
DCU@FIRE-2014: An Information Retrieval Approach for
Source Code Plagiarism Detection

Debasis Ganguly
Centre for Global Intelligent Computing (CNGL)

School of Computing
Dublin City University

Dublin, Ireland
dganguly@computing.dcu.ie

Gareth J.F. Jones
Centre for Global Intelligent Computing (CNGL)

School of Computing
Dublin City University

Dublin, Ireland
gjones@computing.dcu.ie

ABSTRACT
This paper investigates an information retrieval (IR) based
approach for source code plagiarism detection. The method
of extensively checking pairwise similarities between docu-
ments is not scalable for large collections of source code doc-
uments. To make the task of source code plagiarism detec-
tion fast and scalable in practice, we propose an IR based ap-
proach in which each document is treated as a pseudo-query
in order to retrieve a list of potential candidate documents
in a decreasing order of their similarity values. A threshold
is then applied on the relative similarity decrement ratios to
report a set of documents as potential cases of source-code
reuse. Instead of treating a source code as an unstructured
text document, we explore term extraction from the anno-
tated parse tree of a source code and also make use of field
based language model for indexing and retrieval of source
code documents. Results confirm that source code parsing
plays a vital role in improving the plagiarism prediction ac-
curacy.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIE-
VAL]: Information Search and Retrieval—Retrieval models,
Relevance Feedback, Query formulation

General Terms
Theory, Experimentation

Keywords
Source Code Plagiarism Detection, Field Search

1. INTRODUCTION
Community question answering (CQA) forums and pro-

gramming related blogs have made source code widely avail-
able to be read, copied and modified. Programmers often

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

tend to re-use source code snippets that are available on
the web. The massive amount of programing resources on
the web makes it infeasible in practice to perform manual
analysis of suspicious source code re-usage. Consequently,
there is a need of developing automated methods for detect-
ing source code plagiarism. This is particularly the case for
software development companies who want to preserve their
intellectual property.

The problem of software plagiarism is challenging because
the bag-of-words encoding of source codes in a particular
programming language is likely to result in a massive num-
ber of hits (non-zero similarity values) due to the use of
similar programming language specific constructs and key-
words. It is therefore highly inefficient to compute pairwise
similarity values between source codes in a reasonably large
sized collection.

This pairwise computation can be avoided by an informa-
tion retrieval (IR) based approach. In this approach, first
each document is added to an inverted list based indexed or-
ganization and then each document in turn can be treated as
a pseudo-query to retrieve a ranked list of similar documents
from the collection. The plagiarized documents can then be
selected from the retrieved list of documents. The research
questions in the IR based approach are the following.

Q1: Does a bag-of-words model (as used in standard IR)
suffice or should the source code structure be used in
some way to extract more meaningful pieces of infor-
mation?

Q2: How to index the source code documents so that a re-
trieval model can best make use of the indexed terms to
retrieve relevant (plagiarized) documents at top ranks?

Q3: How to represent a source code document as a pseudo-
query, i.e. what are most likely representative terms
in a source code document?

The rest of the paper describes our investigation on these
research questions as a part of our participation in the source
code plagiarism detection task SOurce COde reuse (SOCO)
in FIRE 2014 [4]. Section 2 discusses the limitations of the
existing approaches for software plagiarism detection and
motivates the need for an IR approach. In Section 3, we
describe our IR based approach to index a large collection
of source code documents and retrieve candidate plagiarized
documents from this indexed collection. In Section 4, we
present the results on the development set of documents and
our official results on the test collection. Finally, Section 5
concludes the paper with directions for future work.

2. LIMITATIONS OF EXISTING METHODS
In this section, we first describe why some standard tech-

niques of document similarity estimation may likely fail to
work for source codes. We then discuss our proposed method
where we attempt to alleviate each of these problems.

2.1 Near Duplicate Document Detection
It is usually the case in software plagiarism that only a

part of the source code is copied for reuse in another pro-
gram. Occurrences of exact duplicates at the level of whole
documents is rare. Consequently, the standard techniques
of near duplicate document detection from large collections,
such as shingling [1], may not be useful for this problem
because the Jacard coefficient of the set of shingles for two
source codes (a part of one being copy-pasted into the other)
is likely to be low.

2.2 Bag-of-words Model
Most existing approaches for source code plagiarism de-

tection take into account the programming language spe-
cific features. This is because a bag-of-words encoding of
the source codes is likely to result in falsely high similarity
values between non-plagiarized documents pairs due to the
use of similar programming language specific constructs and
keywords.

Programs tend to use a frequent set of variable names, spe-
cially for looping constructs, e.g. i, j, k etc., which may also
cause false high similarities with a flat bag-of-words repre-
sentation of documents. Furthermore, programs extensively
make use of common library classes, such as the“ArrayList”,
“HashMap” etc. in Java, which may also contribute to the
false matches; for instance two Java programs making use
of the standard library “HashMap” may be falsely identified
as plagiarized pairs. It is therefore of utmost importance to
take into account the structure of a program while comput-
ing the similarity. In fact, it has been shown that a control-
flow graph based analysis of program pairs produces signif-
icantly better results than a simple term frequency based
approach [2].

2.3 Exhaustive Pair-wise Similarity
An exhaustive pairwise similarity computation between

all documents pairs in a collection is clearly intractable for
large sized collections. However, all previously reported ap-
proaches of source code plagiarism detection, that we are
aware of, use an exhaustive pairwise similarity computation
approach [2, 3]. Due to the difficulty in carrying out ex-
perimental investigations on large software collections, such
approaches are mostly evaluated on a very small collection
of source codes, e.g. the evaluation in [2] uses a collection
of 56 programs. A standard way to avoid per pair similar-
ity computatiion is to use an inverted list organization of
documents to retrieve a candidate list of top most similar
documents with respect to a given query. Next, we describe
how such an approach can be applied for the software pla-
giarism detection task.

3. IR APPROACH
In this section, we first describe how an IR based approach

is used to obtain a set of candidate plagiarized documents
from a ranked list of documents retrieved in response to a
pseudo-query constituted from the current document under

consideration, and then describe in details how are the doc-
uments indexed and how are the pseudo-queries formulated.

3.1 Retrieval with Pseudo-query
To detect all plagiarized document sets in a collection,

we propose to treat every document in the collection as a
pseudo-query and retrieve a list of top ranked most similar
documents in response to the query. However, in contrast
to the standard method of result presentation with the help
of a ranked list in IR, the objective in the case of plagiarism
detection is to obtain a set of documents that are to be
predicted as plagiarized.

To get this candidate set of plagiarized documents from
the ranked list of (say 1000) retrieved documents, we need
to cut-off the ranked list at some point because the ones fur-
ther down the list are progressively less likely to be relevant
(plagiarized). The use of thresholding to obtain a smaller
set of candidate documents have been reported in previous
works [2, 3].

The cut-off strategy that we use in particular is a thresh-
olding on the relative drops in similarity values of the ranked
list. More precisely, we go on accumulating documents from
the ranked list of retrieved documents until the relative de-
cease in similarity of the ith ranked document with respect
to the (i − 1)th one is higher than a pre-defined threshold,
say ε, as shown in Equation 1. The reasoning behind this is
that the first relative drop higher than the threshold most
likely indicates the start of non-plagiarized documents. In-
tuitively speaking, the relative similarity decrement values
in contrast to the absolute similarity values are normalized
and hence are devoid of any document and query length
effects.

Plag(Q) = {Di :
sim(Q,Di)− sim(Q,Di−1)

sim(Q,Di−1)
≤ ε} (1)

3.2 Document Representation
As discussed in Section 2, the bag-of-words document

model representation of a source-code document cannot ef-
fectively capture the cases where a part of the source code
is copy-pasted into another. To alleviate this problem, a so-
lution is to take into account the code structure of a source
code while representing the source document as a vector.
Specifically, as a part of document processing for indexing,
we used a Java parser1 to construct an annotated syntax
tree (AST) from each source code document in our collec-
tion. We then extract terms from specific nodes of the AST.

The words extracted from the list of AST nodes shown
in Table 3 are then indexed in stored in separate fields of
a Lucene index. A field representation of a document is
supposed to better utilize the document structure than a
flat view, e.g. a match in the string literal field is treated
separately in comparison to a match in the class name field,
as a result of which a program using the string constant
“HelloWorld” is not considered as plagiarized from a source
which defines a class named “HelloWorld”.

3.3 Query Representation
Since only a part of the source code is typically copy-

pasted into another one, it is not reasonable to use whole
source code documents as a pseudo-queries. Instead, we ex-
tract a pre-set number of terms from each field of a document

1http://code.google.com/p/javaparser/

Table 1: Results on the training data.
Parametes Metric

AST Fields #Qry terms n-gram Precision Recall F-score
no no all 1 0.8000 0.0952 0.1702
no no 50 1 0.6363 0.4166 0.5035

yes no all 1 0.7778 0.0833 0.1505
yes no 50 1 0.7631 0.3452 0.4754

yes yes all 1 0.8235 0.1666 0.2772
yes yes 50 1 0.7894 0.3571 0.4918

no no all 2 0.7667 0.2738 0.4035
no no 50 2 0.7200 0.4285 0.5373

yes no all 2 0.7391 0.2023 0.3177
yes no 50 2 0.5714 0.2857 0.3809

yes yes all 2 0.7826 0.2142 0.3364
yes yes 50 2 0.6842 0.6190 0.6500

Table 2: SOCO Official Results.

Run Name
Parametes Metric

Parse Fields #Qry terms n-gram Precision Recall F-score
dcu-run1 no no 50 2 0.432 0.995 0.602
dcu-run2 yes no 50 2 0.530 0.995 0.692
dcu-run3 yes yes 50 2 0.515 1.000 0.680

Table 3: Annotated Syntax Tree nodes of a Java
program from which terms are extracted during in-
dexing.

Field Name Field Description

Classes The names of the classes used in a
Java source

Method calls The method names and actual pa-
rameter names and types

String literals Values of the string constants
Arrays Names of arrays and dimensions
Method definitions Names of methods and formal pa-

rameter names and types
Assignment statements Variable names and types
Package imports Names of imported packages
Comments

(see Table 3) for constructing a pseudo-query. The term se-
lection function that we use in particular is the language
modeling (LM) term score [5], shown in Equation 2.

LM(t, f, d) = λ
tf(t, f, d)

len(f, d)
+ (1− λ)

cf(t)

cs
(2)

Specifically speaking, in order to formulate a query from
a document d, we score each term of each field of d by the
function shown in Equation 2 and then select the top most
k ones, where k is a parameter. The parameter λ controls
the relative importance of the term frequency as against the
collection frequency.

4. EXPERIMENTS AND RESULTS
In this section, we report the results of the experiments

conducted on the training data and the official results of the
SOCO task [4].

4.1 Baselines
As baseline approaches, we submitted two runs in the

SOCO task. The first simply uses the standard LM retrieval
with a flat bag-of-words representation. Source code docu-
ments are treated similar to non-structured text documents
and the index does not constitute of separate fields.

As a second baseline approach, we submitted a run where
we extract only the terms from the selected nodes of the
AST (see Table 3). However, we do not store these terms in
separate fields; instead, we use a single field to store them.

In addition to the official submissions, we also investigated
other approaches with different parameter settings, e.g. us-
ing different number of terms while constructing the pseudo-
queries, and unigram and bi-gram (word level) indexing.

4.2 Results on Training Data
The results obtained with different parameter settings are

shown in Table 1. The first observation that can be made
from Table 1 is that the the use of all terms while construct-
ing the pseudo-query from the documents result in a very
low recall. The second important observation is that the
method of extracting terms from selected nodes of the AST
is not much useful without the document field structures.
The third observation is that making use of the word bi-
grams for indexing and retrieval tends to improve results for
all cases.

4.3 Results on Test Set (Official Results)
The official results of our submitted runs are shown in

Table 2. It can be seen that the results on the test set
are somewhat different from those on the training one. For
instance, the a flat index constituted from the AST terms
produces very good results which was not the case for the
training set (c.f. Table 1). Flat indexing with no parsing
yields considerably worse precision (and hence F-score) in
comparison to the parsing based approaches. Surprisingly,

field based LM does not turn out to be more effective than
the standard bag-of-words LM.

5. CONCLUSIONS AND FUTURE WORK
This paper described our approach to the problem of source

code plagiarism detection. The key idea our approach cen-
ters around the hypothesis that the program structure is im-
portant for determining source code plagiarisms. Both the
development set and the official results empirically confirm
this hypothesis. Thus, the answer to research question Q1
(see Section 1) is that parsing the source code helps improve
more meaningful pieces of information which can in turn be
used to improve the accuracy of plagiarism detection.

Whether a field based retrieval model improves results
further or not is inconclusive from the results of the devel-
opment and the test sets. Research question Q2, where we
wanted to explore effective ways of document representa-
tion, is yet inconclusive because of the apparent anomalous
results obtained on the development and the test sets.

In the third research question, namely Q3 (see Section
1), we wanted to explore effective ways of representing a
document as a pseudo-query. The results show that an
LM based term selection method of selecting representa-
tive terms works significantly better than using all terms
for pseudo-query formulation.

In future, we would like to explore the reasons for the
apparent anomaly between the development set and the test
set results. Using different weights for different fields during
the retrieval process is another direction for future research.

Acknowledgments
This research is supported by Science Foundation Ireland
(SFI) as a part of the CNGL Centre for Global Intelligent
Content at DCU (Grant No: 12/CE/I2267).

6. REFERENCES
[1] A. Z. Broder. Identifying and filtering near-duplicate

documents. In Combinatorial Pattern Matching, 11th
Annual Symposium, CPM 2000, Montreal, Canada, June
21-23, 2000, pages 1–10, 2000.

[2] D. Chae, J. Ha, S. Kim, B. Kang, and E. G. Im. Software
plagiarism detection: a graph-based approach. In 22nd ACM
International Conference on Information and Knowledge
Management, CIKM’13, San Francisco, CA, USA, October
27 - November 1, 2013, pages 1577–1580.

[3] D.-K. Chae, S.-W. Kim, J. Ha, S.-C. Lee, and G. Woo.
Software plagiarism detection via the static api call
frequency birthmark. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing, SAC ’13, pages
1639–1643, New York, NY, USA, 2013. ACM.

[4] E. Flores, P. Rosso, L. Moreno, and E. Villatoro-Tello.
PAN@FIRE: Overview of SOCO Track on the Detection of
SOurce COde Re-use. In Sixth Forum for Information
Retrieval Evaluation (FIRE 2014), Bangalore, India, 2014.

[5] D. Hiemstra. Using Language Models for Information
Retrieval. PhD thesis, CTIT, AE Enschede, 2000.

