
Identification of Similar Source Codes based on
Longest Common Substrings

René Arnulfo García Hernández
Autonomous University of the State of Mexico
Santiago Tianguistenco, San Pedro Tlaltizapan

State of Mexico, Mexico
renearnulfo@hotmail.com

Yulia Ledeneva
Autonomous University of the State of Mexico
Santiago Tianguistenco, San Pedro Tlaltizapan

State of Mexico, Mexico
yledeneva@yahoo.com

ABSTRACT
In this paper, we describe the system developed by Autonomous
University of the State of Mexico (in Spanish, UAEM) for the
detection of source code re-use (SOCO) task of FIRE 2014. The
aim of the SOCO task is to detect the most similar code pairs
between a large source code collection in java and c languages.
Our method is divided in for phases: preprocessing, similarity
measure, ranking and getting the decision. One way to measure
the similarity between a pair of codes is to use the length of the
Longest Common Substring (LCS). However, beside the LCS
there is another important set of longest common substrings
(shorter than LCS) that are not taking into account. Our
hypothesis is that if we use all the longest common substrings
(LCSs) is possible to improve the detection of similarity between
two codes. The second hypothesis is that a re-use case not only
depends on the value of a measure but also depends on the
similarity of other codes. For this, we get other parameters using
the LCSs measure with respect to other codes. For taking a re-use
case decision, we obtain some rules using the training corpus of
SOCO.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.1 Content
Analysis and Indexing; H.3.3 Information Search and Retrieval;
H.3.4 Systems and Software

General Terms
Algorithms, Measurement, Performance, Experimentation,
Languages

Keywords
Source Code Reuse, Longest Common Substrings, Similar Codes,
Java Code Reuse, C Code Reuse.

1. INTRODUCTION

Even though is common to find a lot of web pages showing
source codes in different languages, the source code is the result
of an intellectual effort, for such reason, it is protected by
copyright laws. Normally, the source code in the WEB is
presented in short fragments with tutorial proposes. However, re-
using source code of works brings economic problems for the
author and legal problems for whom make the act. Some
automatic tools have been developed to assist with the
problematic of the re-use detection of source code. These tools
can be classified in intrinsic or extrinsic tools. The intrinsic tools

search re-uses cases in a given collection of source codes. In this
case, every code in the collection is considering suspects. In the
extrinsic tools, the problem consists of given a suspect to find the
re-use case in other collections, like the Web.

JPLAG and MOSS are examples of free tools. JPLAG [1] was
developed by Guido Malpohl in 1996 which supports Java, C#,
C++, Scheme and natural language text. JPLAG uses a variation
of the Karp-Rabin comparison algorithm developed by Wise [2].
First, JPLAG converts the source code into strings of token
employing a parser. The parser brings more semantic information
and depends on the source language. MOSS [3] (Measure Of
Software Similarity) was developed by Alex Aiken in 1994.
MOSS works with different languages: C, C++, Java, Pascal, Ada,
Lisp and Scheme. MOSS is based on getting fingerprints which
identifying a source code in particular way. According to the Web
page of MOOS the ideas of its algorithm can be found in [7]. The
idea is that the more common fingerprints exist between a pair of
source codes, the more similar they are. Fingerprints are a small
subset of all the n-grams (substrings of n characters) that exists in
a source code. The fingerprint is form with a unique value that
represents an n-gram (normally, a hash functions is applied).

Sherlock and PMD are open-source free tools. Sherlock was
developed by the department of Computational Science of the
University of Warwick. Sherlock works with source codes and
natural language texts. Also, PDM uses the string-matching
comparison algorithm of Karp-Rabin. PDM supports Java, JSP,
C, C++, Fortran and PHP.

CodeMatch is a commercial tool that supports the languages:
BASIC, C, C++, C#, Delphi, Flash, Java, etc. CodeMatch is based
on the combinations of five algorithms: Source Line Matching,
Comment Line Matching, Word Matching, Partial Word
Matching, and Semantic Sequence Matching. For processing a
source code, first CodeMatch separates comments, identifiers
(name of variables, names of constants, names of functions, etc.)
and functional code. Word Matching algorithm obtains for each
code a substring of words (eliminating reserved words) that allow
counting the number of common words in this sequence. Unlike
Word Matching, for Partial Word Matching is not necessary that
the complete words matching, it could be partial. Source Line
Matching compares the source lines (excluding comments) of the
source code pair. On the contrary, Comment Line Matching
compares the lines of comments excluding the lines with
functional code. Semantic Sequence Matching compares the lines
of codes using the first word (excluding comments) of the pair of
source codes. Finally, a single score is given for the similarity of
the source code pair.

The state of the art in the s research deals with the detection of
source-code re-use across programming languages [6].

2. Proposed system
Our system (UAEM) used for the detection of source code reuse
is divided into four phases.

2.1 Preprocessing phase
In the first phase, only the lexical items (like {,},(,),+,*,;.etc.) of
each source code are separated with a whitespace and more than
one whitespace is removed. The result of this phase is a string of
tokens of the source code. This phase depends on the input
language, but for C and Java is almost the same. Even thought, we
test some options like remove comments or identifiers, the
evaluation in the training corpus decreases.

2.2 Similarity measure phase
In the second phase, for each source code given as a string, the
similarity measure with respect to the other source codes is
obtained. The sum of the different lengths of the longest common
substrings between the two source codes (normalized to the length
of the longest code) is used as the similarity measure. For this
phase, we used the algorithm in [4].

2.3 Ranking phase
In the third phase, a set of parameters that allow later the
identification of cases of re-use is obtained using comparisons
done in the previous phase. The parameters obtained are: the
value of the DISTANCE (1 - similarity), the RANKING of the
distance (rank order of the most similar), the GAP that exists with
the next closest code (it is only calculated for the first 10 closest
codes) and, using the maximum gap between the 10 most closest
codes, the codes that are (B)efore or (A)fter the maximum gap
(RELATIVE DIFFERENCE) are labeled. The result of the third
phase is a matrix where each row represents a comparison of a
source code with other codes (columns) and each cell represents a
pair of source codes in both directions.

2.4 Reuse decision phase
For taking the decision, a source code pair X↔Y will be a reuse
case, if there is evidence of reuse in both directions, it means,
X→Y and Y→X. A reuse case exists when the DISTANCE is less
than 0.45 or the GAP is greater than 0.14, but also it is important
that one of the additional conditions is achieved. The first
condition is that the RANKING must be, at least, in the second
position and, the second condition, that the label of the
RELATIVE DIFFERENCE must be B. The first run for C and
Java languages were processed with above conditions. However,
in some cases the evidence in one direction was very high and in
the other direction was almost reliable, but according to the
training corpus in Java and C, in most of the cases this pair was a
code reuse case. In the second run, if there were not high evidence
of reuse in one direction, then the pair can be considered as reuse
case whether at least one of the both codes has the RANKING of
1 and the RELATIVE DIFFERENCE of B and the GAP greater
than 0.1.

3. Training experiments
The training corpus consists of 259 source codes in Java and 79
sources codes in C. Relevant judgments in Java has 84 pairs and
in C has 26 pairs. In table 1 is showed the results of our system
with the training corpus for C and Java. In the first run with Java
the system gets a better recall than precision, and in the second
run the precision is better. However, with C language the system
obtains the same precision, the difference was in the recall. Most

of the rules were tuning with Java corpus since more re-use cases
exists in the relevant judgments. In this sense, we think that the
results in C are worse since there are only 26 pairs for training.

Table 1. Results with training corpus according to our
evaluation.

Corpus-Run Precision Recall F-measure

Java-Run1 0.78 0.83 0.80

Java-Run2 0.85 0.80 0.83

C-Run1 0.80 0.58 0.67

C-Run2 0.80 0.63 0.71

4. Testing experiments
We were surprised when the test corpus was delivered, it was
bigger than we expected. The Java corpus has 12,080 files divided
in 6 scenarios. In the case of C corpus, it has 19,895 files divided
in 6 scenarios, too. Table 2 shows the distribution of the corpus
according to SOCO scenarios.

 Table 2. Distribution of test corpus according to the scenario.

Scenario Java C

A1 3,241 5,408

A2 3,093 5,195

B1 3,268 4,939

B2 2,266 3,873

C1 124 335

C2 88 145

At the beginning, the system was not optimized for running with
bigger collections. The time estimated for processing the whole
corpus was of 3 months, unacceptable for SOCO time
competition. After a reprograming the system was possible to
process the collections in one day using a computer with CPU
Xenon with 6 cores and 32 GB in RAM.
Since we did not know how the evaluation will be done, it could
be done: by scenario, by language or by runs; we decide to do the
combination of 2 runs to use 3 options that we are able to submit.
These is the explanation of why run 2 and run 3 are the same in
Java, and why run 1 and run 2 are the same in C. The results of
our system (UAEM) with the test corpus for C are showed in
Table 3. The f-measure results for UAEM-run1 and UAEM-run2
(actually, it correspond to the system tuning to C-Run1 in training
phase) were better than UAEM-run3 (it corresponds to C-Run2 in
training phase). However, in the training phase the system tuning
to C-Run1 was worse in the recall and the precision was better
than recall. We think this variation is possible since the training
corpus is very small compared with the test corpus.

Table 3. Results of the systems for C according to the first
SOCO evaluation.

Rank Team-Run Precision Recall F-measure
1 UAEM-run1 0.306 0.500 0.380

2 UAEM-run2 0.306 0.500 0.380
3 UAEM-run3 0.260 0.500 0.342
Baseline-1 0.400 0.069 0.117
Baseline-2 0.040 0.280 0.060
4 UAM-C-run1 0.007 0.494 0.013
5 UAM-C-run3 0.007 0.493 0.013
6 UAM-C-run2 0.005 0.444 0.010

The results of our system (UAEM) with the test corpus for Java
are showed in Table 4. The evaluation for UAEM-run2 and
UAEM-run3 (actually, it corresponds to the system tuning to
JAVA-Run2 in the training phase) were better than UAEM-run1
(it corresponds to JAVA-Run1). As in previous evaluation, the
system has a different behavior with respect to the training phase.
Nevertheless, the results in Java were better than in C.

Table 4. Results of the systems for java according to first
SOCO evaluation.

Rank Team-Run Precision Recall F-
measure

1 UAEM-run2 0.641 0.969 0.771
2 UAEM-run3 0.641 0.969 0.771
3 UAEM-run1 0.759 0.472 0.582
4 UAM-C-run1 0.633 0.435 0.515
5 DCU-run3 0.775 0.360 0.492
6 DCU-run2 0.777 0.350 0.482
7 DCU-run1 0.658 0.364 0.468
8 UAM-C-run3 0.926 0.311 0.465
Baseline-2 0.464 0.288 0.356
Baseline-1 0.617 0.080 0.141
9 UAM-C-run2 0.029 0.343 0.054

The configuration of Baseline-1 corresponds to JPLAG program
with the default parameters, and the configuration of Baseline-2
consists of a character 3-gram model weighted using term
frequency and cosine measure to compute the similarity. This
baseline considers as re-used cases all source code pairs that
surpass a similarity threshold of 0.9. An overview of the SOCO
Track can be found in [5]

4.1 Second SOCO evaluation
The second evaluation by SOCO eliminates our third run since
was a combination of the runs 1 and 2. Results for C are showed
in table 5 and results for java in table 6.

Table 5. Results of the systems for C according to the second
SOCO evaluation.

Rank Team-Run Precision Recall F-measure
1 UAEM-run1 0.282 0.100 0.440
2 UAEM-run2 0.240 0.100 0.387
Baseline-2 0.258 0.345 0.295
Baseline-1 0.350 0.130 0.190
4 UAM-C-run1 0.006 1.000 0.013
5 UAM-C-run3 0.006 0.997 0.013
6 UAM-C-run2 0.005 0.950 0.010

According to the second evaluation by SOCO, our system retains
the top position and the f-measure was increased, but the UAM-C
team obtained the same f-measure.

Table 6. Results of the systems for java according to second
SOCO evaluation.

Rank Team-Run Precision Recall F-
measure

1 UAM-C-run3 0.691 0.968 0.807
2 DCU-run2 0.530 0.995 0.692
3 DCU-run3 0.515 1.000 0.680
4 DCU-run1 0.432 0.995 0.602
baseline 2 0.457 0.712 0.556
5 UAEM-run1 0.385 1.000 0.556
6 UAM-C-run1 0.349 1.000 0.517
baseline 1 0.542 0.293 0.380
7 UAEM-run2 0.158 1.000 0.273
8 UAM-C-run2 0.019 0.928 0.037

According to the second evaluation in java, our system obtains the
fifth position with run1 and the seventh position with run 2.

5. Conclusions and future work
In this paper, a new system for detecting re-use of source code is
described. The proposed system works in four phases. The
preprocessing phase is very interesting since it does not require
sophisticated processes or dictionaries, making the execution of
this phase very fast. It is worth noting that all phases of our
system work with words, making the process faster than when
working with characters. The second phase introduces a new
measure based on the different lengths of longest common
substrings between the pairs of source codes which outperform
LCS. Third phase presents a new way for considering other
parameters derived from the LCSs measure. These parameters
allow proposing some rules for catch some groups of re-use cases.
According to first SOCO evaluation, our system outperforms
other systems in both cases. Even thought, the evaluation of Java
reach the best f-measure score, the results in C are also relevant,
since was the unique system that surpass both baselines in the first
evaluation.

In both second evaluations is interesting to observe that all of the
systems obtains excellent recalls between 0.928 and 1.000.
Therefore, as a future work we must concentrate our efforts in
precision. Also, as future work, we think the rules for C can be
improved considering some more re-use cases.

6. REFERENCES
[1] L. Prechelt, G. Malpohl and M. Phlippsen, 2000. JPlag:

Finding plagiarism among a set of programs. Technical
Report, Universität Karlsruhe, Germany.

[2] A. Aiken. 1998. MOSS (Measure Of Software Similarity)
plagiarism detection system.
http://www.cs.berkeley.edu/˜moss/ (as of April 2000) and
personal communication, University of Berkeley, CA.

[3] R.M. Karp and M.O. 1987. Efficient randomized pattern-
matching algorithms. IBM J. of Research and Development,
31(2), 249-260.

[4] R.A. García-Hernández, J. Martínez-Trinidad and J.
Carrasco-Ochoa, 2006. A new algorithm for fast discovery of

maximal sequential patterns in a document collection.
Computational Linguistics and Intelligent Text Processing,
LNCS 3878, Springer, 514-523, Mexico.

[5] E. Flores, P. Rosso, L. Moreno, and E. Villatoro-Tello, 2014.
PAN@FIRE 2014: Overview of SOCO Track on the
Detection of SOurce COde Re-use. In Proceedings of the
Sixth Forum for Information Retrieval Evaluation (FIRE
2014), Bangalore, India.

[6] E. Flores, A. Barrón-Cedeño, P. Rosso and L. Moreno, 2012.
Detecting source code re-use across programming languages.
In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computational
Linguistics: Demostration Session, NAACL, 1-4.

[7] S. Schleimer, D. Wilkerson, A. Aiken, 2003. Winnowing:
Local Algorithms for Document Fingerprinting. In
Proceedings of the 2003 ACM SIGMOD International
conference on Management of data, 76-85, CA.

	1. INTRODUCTION
	2. Proposed system
	2.1 Preprocessing phase
	2.2 Similarity measure phase
	2.3 Ranking phase
	2.4 Reuse decision phase

	3. Training experiments
	4. Testing experiments
	4.1 Second SOCO evaluation

	5. Conclusions and future work
	6. REFERENCES

