail>. We were also
provided with meta-data for each revision, consisting of the session
id (indicating consecutive edits by the same user on the same item),
geographic information extracted from the IP address of anonymous
users (continent, region, country, city, county and timezone) and a
list of tags that were assigned to each revision by current automatic
filters.

With this data, the first order of business was feature engineering.
It must be noted that the code for the feature extractor (FE) built by



Heindorf et al. was available to us (and still is publicly available 1)
but for a number of reasons, we opted to re-implement it ourselves.

To begin with, FE is written in Java and is highly optimized to
run on the large historical corpus where set of revisions on the same
Wikidata entity are grouped together. In contrast, data for the on-line
evaluation was going to be provided in simple chronological order.
On the other hand, the prediction phase of our implementation was
going to be written in Python. Therefore, context switching between
Java and Python seemed non-beneficial performance-wise.

To prevent all this complexity in production, we felt it was better
to take the previous work as a guideline, but to re-implement the
FE in Python. This gave us the added benefit of being able to drop
lesser features, modify others and add new ones.

3.1 Feature Engineering
For the sake of comparability, we will structure this section in the

same way as Heindorf et al.

3.1.1 Content Features
Character level features Similar to the previous work, to

quantify character usage, we compute the ratio of ten char-
acter classes to all characters within the comment tail of
a revision, each serving as one feature: upperCaseRatio,

lowerCaseRatio, alphanumericRatio, digitRatio,

punctuationRatio, bracketRatio, symbolRatio,

whitespaceRatio, latinRatio and nonLatinRatio.
We left out asciiRatio because we felt it overlapped with
alphanumericRatio and we replaced it with symbolRatio,
witch represented the proportion of the following characters
in the string: [&, %, $, #, @, +, -, _, *, /, \]. Additionally,
we computed the longest sequence of the same character
(longestCharacterSequence) and the main alphabet used,
calculated as the mode of the Unicode data alphabet information
over every character of the comment tail (mainAlphabet).

Word level features For words, we also produced simi-
lar features as the previous work, first we computed four
word ratios: lowerCaseWordRatio, upperCaseWordRatio,

badWordRatio, languageWordRatio. The former two are the
ratio of words starting with a lower or upper case letter respec-
tively. badWordRatio computes the proportion of words appear-
ing on a dictionary of 1383 offensive English words [2], and
the languageWordRatio the ratio of words that matched a reg-
ular expressions for the name of a languages (that we borrow
from the Java code). We also incorporated the length of the
longestWord, the Boolean features containsLanguageWord and
containsURL. We dropped the features proportionOfQidAdded
and proportionOfLinksAdded, because they were not signifi-
cant in our preliminary analysis.

Sentence level features Considering the comment tail as a
“sentence” we computed commentTailLength like the previous
work, but we made some changes to the other features calculated
at this level: Heindorf et al. computed the similarity of comments
to the English labels, English sitelinks and the previous comment
(commentLabelSimilarity, commentSitelinkSimilarity,

and commentCommentSimilarity). We felt we could improve
these features as we knew the language for the label or sitelink
being added. We computed the similarity of the comment to the
corresponding language label, if a sitelink was being added; or to
the corresponding language sitelink, if a label was being added. In
the cases that we did not have a matching language for the label or
sitelink, we used the most similar among the ones present. Also,
instead of the Jaro-Winkler distance, we used two measures of fuzzy
1https://github.com/heindorf/cikm16-wdvd-feature-extraction

string matching [1]: complete and partial, creating the features
fuzzyTotal and fuzzyPartial. Furthermore, we also created
a feature that computed the probability that the language of the tail
matched the stated language in the comment [3]: LangMatchProb

Statement features We did not use propertyFrequency,

itemValueFrequency and literalValueFrequency.

3.1.2 Context Features
User features Like the previous work, we computed the Boolean

features isRegUser and isPrivUser, that stored if the user was
registered and if it had administrative privileges, respectively. We
also computed the number of editions done by a given registered
user by the end of the training period (useridFrequency) and
the geographic information of anonymous users (userContinent,
userCountry, userRegion, userCounty, userCity, and

userTimeZone). We did not compute the cumulated number of
unique items a user has edited up until the revision in question
(cumUserUniqueItems).

Item features As in the previous work, we computed the fre-
quency of edits to a given item by the end of the training period
(itemidFrequency) but we did not find evidence supporting the
binning of this variable (taking the log and rounding if a form of
binning). We did not compute the number of unique users that have
edited a given item (�logCumItemUniqueUsers).

Revision features We extracted the revision action and

subaction from the comment. Regarding the language of the
revision, we did a small change. The previous work considered the
language as is in the comment, when in fact the comment encodes
more information than that. For instance, if the comment stated that
the language was en us, the language proper was English and the
locale was "us" (for USA). In those cases we encoded the proper lan-
guage in the variable lang and the locale in langLocale. In other
cases, the comment would state the language as eswiki. In these
cases we considered the tt lang as "es" (for Spanish) and "wiki" part
was used in another variable called tt affectedProperty that reflected
the part of the entity edited. In this variable we also recorded the
property involved in edits that were made on a claim (i.e. "P####")
or the values "label", "alias" or "description" if those were the ones
being edited. While the Wikidata community generally considers
properties to be the claims for an entity, we considered all attributes
(like the sitelink, label, alias or descriptions) as properties. This
way, tt affectedProperty could encode more information, instead of
taking null values when the edition was made to a part of the entity
other than the claims.

From the XML we extracted the itemid and userid, and also
if the revision was a �minor one.

Other features that we include are: changeCount extracted from
the comment, showing the number of elements changed in the edit
(i.e. when someone adds or removes more than one description),
instanceOf extracted from the json representation of the entity,
the length of the json representation (jsonLen), and the variable
hour, reflecting the hour of the day for the edition. Also, we con-
structed a feature prevUser for the cases when the revision was
actually an undo or reversion of a previous one, which records if the
revision being undone or reverted was made by a registered user, an
anonymous user or a bot.

We also used the revision tags in the meta-data, by both en-
coding the list of tags as a categorical variable and using one-
hot encoding to represent all tags present in the revision. Lastly,
we did not use isLatinLanguage, revisionPrevAction and

positionWithinSession, because our preliminary analysis
showed they were not useful.



3.2 Model Training
The only preprocessing applied to the features described in the

previous section was mapping string variables to categorical numer-
ical ones and filling missing values with a placeholder outside the
domain of the affect variable (usually -1). We chose this way of
encoding and imputing based primary on the fact that we were go-
ing to experiment exclusively with tree based algorithms and in our
experience these kind of learners do not benefit much from one-hot
encoding categorical variables and achieve better results when the
missing values are set apart from the others instead of assuming the
mean, median, mode or other value within the range of valid ones.
The decision to restrict the algorithms to tree based ones was mainly
taken based on our intuition that they are the best suited for these
kind of datasets (highly imbalanced with a fairly large number of
examples and mixed categorical, ordinal and interval variables) and
on the excellent results with random forest reported by Heindorf
et al.

3.2.1 Validation Setup
Given the chronological nature of the data we opted to set our

validation scheme based on the dates of the revisions. Furthermore,
in our exploratory data analysis, we detected that there was a notable
change in distribution and intensity of vandalism to Wikidata some-
time near April 2015. The vandalism ratio dropped significantly
around that month, seemingly due to a big decrease in malicious
edits made to the textual part of Wikidata (labels, descriptions and
alias), which used to be the main source of vandalism before that.
Figures 1 and 2 summarize the observed behavior.

Given the findings of Heindorf et al. we intuitively believe that
Wikidata took some action to prevent, intercept or somewhat lessen
the extent of damaging edits made to textual parts of the knowledge
base; thus changing dramatically the markers for the very behavior
we were task to predict. As a consequence, we decided to train
our models on data no older than May 1st, 2015. The resulting
validation scheme is summarized in Table 1.

3.2.2 Model Selection and Tuning
The candidate algorithms for this task were scikit-learn’s (version

0.18) implementation of Random Forest [9] and the eXtreme Gradi-
ent Boosting (XGBoost) implementation of the Gradient Boosting
Machine algorithm (GBM) and its Python bindings [5] [4].

Due to time constrains, we started by making some fast tests on a
series of samples taken from the training data, which showed that
XGBoost outperformed Random Forest in all cases. Furthermore,
when training on all the data, we only tuned the maximum depth and
number of boosting rounds of the GBM. After several experiments,
we found that the best performance was achieved at a maximum
depth of 7 and 193 boosting rounds, which gave a ROCAUC of
0.9868 on the validation set.

3.2.3 Multiple-Instance Learning
As found out by Heindorf et al., there is a correlation between

the vandalism status of revisions made by the same user to the
same entity in a session. They proposed two methods to leverage
this particular behavior: single-instance learning (SIL) and simple
multiple-instance learning (Simple MI). SIL assigns the mean score
over a session to all its conforming revisions. Simple MI involved
training a separate algorithm with data from all revisions in a session.
They report a significant improvement when both these methods
were blended with the individual predictions of their main algorithm.
However, given the way the evaluation of the WSDM Cup was
conducted, we were only able to implement the former, and only in
a weak sense.

Figure 1: Evolution of Vandalism Ratio

Figure 2: Evolution of Part Vandalized

The evaluation setup was roughly as follows: our predictive sys-
tem was feed 16 revisions initially and after that, it received one
more revision for each one that was scored and returned to the main
server. That meant that we only had a window of 16 revisions at a
time, so that’s why the Simple MI method was ruled out for being
extremely hard to implement in this setup. Furthermore, as we
ended up implementing a 1-revision-in-1-revision-out system, the
SIL method was in effect not a simple average, but a rolling mean
over sessions. In validation, this addition improved the ROCAUC

to 0.9905.
Finally, in our exploratory data analysis, we found that revisions

in sessions that included the creation of an entity were never rolled
back. We do not know if there is a technical impossibility to rollback
a set of revisions that involved a new item, but we leverage this
finding by scoring creation revisions with a -1000 and as they always
were the first in a session, after averaging, all other associated
revisions were thrown outside the range of regular scores (0-1).

Table 1: Validation Scheme - Revision values are expressed in
thousands

Dataset From To Revisions
Training May 1, 2015 February 29, 2016 29,154
Validation March 1, 2016 April 30, 2016 7,225
Test May 1, 2016 June 30, 2016 10,445



3.2.4 Stacked Generalization
Stacking is the practice of training a generalizing algorithm on

the probabilities (or scores) produced by lower level learners. While
it is seldom useful in real life scenarios, it is widely used in data
mining competitions to win a tiny but usually decisive edge. We
experimented briefly with this technique, training several RF and
XGB with an array of different hyper-parameters and even training
some of the algorithms on a selected part of the dataset (revisions
made by anonymous, registered and privileged users only); but these
efforts yielded little to no improvement.

The blending only produced a sizable improvement when the
stacking generalizer used the probabilities of lower level learners av-
eraged over sessions. However, given the enormous complexity this
would add to the system and the uncertainty arising from the small
window of revision in testing, we opted not to use this approach.

3.2.5 Training of the Final Model
To train our final model, we used all the data in the training and

validation sets. The selected model was a single XGBoost with
maximum depth of 7, 200 boosting rounds and all other parameters
at default levels. We chose an even 200 rounds instead of the exact
193 found in validation, because there was more data to train with
—so we could risk a bit more of complexity— and in our experience
it is usually best to round up the value found in validation (which is
the best only for that dataset).

3.2.6 Production Software
The testing for the WSDM Cup was performed on TIRA [10],

an evaluation as a service platform. The goal of the competition
was not only training an accurate model, but making a complete
system that could perform similarly to a production environment.
Our software was required to connect to a server via a single TCP
connection and, after sending an identification token, it would start
receiving revisions and meta-data from the server over the same
connection in a multiplexed fashion. As stated before, the server
would allow for 16 revisions to be available, but we opted to process
and return one at a time.

Our software needed to process the raw XML data, join it with
the meta-data, encode categorical features and fill missing values,
compute the likelihood of the revision being malicious and return
the score to the server. To that end, all the information used to
encode categorical string variables, frequencies of users and items
and a list of privileged users id was stored in the production client.

While in the development environment we had to optimize the
code to handle data in big batches, these optimizations ended up
being counterproductive in production. We had to re-factor the
whole data pipeline as a separate method for the final client. With
these modifications, the revision throughput jumped from 5,000 an
hour to roughly 700,000, three orders of magnitude faster.

The final software was able to go through an entire bimester of
revisions in around 14 hours on a single core machine with 4GB
of RAM, more than fast enough for a real-time system. Also, with
very minor modifications, the client we crafted could be turned into
a micro-service that would accept raw XML and meta-data over a
POST HTTP request and respond with the vandalism score.

4. EVALUATION RESULTS
Given our validation results, we were expecting to achieve a

ROCAUC somewhere between 0.98 and 0.99 on the test set. How-
ever, after the system was run and scored in the evaluation platform
TIRA [10], the actual ROCAUC was a much lower 0.94702. At the
time of writing this paper, we have not had the chance to look at the

test data to ascertain if the discrepancy was due to a mistake on our
part, a change in the distribution of the variables or just chance.

Still, this result prompted us to review our methods and code, but
we are yet to find any errors. On the other hand, the second best
result was a ROCAUC 0.93708, almost a whole percentage point
of difference, which might point to some idiosyncrasy in the test set
that pushed the results down.

5. CONCLUSION
In this paper, we presented an automatic data mining approach for

vandalism detection in Wikidata. The resulting system is relatively
simple, consists of less than 1000 lines of code and can be put
in production with only slight adaptations. The Python source
code used for this task is freely available for use, improvement and
reproduction of these results at Github 2.

As the main goal of the challenge was to produce the best-
performing model for the provided data, we did not allocate time
to perform a head-to-head comparison with the system developed
by Heindorf et al., although we achieved similar validation results,
admittedly on a different time period. Furthermore, we achieve this
result with only a single learner, resulting in a simpler system if it
were to be used as is, or even leaving room for improvement via the
use of a fancier stacking of base algorithms.

As shown by their work and our findings, feature representation
and engineering played a key role in achieving high results. As
further work on that subject, we believe that features involving
interaction between revisions could improve greatly the predictive
power of any algorithm used.

Another promising avenue of research could involve deep learn-
ing, specifically, convolutional or recurrent neural networks that
could be able to capture time delayed interactions. This family of
machine learning algorithms would require, however, a complete
and creative re-imagining of the features, as many of the categori-
cal variables have a very high cardinality, that discourages the use
of one-hot encoding in favor of a more suited embedding space
representation.

References
[1] Fuzzywuzzy. https://github.com/seatgeek/fuzzywuzzy.
[2] L. von Ahn. offensive/profane word list.

http://www.cs.cmu.edu/~biglou/resources/.
[3] langid. https://github.com/saffsd/langid.py.
[4] dmlc/xgboost. https://github.com/dmlc/xgboost.
[5] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting

system. CoRR, abs/1603.02754, 2016. URL
http://arxiv.org/abs/1603.02754.

[6] S. Heindorf, M. Potthast, B. Stein, and G. Engels. Towards
Vandalism Detection in Knowledge Bases: Corpus
Construction and Analysis. In R. Baeza-Yates, M. Lalmas,
A. Moffat, and B. Ribeiro-Neto, editors, SIGIR 15, pages
831–834. ACM, Aug. 2015. ISBN 978-1-4503-3621-5. .

[7] S. Heindorf, M. Potthast, B. Stein, and G. Engels. Vandalism
Detection in Wikidata. In S. Mukhopadhyay, C. Zhai,
E. Bertino, F. Crestani, J. Mostafa, J. Tang, L. Si, X. Zhou,
Y. Chang, Y. Li, and P. Sondhi, editors, CIKM 16, pages
327–336. ACM, Oct. 2016. ISBN 978-1-4503-4073-1. .

[8] S. Heindorf, M. Potthast, H. Bast, B. Buchhold, and
E. Haussmann. WSDM Cup 2017: Vandalism Detection and
Triple Scoring. In WSDM. ACM, 2017. .

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

2https://github.com/wsdm-cup-2017/buffaloberry



V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[10] M. Potthast, T. Gollub, F. Rangel, P. Rosso, E. Stamatatos,
and B. Stein. Improving the Reproducibility of PAN’s Shared
Tasks: Plagiarism Detection, Author Identification, and
Author Profiling. In E. Kanoulas, M. Lupu, P. Clough,
M. Sanderson, M. Hall, A. Hanbury, and E. Toms, editors,
CLEF 14, pages 268–299, Berlin Heidelberg New York, Sept.
2014. Springer. ISBN 978-3-319-11381-4. .


