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Abstract. This paper summarizes the goals, organization and results
of the first SOCO competitive evaluation campaign for systems that au-
tomatically detect the source code re-use phenomenon. The detection of
source code re-use is an important research field for both software indus-
try and academia fields. Accordingly, PAN@FIRE task, named SOurce
COde Re-use (SOCO); focused on the detection of re-used source codes
in C/C++ and Java programming languages. Participant systems were
asked to annotate several source codes whether or not they represent
cases of source code re-use. In total three teams participated and sub-
mitted 13 runs. The training set consisted of annotations made by several
experts, a feature which turns the SOCO 2014 collection in a useful data
set for future evaluations and, at the same time, it establishes a standard
evaluation framework for future research works.
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1 Introduction

Nowadays, the information has become easily accessible with the advent of the
Web. Blogs, forums, repositories, etc. have made source code widely available to
be read, to be copied and to be modified. Programmers are tempted to re-use
debugged and tested source codes that can be found easily on the Web. The
vast amount of resources on the Web makes the manual analysis of suspicious
source code re-used unfeasible. Therefore, there is an urgent need for developing
automatic tools capable of accurately detect the source code re-use phenomenon.

Currently, software companies have a special interest in preserving their own
intellectual property. In a survey applied to 3, 970 developers, more than 75 per-
cent of them admitted that have re-used blocks of source code from elsewhere
when developing their software3. Moreover, on the one hand, the academic envi-
ronment has also become a potential scenario for research in source code re-use
because it is a frequent practice among students. A recent survey [3] reveals that

3 http://www.out-law.com/page-4613
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source code plagiarism represents 30% of the cases of plagiarism in the academia
field. In this context, students are tempted to re-use source code because, very
often, they have to solve similar problems within their courses. Hence, the task
of detecting source code re-use becomes even more difficult, since all the source
codes will contain (to some extent) a considerable thematic overlap. On the
other hand, detection of source code re-use in programming environments, such
as programming contests, has an additional challenge, this is the large number
of source codes that must be processed for detecting such practises [6], and as a
result, source code re-use detection becomes some how unfeasible. Consequently,
most of the research on source code re-use detection has been mostly applied to
closed groups [16, 14, 9].

Traditionally, the source code re-use detection problem has been approached
by means of two main perspectives: i) feature comparison, and ii) structural
comparison. In the first approach, i.e. features comparison, the similarity be-
tween two programs considers features such as the average number of characters
per line, the number of commented lines, etc. [18]. On the contrary, the struc-
tural comparison usually takes into account a more complex representation, e.g.
the representation of a source code made by a compiler, which it can be seeing as
a fingerprint representing the structure of a program; then different techniques
are applied in order to determine whether or not a case of re-use exists. As
examples of structural approaches are [14, 2, 7]. In [14], authors search for the
longest non-overlapped common substrings between a pair of fingerprints, whilst
in [2], the source code is represented as a dependency graph in order to search
for common sub-graphs. Finally, DeSoCoRe [7] proposes a comparison of two
source codes at function-level and looks for highly similar functions or methods
in a graphical representation.

Whereas at PAN@CLEF the shared task addresses plagiarism detection in
texts [13], PAN@FIRE focuses on the detection of source codes that have been
re-used in a monolingual context, i.e., using the same programing language. It
is worth mentioning that such situation represents a common scenario in the
academic environment. Particularly, SOCO involves identifying and distinguish-
ing the most similar source code pairs among a large source code collection. In
the next sections we will first define the task and then summarise all participant
systems approach as well as their obtained results during the SOCO 2014 shared
task.

2 Task description

SOCO shared task focuses on monolingual source code re-use detection, which
means that participant systems must deal with the case where the suspicious and
original source codes are written in the same programing language. Accordingly,
participants are provided with a set of source codes written both in C/C++ and
Java languages, where source codes have been be tagged by language to ease the
detection. Thus the task consists in retrieving source code pairs that have been
re-used. It is important to mentions that this task must be performed at docu-
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ment level, hence no specific fragments inside of the source codes are expected
to be identified; only pairs of source codes. Therefore, participant systems were
asked to annotate several source codes whether or not they represent cases of
source code re-use.

This year’s task was divided in two main phases: training and testing. For the
training phase we provided an annotated corpus for each programming language,
i.e., C/C++ and Java. Such annotation includes information about whether a
source code has been re-used and, if it is the case, what its original code is. It
is worth mentioning that the order of each pair was not important4, e.g., if X
has been re-used from Y , it was considered as valid to retrieve the pair X–Y or
the pair X–Y . Finally, for the testing phase the only annotation that has been
provided is the one corresponding to the programming language.

3 Corpus

In this section we describe the two corpora used in the SOCO 2014 competition.
For the training phase, a corpus composed by source codes written in C and
Java programming languages was released. For the testing phase, participants
were provided with source codes written in C-like languages (i.e., C and C++)
and also in Java language.

3.1 Training Corpus

The training collection consists of source codes written in C and Java program-
ming languages. For the construction of this collection we employed the corpus
used in [1]. Source code re-use is committed in both programming languages
but only at monolingual level. The Java collection contains 259 source codes,
which are labelled from 000.java to 258.java. The C collection contains 79 source
codes, labelled from 000.c to 078.c. Relevance judgements represent re-used cases
in both directions(X → Y and Y → X). Table 1 shows the characteristics of the
training corpus and the κ value of the inter-annotator agreement [5].

Table 1. Total number of source codes and re-used source code pairs annotated by
three experts. The last column shows their κ value for inter-annotator agreement.

Programing
language.

Number of
source codes

Re-used source
code pairs

Inter-annotator
agreement

C 79 26 0.480
Java 259 84 0.668

As can be seen in Table 1 the inter-annotator agreement for the C collection
represents a moderate agreement whilst for the Java collection the kappa value

4 An additional challenge in plagiarism detection is to determine the direction of the
plagiarism, i.e., which document is the original and which the copy.
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indicates a substantial agreement between annotators [5]. Such results indicate
(to some extent) that the provided training corpus represents a reliable data set.

3.2 Test Corpus

The provided test corpus is divided by programming language (C/C++ and
Java) and by scenarios (i.e., different thematic). This corpus has been extracted
from the 2012 edition of Google Code Jam Contest5. Each programming lan-
guage contains 6 monolingual re-use scenario (A1, A2, B1, B2, C1 and C2).
Hence, the name of the files consists of the name of the scenario which they
belong to and an identifier, for example, file ”B10021” belongs to scenario B1
and its identifier number is 0021. Table 2 shows the number of source codes for
each programming language in every scenario.

Table 2. Number of source codes that the test corpus contains by programming lan-
guage and scenario.

A1 A2 B1 B2 C1 C2 Total

C/C++ 5, 408 5, 195 4, 939 3, 873 335 145 19, 895
Java 3, 241 3, 093 3, 268 2, 266 124 88 12, 080

It is important to mention that there is no re-use cases between scenarios,
therefore participant systems just need to look for re-used cases among the source
code files inside each scenario. For example, participants do not have to submit
a re-used case between files ”B10021” and ”B20013”. Notice that the first one
belongs to scenario B1 but the second one belongs to B2.

As can be noticed in Table 2, the amount of source codes in the test set is
significantly higher than the amount of codes in the training corpus. Therefore,
participant systems are some how obligated to develop efficient applications for
solving the SOCO task.

Due to the huge size of the corpus is practically impossible to label it manu-
ally by human reviewers. Hence, in order to evaluate the performance of partic-
ipant systems, we prepared a pool formed by the provided detections from the
different submitted runs [17]. By means of following this technique, a source code
pair needs to appear at least in the 66% of the competition runs to be considered
as a relevant judgement. Thus, for the construction of the relevance judgements,
we considered all the submitted runs from participant systems with the addition
of the two baselines described in the next section. Table 3 indicates the number
of identified relevant judgements for each programming language and scenario.

5 https://code.google.com/codejam/contest/1460488/dashboard
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Table 3. Number of relevant judgements per programming language and scenario.

A1 A2 B1 B2 C1 C2 Total

C/C++ 105 92 95 50 8 0 350
Java 115 106 138 76 4 25 464

4 Evaluation Metrics

All the participants were asked to submit a detection file with all the considered
re-used source code pairs. Participants were allowed to submit up to three runs.
All the results were required to be formatted in XML as shown below. As can
be noticed, for each suspicious source code pair it must be one entry of the
<reuse case .../> in the XML file.

<document>
<reuse case source code1=”X1” source code2=”Y1” />
<reuse case source code1=”X2” source code2=”Y2” />
. . .
</document >

To evaluate the detection of re-used source code pairs we calculate Precision,
Recall and F1 measure. For ranking all the submitted runs we used the F1

measure in order to favour those systems that were able to obtain (high) balanced
values of precision and recall.

Two baselines have been considered for the SOCO 2014 task, which are de-
scribed below:

– Baseline 1. Consists of the well-known JPlag tool [14] using its default
parameters. In this model, the source code is parsed and converted into
token strings. The greedy string tiling algorithm is then used to compare
token strings and identify the longest non-overlapped common substrings.

– Baseline 2. Consists of the character 3-gram based model proposed in [8].
In this model, the source code is considered as a text and represented as
character 3-grams, where these n-grams are weighted using term frequency
scheme. As pre-processing, whitespaces, line-breaks and tabs are removed.
All the characters are casefolded and characters repeated more than three
times are truncated. Then, the similarity between two source codes is com-
puted using the cosine similarity measure. For this baseline, a code pair is
considered as a re-use case if the similarity value is higher than 0.95.

5 Participation Overview

In total three teams participated and submitted 13 runs. Particularly, the Au-
tonomous University of the State of Mexico (UAEM) and the Universidad Autónoma
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Metropolitana - Unidad Cuajimalpa (UAM-C) have submitted three runs in both
programming languages while the Dublin City University (DCU) only in Java.

UAEM [11] used a model for the detection of source code re-use that is divided
into four phases. In the first phase only the lexical items of each source lan-
guage are separated and more than one whitespaces are removed. In the second
phase, a similarity measure is obtained for each source code regarding the other
source codes. The second phase uses as similarity measure the sum of the dif-
ferent lengths of the longest common substrings between the two source codes,
normalised to the length of the longest code. Using the comparisons made for
each source code, in the third phase a set of parameters is obtained that allow
later the identification of re-used cases. The parameters obtained are: the value
of the distance (1- similarity), the ranking of the distance (rank order of the
most similar), the gap that exists with the next closest code (it is only calcu-
lated for the first 10 closest codes) and, using the maximum gap between the 10
most closest codes, the source codes that are Before or After the maximum gap
relative difference are labelled. The result of the third phase is a matrix where
each row represents a comparison of a source code with other codes (columns).

For the decision, a source code pair X ↔ Y will be a re-used case if there is
evidence of re-use in both directions, it means, X → Y and Y → X. A re-used
case exists when the distance is less than 0.45 or the gap is greater than 0.14,
but also it is important that one of the additional conditions is achieved. The
first condition is that the ranking must be, at least, in the second position and,
the second condition, that the label of the relative difference must be Before.
The first run for C and Java languages were processed with above conditions.
However, in some cases the evidence in one direction was very high and in the
other direction was almost reliable, but according to the training corpus in Java,
in most of the cases this pair was a re-used case. In the second run, if there were
not high evidence of re-use in one direction, then the pair can be considered as
re-used case whether at least one of the both codes has the ranking of 1 and the
relative difference of Before and the gap greater than 0.1.

UAM-C [15] represents the source code in three views attempting to highlight
different aspects of a source code: lexical, structural and stylistics. From the
lexical view, they represent the source code using a bag of character 3-grams
without the reserved words for the programming language. For the structural
view, they proposed two similarities that take into account functions’ signatures
within the source code, e.g., the data types and the identifier names of the
functions’ signature. The third view consists in accounting for the stylistics’
attributes, such as, number of spaces, number of lines upper letters, etc. For each
view they computed a similarity value for each pair of source codes and then
they established a threshold calculated on the training corpus. In the first run,
they only consider the first view with a manually defined similarity threshold of
value 0.5. In the second run, they use the first and the second view. From these
two views they have three different similarities: lexical similarity (L), data types
similarities (DT ), and identifiers name similarity (IN). Then, they combined
them as: 0.5L ∗ 0.25DT ∗ 0.23IN , according to a confidence’s level manually
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established. In the third run, they uses 8 similarities derived from the three
proposed views: one similarity for the lexical view, 6 similarities from the second
view and 1 more for the stylistic view. Finally, they trained a model using a
supervised approach to be used over the test corpus.

DCU [10] undertakes an information retrieval (IR) based approach for address-
ing the source code plagiarism task. First, they employ a Java parser to parse
the Java source code files and build an annotated syntax tree (AST ). Then, they
extract content from selective fields of the AST to store as separate fields in a
Lucene index. More specifically speaking, the nodes in the AST from which they
extract information from are the statements, class names, function names, func-
tion bodies, string literals, arrays and comments. For every source code in the
test corpus, they formulate a pseudo-query by extracting representative terms
(those having the highest language modelling query likelihood estimate scores).
A ranked list of 1000 documents along with their similarities with the query is
retrieved after executing the query. The retrieval model that they use is language
model (LM). Their model walks down this ranked list (sorted in decreasing or-
der by the similarities) of documents and stops where the relative decrease in
threshold in comparison to the previous document similarity is less than a pre-
defined threshold value acting as a parameter. The documents collected this way
are then reported as the re-used set of documents. In the first run, separate fields
are created for each AST node type, e.g. the terms present in the class names
and the method bodies are stored in separate fields. They compute relative term
frequency statistics for each field separately. In the second run, an AST is con-
structed from the program code using a Java parser and then bag-of-words from
the selected nodes of the AST are used. However, separate fields are not used
to store the bag-of-words. The index is essentially a flat one. In the third run,
a simple bag-of-words document representation is used for a program code, i.e.,
no program structure is taken into account.

6 Results and Analysis

The results obtained by the participants are shown in Table 4 for the program-
ming language C and in Table 5 for Java. As we mentioned before, we ranked
obtained results by means of the F1 measure, given that we prefer systems that
are able to obtaing (high) balanced values of Precisions and Recall.

The best results according to F1 were obtained by UAEM in C and UAM-C in
Java. In the C programming language, the two runs of UAEM were able to retrieve
all the re-used source code pairs. The rule introduced for retrieving less obvious
re-used cases in run 2 had a negative impact on the performance in terms of
precision and, therefore, of F1. Results by UAM-C have been adversely affected
in terms of precision by the huge number of retrieved source code pairs (+50K).
This may happened because they have removed reserved words and taken into
account the number of functions according to the C language. C++ language
includes new characteristics such as classes and methods and also includes new
reserved words (e.g. cin or cout). Contrary to the UAEM-C, the other two teams,
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as well as the baselines run do not retrieved such amount of re-used pairs. Such
fact has a direct impact on the formed pool, since it only takes into account
the retrieved pairs with a certain degree of agreement (at least 4 out of 7 runs).
has been hindered by the source codes written in C ++ which include classes,
methods of classes C not included.

Table 4. Overall evaluation results for C/C++ programing language. The ranking is
upon the F1 values. Baseline 1 corresponds to JPlag model and baseline 2 corresponds
to a character 3-grams based model.

Position Run F1 Precision Recall

1 UAEM-run 1-2 0.440 0.282 1.000
2 UAEM-run 3 0.387 0.240 1.000

# baseline 2 0.295 0.258 0.345
# baseline 1 0.190 0.350 0.130
3 UAM-C-run 1 0.013 0.006 1.000
4 UAM-C-run 3 0.013 0.006 0.997
5 UAM-C-run 2 0.010 0.005 0.950

In the Java scenario, UAM-C has achieved the best performance with a bal-
ance between precision and recall. The combination of all the similarities (lexical,
structural and stylistic) measures using a supervised decision tree has been de-
cisive. The second run has been affected by the same phenomenon than in the
C scenario: it retrieved +10K re-used source code pairs. The three runs of DCU

achieved a similar performance. In the second run, the addition of the bag-of-
words to the selected nodes of the AST slightly improved the performance of
the first run. DCU did not select nodes to create a bag-of-words in the third run.
This fact has generated slightly lower results

Table 5. Overall evaluation results for Java programing language. The ranking is upon
the F1 values. Baseline 1 corresponds to JPlag model and baseline 2 corresponds to a
character 3-grams based model.

Position Run F1 Precision Recall

1 UAM-C-run 3 0.807 0.691 0.968
2 DCU-run 2 0.692 0.530 0.995
3 DCU-run 3 0.680 0.515 1.000
4 DCU-run 1 0.602 0.432 0.995

# baseline 2 0.556 0.457 0.712
5 UAEM-run 1 0.556 0.385 1.000
6 UAM-C-run 1 0.517 0.349 1.000

# baseline 1 0.380 0.542 0.293
7 UAEM-run 2-3 0.273 0.158 1.000
8 UAM-C-run 2 0.037 0.019 0.928
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In general, different approaches were applied to solve the problem of source
code re-use detection. Proposed approaches vary from string-matching to ab-
stract syntax tree based models. Additionally, given that all these approaches
were evaluated under the same conditions employing the same collections, it
was possible to make a more fair comparison among participant systems. Ac-
cordingly, the best performing model was the string-matching based in C [11]
while a combination of lexical, structural and stylistic in Java [15].

7 Remarks and Future Work

In this paper we have presented the overview of the Detection of SOurce COde
Re-use (SOCO) PAN track at FIRE. Especially, SOCO 2014 has provided a task
specification which is particularly challenging for participating systems. The task
was focused on retrieving cases of re-used source code pairs from a large collection
of programs. At the same time, SOCO has provided an evaluation framework
where all participants were able to compare their obtained results by means of
applying different approaches under the same conditions and using the same
corpora. With these specifications, the task has turned out to be particularly
challenging and well beyond the current state of the art of participant systems.

In total three teams participated and submitted 13 runs. We summarise the
followed approaches by each of the participant systems and presented the eval-
uation of submitted runs along with its respective analysis. In general, different
approaches were proposed, varying from string-matching to abstract syntax tree
based models. It is important to notice that the participation for the Java lan-
guage was much higher than for the C programming language (8 vs. 5 runs).
Nevertheless, the team that achieved the best results in both scenarios (i.e.,
C/C++ and Java) was the UAEM by means of their string-matching approach.

Finally, a note has to be made with respect to the re-usability of test col-
lections, which were calculated using a pool formed by submitted and baseline
runs; is that more experiments need to be performed in order to construct a
more fine-grained relevance judgements. Nonetheless, both training and test col-
lections represent a valuable resource for future research work on the field of
source code re-use identification.
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