
6

Cross-Language Identification of Similar Source Codes

based on Longest Common Substrings
René Arnulfo García-Hernández

Autonomous University of the State of Mexico
Santiago Tianguistenco, San Pedro Tlaltizapan

State of Mexico, Mexico

renearnulfo@hotmail.com

Yulia Ledeneva
Autonomous University of the State of Mexico
Santiago Tianguistenco, San Pedro Tlaltizapan

State of Mexico, Mexico

yledeneva@yahoo.com

ABSTRACT

In this paper, we describe the system developed by Autonomous

University of the State of Mexico (in Spanish, UAEM) for the

cross-language detection of source code re-use (CL-SOCO) task

of FIRE-2015. The aim of the CL-SOCO task is to detect the

most similar code pairs from C to Java languages. Since Java

and C share most of the lexical and syntactical information, we

preprocess few of the most frequent Java and C instructions to

try to unify both languages. Then, the CL-SOCO task can be

seen as monolingual detection, as the previous task of SOCO.

Since our approach was ranked well in the previous

participation in SOCO, we decide just preprocess both source

codes without re-training. According to the test evaluation our

approach was ranked in the fourth position close to the third

ranking.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content

Analysis and Indexing; H.3.3 Information Search and Retrieval;

H.3.4 Systems and Software

General Terms

Algorithms, Measurement, Performance, Experimentation,

Languages

Keywords

Source Code Re-use, Longest Common Substrings, Similar

Codes, Java Code Re-use, C Code Re-use, Cross-Language

Source Code Detection.

1. INTRODUCTION
Even though is common to find a lot of web pages showing

source codes in different languages, the source code is the result

of an intellectual effort, for such reason, it is protected by

copyright laws. Normally, the source code in the Web is

presented in short fragments with tutorial proposes. However,

re-using source code of works brings economic problems for the

author and legal problems for whom make the act. Some

automatic tools [5][6] have been developed to assist with the

problematic of the re-use monolingual detection of source code.

Nevertheless, an expert programmer can easily translate a C

program to Java language making invisible for monolingual

source code re-use detection tools. In the CL-SOCO task [1], the

aim is to propose approaches to deal with the cross-language re-

use from C to Java. In this paper, our participation UAEM

(Autonomous University of the State of Mexico) in the CL-

SOCO task is described.

2. Proposed Approach
Since Java and C languages have similar grammar, we propose

to preprocess both languages in order to unify them. In this

manner, the cross-language detection problem can be seen as

mono-language problem. In the previous participation in SOCO

task [2], our approach was ranked well; therefore, we use the

same system. In preliminarily experiments with the first-

provided training collection, our system performs good results

but some of the false-positives results in our opinion were true-

positives. In this case, we decide do not re-training our system

[3] adapting only the preprocessing phase.

Our system (UAEM) used for the detection of source code re-

use is divided into four phases.

2.1 Preprocessing phase
In the first phase, only the lexical items (like {,},(,),+,*,;.etc.) of

each source code are separated with a whitespace and more than

one whitespace is removed. The next Java instructions are

translated to C:

String.charAt(Number) String [Number].

System.exit exit

System.out.print(f|l) printf.

In the case of C instructions:

strcmp(Id1,Id2) Id1 == Id2

strcpy(Id1,Id2) Id1 = Id2

The result of this phase is a string of tokens of the source code.

2.2 Similarity measure phase
In the second phase, for each source code given as a string, the

similarity measure with respect to the other source codes is

obtained. The sum of the different lengths of the longest

common substrings between the two source codes (normalized

to the length of the longest code) is used as the similarity

measure. For this phase, we used the algorithm described in [4].

The similarity between two codes with the same language is

defined as zero since for this task it is not interesting.

2.3 Ranking phase
In the third phase, a set of parameters that allow later the

identification of cases of re-use is obtained using comparisons

done in the previous phase. The parameters obtained are: the

value of the DISTANCE (1 - similarity), the RANKING of the

distance (rank order of the most similar), the GAP that exists

with the next closest code (it is only calculated for the first 10

7

closest codes) and, using the maximum gap between the 10 most

closer codes, the codes that are (B)efore or (A)fter the maximum

gap (RELATIVE DIFFERENCE) are labeled. The result of the

third phase is a matrix where each row represents a comparison

of a source code with other codes (columns) and each cell

represents a pair of source codes in both directions.

2.4 Re-use decision phase
Even though in the CL-SOCO task the re-use was committed

only in the direction from C to Java, we believe that for taking

the decision there must be evidence in both directions. For

taking the decision, a source code pair X↔Y will be a re-use

case, if there is evidence of re-use in both directions, it means,

X→Y and Y→X. A re-use case exists when the DISTANCE is

less than 0.45 or the GAP is greater than 0.14, but also it is

important that one of the additional conditions is achieved. The

first condition is that the RANKING must be, at least, in the

second position and, the second condition, that the label of the

RELATIVE DIFFERENCE must be B. The first run was

processed with above conditions. However, in some cases the

evidence in one direction was very high and in the other

direction was almost reliable. In the second run, if there were

not high evidence of re-use in one direction, then the pair can be

considered as re-use case whether at least one of the both codes

has the RANKING of 1, the RELATIVE DIFFERENCE of B,

and the GAP greater than 0.1.

3. Training corpus
The first training corpus consists of 599 source codes in Java

and 599 sources codes in C, where the re-use where committed

from the file pair id.c to id.java. In our preliminarily

evaluations, the approach presents good results but some false-

positives results were confusing since according to our judgment

were actually true-positives. In this moment, we decide to use

the values presented above that were obtained with the training

of the SOCO task. However, it is worth to say that the second

version of the training corpus was provided without these

mistakes, but because for time reasons we do not tune our

system.

4. Testing experiments
In contrast, with the previous SOCO task, the test corpus of CL-

SOCO was smaller with 79 programs in java and 79 programs in

C. Table 1 shows the evaluation of the five systems proposed for

the CL-SOCO task. Our first run of the system is ranked in the

fourth place according to F1 measure, very close to third place

with a difference of 0.001. The difference with the best system is

of .033.

 Table 1. Test evaluation with the five participants.

Rank Team-Run F1 Precision Recall

1 UAM-C_run1 0.772 0.988 0.634

2 Palkovskii_run1 0.752 1.000 0.603

3 PES_BSec_run2 0.740 1.000 0.588

4 UAEM_run1 0.739 0.975 0.595

5 Palkovskii_run2 0.724 0.962 0.580

6 UAEM_run2 0.709 1.000 0.550

7 UAEM_run3 0.703 1.000 0.542

8 PES_BSec_run3 0.697 1.000 0.534

9 UAM-C_run2 0.687 0.620 0.771

10 PES_BSec_run1 0.683 1.000 0.519

11 UAM-C_run3 0.655 0.496 0.962

12 CLSCR_run1 0.611 0.952 0.450

5. Conclusions and future work
In this paper, a new system for detecting a cross–language

source code re-use is described. The proposed system works in

four phases. The preprocessing phase is very interesting since it

does not require sophisticated processes or dictionaries, making

the execution of this phase very fast. It is worth noting that all

phases of our system work with words, making the process

faster than when working with characters. The second phase

introduces a new measure based on the different lengths of

longest common substrings between the pairs of source codes

which outperform LCS. The third phase considers other

parameters derived from the LCSs measure. These parameters

were tuning with the previous task of SOCO. In this sense, our

approach is robust since get good results in both tasks.

In the future, we expect to adjust our system in the

preprocessing phase and the rules of the third phase with the

correct training corpus.

6. REFERENCES
[1] E. Flores, P. Rosso, L. Moreno, and E. Villatoro-Tello:

PAN@FIRE 2015: Overview of CL-SOCO Track on the

Detection of Cross-Language SOurce COde Re-use. In

Proceedings of the Seventh Forum for Information

Retrieval Evaluation (FIRE 2015), Gandhinagar, India, 4-6

December (2015)

[2] E. Flores, P. Rosso, L. Moreno, and E. Villatoro-Tello,

2014. PAN@FIRE 2014: Overview of SOCO Track on the

Detection of SOurce COde Re-use. In Proceedings of the

Sixth Forum for Information Retrieval Evaluation (FIRE

2014), Bangalore, India.

[3] R.A. García-Hernández, Y. Ledeneva, 2014. Identification

of Similar Source Codes base on Longest Common

Substrings. In Proceedings of the Sixth Forum for

Information Retrieval Evaluation (FIRE 2014), Bangalore,

India.

[4] R.A. García-Hernández, J. Martínez-Trinidad and J.

Carrasco-Ochoa, 2006. A new algorithm for fast discovery

of maximal sequential patterns in a document collection.

Computational Linguistics and Intelligent Text Processing,

LNCS 3878, Springer, 514-523, Mexico.

[5] L. Prechelt, G. Malpohl and M. Phlippsen, 2000. JPlag:

Finding plagiarism among a set of programs. Technical

Report, Universität Karlsruhe, Germany.

[6] A. Aiken. 1998. MOSS (Measure Of Software Similarity)

plagiarism detection system., University of Berkeley, CA.

